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This manuscript is a text that has evolved throughout my journey of learning about probability, it started
out as a set of revision notes for my first course in probability, and was expanded as I continued taking more
courses in the area. Its purpose is to provide a non-comprehensive, example-focused, light-hearted expla-
nation of the most important concepts in the modern Mathematical Theory of Probability. Recommended
knowledge for this text includes but is not limited to: elementary real analysis, elementary point-set topology,
some experience about elementary probability. The reader is advised that the content in this text is not
what one thinks that probability is during their first years of studies. A better name for this text would be
Probability Theory, or Measure Theoretic Probability. As a note of motivation, I would like to explain that in
my early stages of my mathematical education, I always despised elementary probability, as to me it lacked
rigor or mathematical substance, this changed completely once I learnt the measure-theoretic foundations of
probability, which provide an intuitive, yet powerful way to describe our ideas about probability. I wish the
reader all the best.

Yours falsely,

J.O.F

PS: The examples and questions were obtained either from my lecturers at King’s College London, from
[Sto13], or self-curated.
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1 Basic Constructions and Definitions

In this first chapter we address the fundamental questions: how can one formulate a mathematical theory of
Probability? What does it mean for an event to have a probability, what even is an event? It turns out that
our best bet at formalising a theory of Probability is to ground ourselves in the realm of measure theory, the
mathematical theory of size, for probabilities could roughly be thought of as the sizes of possible events.

1.1 Sigma Algebras

There is a question we would like to explore in our process of formulating a theory of Probability, say: if X

is a random variable (whatever that may be) taking values in the interval [0, 1], and A is any subset of [0, 1],
does the quantity

P(X ∈ A)

even make sense? As we will see, assigning probabilities is intimately related with assigning sizes, and if we
focus our attention momentarily on the simplest case of the real line, we may wish to define the size, or
measure of a set [a , b ] to be b −a , and then see from here how can we extend this notion of size to other
sets. This size function is known as the Lebesgue measure, and as it turns out, provided that we assume
the Axiom of Choice, there exists subsets of the real line (called the Vitali sets, if you are interested) whose
Lebesgue measure does not exist. The approach we take to fix this issue is to restrict our attention to certain
sets, which do not present a problem when talking about sizes. We don’t want to dive too much into the
technicalities, but from now on, we will only attempt to give sizes to sets that lie within a special family of
sets, this special family comes in the shape of a σ-algebra.

Definition 1.1.1 Let Ω be a set. A σ-Algebra F is a subset of 2Ω that contains Ω, is closed under countable
unions and closed under complements. A set A ∈F is called measurable.

The intuition behind this definition is that if (An ) is a sequence of measurable sets, we would like to be
able to assign a measure to the countable union. Similarly, we would like to be able to assign measures to
the intersection, this can be accomplished by repeated application of De Morgan’s Law. In the context of
probabilities, as we will see, we also want to be able to assign a probability to Ω \A whenever we are able to
assign a probability to A.

In a very similar spirit to many other areas in Mathematics, we can generate a special object from a smaller
object, e.g: the ideal generated by an element of a ring, the free group generated by a set of elements, etc.
In this case we can do something similar:

Theorem 1.1.1 Let E be an element of 2Ω. There exists a smallest σ-algebra (with respect to inclusion),
denoted σ(E ) that contains E , we say E generates σ(E ) or that σ(E ) is generated by E .

Proof. The construction is rather simple

σ(E ) =
⋂

E⊆F
F
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with F being a σ-algebra

Example 1 Suppose that our underlying set Ω is actually a topological space (Ω,τ). There is in some
sense a distinguished sigma algebra which may be attached to this space, namely the sigma algebra
generated by the open sets. This is referred to as the Borel sigma algebra, denoted B(Ω). In the case of
R, it can be shown that

B(R) =σ({(a , b ] | −∞< a < b <∞})

1.1.1 Practice Questions

Question 1 Let E1, E2 be Sigma algebras in the same space Ω, is E = E1 ∩E2 a Sigma algebra?

Solution. Yes. First of all, Ω ∈ E1 and Ω ∈ E2 so Ω ∈ E . Now take a countable collection of events (An )n∈N
in E . This collection belongs to both E1 and E2, which are Sigma algebras themselves, so the countable
union of this collection belongs both in E1 and E2 which means it belongs in E . Let A ∈ E . Again, A

belongs to both E1 and E2, so Ac belongs to both E1 and E2 so Ac belongs to A as well.

Remark 1 (Due to [Sto13]) Is the union of two Sigma algebras a Sigma algebra?

Proof. No. Consider the space Ω = {ω1,ω2,ω3}. Then the sets F1 = {∅,{ω1},{ω2,ω3}} and F2 =

{∅,{ω2},{ω1,ω3}} are both Sigma algebras but their union is not. Indeed {ω1},{ω2} ∈ F1 ∪F2 yet
{ω1,ω2} /∈F1 ∪F2.

Question 2 Let E = {A ⊆ [0,∞) | either A or Ac is countable }. Prove E is a Sigma Algebra

Proof. Here it is implicit that Ω = [0,∞) so Ωc = ∅ which is countable, so Ω ∈ E . Take A ∈ E . Thus
either A or Ac is countable. If Ac is countable we have shown Ac ∈ E . On the other hand if it is
A that’s countable, then Ac also belongs to E because (Ac )c = A which is countable. So E is closed
under complements. Now take a countable collection (An ) of events. Each An is either countable or
co-countable. If all the An are countable then we note that a countable union of countable sets is
countable, i.e:

⋃

n An ∈ E . On the other hand, if among the An there is some co-countable set, say A j ,
then notice that

�⋃

n An

�c
=
⋂

Ac
n ⊂ Ac

j , which is countable. Thus the complement of
⋃

n An is a subset
of a countable set, hence countable.

Question 3 Which of the following E are σ-algebras?

1. Ω= {a , b , c , d } with E = {∅,{a , b , c , d },{a , b },{c , d }}

2. Ω= {1, 2, · · · , 10} with E = {A ⊆Ω | cardinality is even}
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3. Ω=R with E = {(a , b ) | a < b }∪ {∅}

Solution. The first one is easily checked to be a Sigma-Algebra. The second is not a Sigma Algebra.
Let’s check what fails: Ω has cardinality 10 so its even, let A ∈ E . The cardinality of Ac is 10−|A| which is
even. However, say for instance A = {1, 2} and B = {2, 3}. Both of these sets are in E , but A∪B = {1, 2, 3}
which has odd cardinality, so E is not stable under union. Number three is not a Sigma Algebra either,
because it is not stable under unions as well. For example: (1, 2) ∈ E and (3, 4) ∈ E but the union of these
two intervals is not an interval nor the empty set.

Question 4 Show that B(R) contains the singletons.

Proof. Let a ∈ R. Construct the family of open sets An =
�

a − 1
n , a + 1

n

�

. Open sets are the generators
of B(R), so (An ) belongs to the Borel Algebra, which in addition is stable under countable intersections
and

⋂

n∈N An = {a }.

Question 5 Let Ω=R. Is E = {
⊔

1≤i≤n (ai , bi ]} a ring? Is it a Sigma Algebra?

Solution. First notice that by setting a = b then E ∋ ∅ = (a , b ]. Let A = (a , b ] ∈ E . Then Ac =

(−∞, a ]∪ (b ,∞]. So E is stable under complements. Stability under union is built into the definition, so
it is a ring. However, this definition does not allow for countable unions so it is not a Sigma Algebra.

Question 6 There exists a sigma-algebra F = {∅, A1, · · · , A5,Ω} of exactly seven sets.

Solution. No. Since F must be closed under complements, for every Ai ∈F , Ac
i must also be in F . No

set satisfies A = Ac so the fact that there is an odd number of sets in F means that at least there is one
set whose complement is not in F .

Question 7 Show sigma algebras are closed under countable intersections

Solution. Let (An ) be a countable sequence of measurable sets in F . Then for each An , Ac
n ∈F . Thus

⋃∞
n=1 Ac

n ∈F . Finally, we take the complement of this set and see that

F ∋
�∞
⋃

n=1

Ac
n

�c

=
∞
⋂

n=1

An
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Question 8 Show that closed intervals [a , b ] for −∞< a < b <∞ are in B(R) and that the Borel measure
of these intervals is b −a .

Solution. The interval
�

a − 1
n , b

�

belongs to B(R) by definition. Since B(R) is closed under countable
intersections, then the set

⋂

n

�

a − 1
n , b

�

= [a , b ] ∈B(R). Observe that:

�

a +
1

n
, b
�

⊆ [a , b ]⊆
�

a −
1

n
, b
�

Thus by monotonicity of the measure:

µ

��

a +
1

n
, b
��

≤µ([a , b ])≤µ
��

a −
1

n
, b
��

This in turn says that:

b −a −
1

n
≤µ([a , b ])≤ b −a +

1

n

By the sandwich theorem taking n→∞, we get the desired result. Alternatively, use Theorem 1.2.1.

Question 9 Is the set of rational numbers Q Borel?

Solution. Yes. Let (rn ) be your favorite enumeration of the rational numbers. Then

Q=
∞
⋃

n=1

{rn}

Observe that each {rn} is a singleton, and hence measurable (see Question 4 for a proof of this claim).
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1.2 Measures, Measure Spaces, Measurable Functions

We are now ready to formalise what we mean mathematically by size. A size function is called a measure.

Definition 1.2.1 Let Ω be a set and E a σ-algebra on Ω. A function µ : E → [0,∞] is a measure if

1. Given a sequence of disjoint measurable sets (An ):

µ

�

⋃

n

An

�

=
∑

n

µ(An )

2. µ(∅) = 0

If µ(Ω) is normalised, that is to say µ(Ω) = 1, then we refer to µ as a probability measure, and we talk about
the triplet (Ω,E ,µ) as a measure (or probability) space.

For notational convenience, whenever we are too lazy to indicate that a sequence of measurable sets is pairwise
disjoint, we will write

⊔

n

An

for their union instead of the usual union sign.

Example 2 The two canonical examples of measures are:

1. The Lebesgue measure λ on (R,B(R)). Which satisfies λ([a , b ]) = b − a . The existence of this
measure is a highly non-trivial fact, and its construction requires the use of something called
Carethedory’s Extension Theorem. Developing this would take too much valuable time away from
our study of probability, so we delegate it to classic texts such as [Wil91].

2. The counting measure c on (Z, 2Z). Which is defined by c (S ) = #S for any S ⊆Z.

Theorem 1.2.1 (Properties of Measures) -

1. Continuity: Slogan - measure of the limit is limit of the measure

(a) If (An ) is an increasing sequence then limµ(An ) =µ
�⋃

An

�

(b) If (An ) is a decreasing sequence of finite measure (µ(AN )<∞ for some N ) then limµ(An ) =

µ
�⋂

An

�

2. Subadivitivity: Slogan - triangle inequality

µ

�

⋃

n≥1

An

�

≤
∑

n≥1

µ(An )
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Proof of 1.a. The technique is to split each An into some disjoint sets that unite to An , thus being able
to use additivity of µ. Define Bn = An \An−1. Notice that

µ(An ) =µ

� n
⋃

k=1

Bk

�

=
n
∑

k=1

Bk →
∞
∑

k=1

Bk =µ

�∞
⋃

k=1

Bk

�

=µ

�∞
⋃

k=1

Ak

�

Proof of 1.b. We work by reducing to the case of increasing unions. Moreoever, notice that we are going
to have to use the assumption of finite measure at some point, that is to say, we will need to take
complements. This motivates the construction of the following increasing sequence:

Bn = A1 \An

Here’s a graphical rendition of this

Now that we have an increasing sequence, we know that

lim
n→∞

µ(Bn ) =µ

�∞
⋃

n=1

Bn

�

On the one hand:
µ(Bn ) =µ(A1)−µ(An )

On the other hand:
∞
⋃

n=1

Bn =
∞
⋃

n=1

A1 ∩Ac
n = A1 ∩

�∞
⋂

n=1

An

�c

= A1 \
∞
⋂

n=1

An

Now you can put this together.

Proof of 2. We prove the simpler case µ(A ∪ B ) ≤ µ(A) +µ(B ). The rest follows by a similar argument.
Observe that one can write A ∪ B as A ∪ B \ A. From Question 14 we know that since B \ A ⊆ B , then
µ(B \A)≤µ(B ). Combining this finishes the claim.

Definition 1.2.2 (Independence) Two events A, B ∈F are said to be independent if P(A∩B ) =P(A)P(B ). A
collection of events (An ) is said to be mutually independent if P

�

⋂k
j=1 Ai j

�

=
∏k

j=1P(Ai j
) for all valid index

sequences i1, i2, · · · , ik . A collection of sigma algebras Fn ⊆F is said to be independent if any sequence (An )

with Ai ∈Fi of events is independent.
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Remark 2 Note that if A and B are independent events, then A and B c are independent events. Indeed:

P(A ∩B c ) =P(A)−P(A ∩B ) draw a diagram to convince yourself

which in turnn is equal to P(A)−P(A)P(B ) by independence, hence

P (A ∩B c ) =P(A)(1−P(B )) =P(A)P(B c )

Proposition 1.2.1 (Properties of measurable functions) Let (Ω,E ,µ) be a measure space. The following
properties hold:

1. If f , g are measurable functions into R with appropriate domains, then f + g , f · g and f ◦ g are
measurable.

2. If ( fn ) is a sequence of measurable functions, the limits lim inf fn , lim sup fn , if they exist, are mea-
surable. Moreover, if the pointwise limit lim fn exists, it is measurable.

Proof. We show each case separately.

1. (Stable under addition). The goal is to show that for any a ∈R, the set ( f + g )−1(−∞, a ] ∈ E . Or
in other words, that the set {x ∈ R | f (x ) + g (x ) ≤ a } ∈ E . The key is to observe that since the
rationals are dense in R, one has:

{x ∈R | f (x ) + g (x )≤ a }=
⋃

q∈Q
{x ∈R | f (x )≤ q }∩ {x ∈R | g (x )≤ a −q }=

⋃

q∈Q
f −1(q )∩ g −1(a −q )

Which is a countable union of a collection of finite intersections of measurable sets, hence mea-
surable.

2. (Stable under multiplication). Observe that

f · g =
1

4

�

( f + g )2− ( f − g )2
�

1.2.1 Random Variables

We now reach one of the central definitions of the theory, that of a random variable. Note that the key
defining property is that we want to be able to assign probabilities to events of the form {X ∈ A} for some
measurable set A, it is therefore unsurprising that our definition of a random varibale is the following:

Definition 1.2.3 (Measurable functions, random variables) Let (Ω,E ) and (Λ,F ) be measurable spaces and
let X :Ω→Λ be a function such that for any E ∈F , one has X −1(E ) ∈ E . We then refer to X as a measurable
function. If the measurable spaces are in particular probability spaces then we say X is a random variable.
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One may introduce now a cheeky concepts, by which we generate σ-algebras that make functions measur-
able.

Definition 1.2.4 (σ-algebra generated by a function) Let Ω be a set, (Λ, F ) be a measurable space, and
X : Ω→ Λ be a function. The σ-algebra generated by X , σ(X ), is the smallest σ-algebra that makes X a
measurable function. In other words

σ(X ) =σ({X −1(B ) : B ∈ F })

Definition 1.2.5 (Independence of Random Variables) A collection (X i ) of random variables is independent
the family of σ-algebras (σ(X i )) is independent.

It is important to check that this new definition coincides with the elementary notion of independent random
variables. Suppose that X1, · · · , Xn are independent real-valued random variables. Then the σ-algebras σ(X i )

are independent, and as such, given any sequence X i1
, · · · , X ik

, and Borel-measurable sets Bi , · · · , Bk , we have
that (X −1

i j
(B j )) j is a sequence of events where the j th entry belongs to σ(X ik

) and as such

P(X i1
∈ B1, · · · , X ik

∈ Bk ) =
∏

j

P(X −1
i j
∈ B j )

Thus we see that the usual notion of independence is recovered.

1.2.2 Distributions

Let (Ω,E ,P) be a measure space and X :Ω→R be a measurable function. We can use this data to construct
a new measure on R. This new measure is defined as

PX : B(R)→ [0, 1] A 7→P ◦X −1(A)

and gives rise to usual notions in probability, such as

Definition 1.2.6 With X as before, the distribution of X , FX :R→ [0, 1] is given by

FX (x ) =PX (−∞, x ]

Proposition 1.2.2 (Properties of the distribution function) Let X : Ω→ R be a random variable. Then
FX (x ) is non-decreasing, right-continuous, limx→−∞ FX (x ) = 0, and limx→∞ FX (x ) = 1

Proof. 1. Non-decreasing: Let x1 ≤ x2. Then obviously (−∞, x1]⊆ (−∞, x2] and as such, X −1(−∞, x1]⊆
X −1(−∞, x2]. The rest follows automatically.

2. Right-continuity: We see that

FX (x +1/n )− FX (x ) =P(X ∈ (x , x +1/n ]) =PX (x , x +1/n ]

12



Since PX is a measure, we can apply its (decreasing) continuity and observe that

lim
n→∞
PX (x , x +1/n ] =PX

�∞
⋂

n=1

(x , x +1/n ]

�

=PX (∅) = 0

3. The limits: limx→∞ FX (x ) = P(X ∈ (−∞, x )) = limx→∞PX (−∞, x ). Once again, using continuity of
the measure, we see that this limit is equal to

PX

�∞
⋃

x=1

(−∞, x )

�

=PX (R) = 1

in a similar manner,

lim
x→−∞

PX (−∞, x ) =PX

�∞
⋂

x=1

(−∞,−x ])

�

=PX (∅) = 0

1.2.3 Practice Questions

Question 10 Show that in a probability space, if A is an event, then P(Ac ) = 1−P(A). Moreoever, show
that

P(A1 ∪A2) =P(A1) +P(A2)−P(A1 ∩A2)

Solution. We use σ-aditivity:
1=P(Ω) =P(A ⊔Ac ) =P(A) +P(Ac )

Now we show the second statement, the strategy is the same, split A1 ∪ A2 into disjoint sets, and use
aditivity of the measure:

P(A1 ∪A2) =P((A1 \A2)⊔ (A1 ∩A2)⊔ (A2 \A1))

Now we simply note that

P(A) =P((A \B )⊔ (A ∩B )) =⇒ P(A \B ) =P(A)−P(A ∩B )

which implementing into the equation above gives the desires result.

Question 11 If P1,P2 are two probability measures on the same space, such that P1,P2 agree for some
A ∈F is it true that P1(Ω\A) =P2(Ω\A)? What about two general measures µ1,µ2 such that µ1(Ω) =µ2(Ω)

Solution. For the case of probability measures the answer is yes. Indeed:

P1(Ω \A) =P1(Ω)−P1(A) = 1−P1(A) = 1−P2(A) =P2(Ω \A)

This does not hold for the case of general measures, indeed, take µ1 to be the counting measure on Ω=Z,
and µ2 = 2µ1, let A = Z \ {0}. Then µ1(A) = µ2(A) =∞ and µ1(Ω) = µ2(Ω) =∞ but µ1(Ω \A) = µ1({0}) = 1
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but µ2({0}) = 2.

Question 12 Let (Ω,E ,P) be a probability space and A, B ∈ E be such that:

P(A ∪B ) =P(A) +P(B )

Does it follow A ∩B =∅.

Solution. No. Let ([0, 1], [0, 1]∩B(R),P) be the Lebesgue Measure space on [0, 1]. Let A = Z∩ [0, 1] and
B =Q∩ [0, 1]. Then:

P(A ∪B ) =P(Q∩ [0, 1]) = 0= 0+0=P(Z∩ [0, 1])+P(Q∩ [0, 1])

However A ∩B =Z∩ [0, 1]

Question 13 In Question 2 we showed that

E = {A ⊆ [0,∞) | either A or Ac is countable }

was a sigma algebra. Show now that the function P : E →R given by

P(A) =







0 A is countable

1 Ac is countable

Defines a probability measure on ([0,∞), E )

Solution. Naturally P(∅) = 0 for ∅ is countable. Similarly, P([0,∞)) = 1 for its complement, the empty
set, is countable. Let (An ) now be a collection of disjoint sets in E . Let us show additivity of the measure
in the two cases.

1. If all (An ) are countable, then it is clear that that their union is a countable set, and as such aditivity
is satisfied.

2. Now suppose there are some sets in (An ) that have countable complements. Observe that if two
sets A and B have countable complements, then (A ∩B )c is countable, which means that A ∩B is
nonempty, thus they can’t be disjoint. Therefore this case is reduced to the case where exactly
one Ak has a countable complement. Now we that

�⋃∞
n=1 An

�c ⊆ Ac
k which is countable, this means

that the union of all An has a countable complement, and as such, aditivity is also satisfied.
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Question 14 Let µ be a measure and suppose A, B are two measurable sets such that A ⊆ B . Show
µ(A)≤µ(B ).

Proof. Write B = A ∪B \A. Obviously A ∩B \A =∅ so

µ(B ) =µ(A) +µ(B \A)

and thus the claim follows.

Question 15 Let {A1, · · · , Ak } be a family of events. Does pairwise independence imply mutual indepen-
dence?

Proof. No. Consider a box of four tickets labeled 112, 121, 211, 222. Choose one ticket at random and let
A1 = {1 occurs in the first place}, A2 = {1 occurs in the second place}, A3 = {1 occurs in the third place}.
One observes that P(Ai ∩ A j ) for i ̸= j is equal to 1/4 which is also equal to P(Ai )P(A j ). Thus having
pairwise independence. However P(A1 ∩A2 ∩A3) = 0 ̸=P(A1)P(A2)P(A3).

Question 16 Does the relation P(A ∩B ∩C ) =P(A)P(B )P(C ) imply mutual independence?

Proof. No. Let Ω = {1, · · · , 8} where each outcome has probability 1/8. Let A = {1, 2, 3, 4} and B = C =

{1, 5, 6, 7}. Then P(A∩B∩C ) = 1/8=P(A)P(B )P(C ). However, B and C are obviously not independent.

Question 17 Does the function µ : B(R)→R

µ(A) =







0 A is bounded

1 A is unbounded

define a measure?

Solution. Hell no man! Suppose it did. Then by σ-additivity:

1=µ(Z) =µ
�

⊔

n∈Z
{n}

�

=
∑

n∈Z
µ({n}) = 0

Question 18 Let f :Ω→R be measurable. Show f 2 is measurable.
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Proof. The general technique of these questions is as follows: We have to show that for any E ∈B(R),
one has f −1(E ) is measurable in Ω. It is sufficient to show this claim holds on the generators of the
Borel Sigma Algebra. In this case, it is most convenient to work with the generators of B(R) of the form
(−∞, a ]. Notice that f 2 is precisely g ◦ f where g (x ) = x 2. We distinguish the following cases:

1. If a < 0. Then g −1(−∞, a ] =∅ so the preimage of our original function is equal to f −1(∅). Recall f

is measurable and the empty set is a measurable set so in this case the preimage of the generator
under f 2 is measurable.

2. If a ≥ 0. Then g −1(−∞, a ] = [−
p

a ,
p

a ]. This is measurable in B(R) so the preimage of this set
under f is measurable in Ω. In this case, the preimage of the generator under f 2 is also measurable.

Question 19 (Summer 2020 Question 1 (e) ) Let (Ω,E ,µ) be a measure space, and let A ⊆Ω be any set.
Let E = {∅, A, Ac ,Ω} be the Sigma Algebra on the space. Show that f :Ω→R is measurable if and only
if it is constant on A and constant on Ac

Proof. First we suppose it is constant on A, say f (ω) = y1 for all ω ∈ A and constant on Ac , say f (ω) = y2

for all ω ∈ Ac . Now we aim to show f is measurable by considering the preimage of generators (−∞, a ]

under f . Without loss of generality say y1 ≤ y2. We will actually only show this with y1 < y2. The case
for y1 = y2 is easier. Consider the following cases:

1. a < y1. Then f −1(−∞, a ] =∅. Which is measurable

2. y1 ≤ a < y2. Then f −1(−∞, a ] = A. Which is measurable

3. a ≥ y2. Then f −1(−∞, a ] =Ω. Which is measurable

Now conversely, suppose f is a measurable function. Fix some ω0 ∈ A. We will show that for any ω ∈ A,
f (ω) = f (ω0) =: y0. Consider the preimage f −1({y0}). By hypothesis, this preimage is either: ∅, A, Ac or Ω.
It cannot be the empty set, because ω0 maps to y0. We can assume that f takes at least two different
values, otherwise it is constant in the entire domain and in particular constant in A and Ac . Thus the
preimage f −1(y0) cannot be Ω. It follows it must be exclusively A or Ac . It can’t be Ac because there
is an element of A, namely ω0 that maps to y0. Therefore f −1(y0) = A. In other words, f is constantly
equal to y0 on A. This argument repeats symmetrically to show that f is constant in Ac .

Question 20 (2019 Q1 (d)) Let X , Y : B(R)→R be random variables. Explain why if

P(X ≤ x , Y ≤ y ) =P(X ≤ x )P(X ≤ y )

Then for all A, B ∈B(R) one has.

P(X ∈ A, Y ∈ B ) =P(X ∈ A)P(Y ∈ B )
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Attempt. Any set A ∈B(R) is generated from intervals (−∞, a ] via unions, intersections and comple-
ments. As an example,

P(X ∈ [a , b ], Y ∈ [c , d ]) =P(X ≤ b , Y ∈ [c , d ])−P(X ≤ a , Y ∈ [c , d ])

and now repeat with Y ∈ [c , d ].

Question 21 (2019 Q1 (e)) Show that a random variable is independent of itself if and only if it is almost
surely constant.

Proof. Let A ∈B(R). Clearly
P(X ∈ A) =P(X ∈ A, X ∈ A).

X is independent of itself if and only if this product splits. I.e: If and only if P(X ∈ A) =P(X ∈ A)2. Which
holds if and only if P(X ∈ A) = 0 or 1. Hence the X is almost surely constant.

Question 22 (Homework sheet 4) Suppose X and Y are two independent random variables such that
P(X = Y ) = 1. Show that X = Y = c for some constant c . Hint: study P(X ≤ x , Y ≤ x ) in two different
ways.

Solution. Observe that if Y ≤ x then either X ≤ x or Y > X . Hence

P(Y ≤ x )≤P(X ≤ x ) +P(Y > X )

but by hypothesis, this last quantity is zero, therefore P(Y ≤ x ) = P(X ≤ x ). By a symmetrical argument
P(X ≤ x ) ≤ P(Y ≤ x ) and as such the two distributions are equal. Now we can finalise the argument by
noting that:

P(X ≤ x , Y ≤ x ) =P(X ≤ x )

Here we have used simple conditional probability argument. Moreover,

P(X ≤ x , Y ≤ x ) =P(X ≤ x )P(Y ≤ x ) =P(X ≤ x )2

and as such
P(X ≤ x )2 =P(X ≤ x )

So P(X ≤ x ) is either zero or one, which corresponds to X (and Y ) being almost surely constant.

Question 23 (2019 Q1 (f)) Let ε1,ε2 be independent random variables with

P(εi = 1) =P(εi =−1) = 1/2 i = 1, 2
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Are the random variables ε1 and ε1ε2 independent?

Solution. Note that P(ε1ε2 = 1) =P(ε1ε2 =−1) = 1/2, so:

P(ε1 = 1,ε1ε2 = 1) =P(ε1 = 1,ε2 = 1) =P(ε1 = 1)P(ε2 = 1) =
1

4
=P(ε1 = 1)P(ε1ε2 = 1)

Similarly:

P(ε1 = 1,ε1ε2 =−1) =P(ε1 = 1,ε2 =−1) =P(ε1 = 1)P(ε2 =−1) =
1

4
=P(ε1 = 1)P(ε1ε2 =−1)

The other cases follow by symmetry. They are independent.

Question 24 (Specimen 2024) Can every measurable function be expressed as a finite sum of indicator
functions?

Solution. No. Take for example f (x ) = x . Since f is continuous, it is measurable. A function that can
be expressed as a finite sum of indicator functions takes finitely many values.

Question 25 (Mock 2022) Let (E ,E ,µ1) and (G ,G ,µ2) be two measure spaces. If a function f : E →G

is E −G measurable and bijective, does it follow that f −1 : G → E is G −E measurable?

Solution. I was going to write hell no, but its not actually an immediately obvious answer. Take E =G =R
and E =B(R) and G = {∅,R}. Then take f (x ) = x . This is clearly E −G measurable, but not the other
way around.

Question 26 (Mock 2022) Let (E ,E ,µ1) and (G ,G ,µ2) be two measure spaces and f : E →G be E −G
measurable. Let E ′ ⊆E and G ′ ⊆G be two sub-σ algebras. Does it follow:

1. f is E ′−G measurable?

2. f is E −G ′ measurable?

Solution. 1. Hell no. Pick E = G = B(R), E = G = R, and f (x ) = x . This one’s obviously E −
G measurable. Now consider the sub-σ-algebra E ′ = {∅, E } ⊆ E . Now f is clearly not E ′ −G
measurable.

2. Yes. Obvious.
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Question 27 (Homework sheet 1) Show that if (An ) is a sequence of events in a probability space, then

P
�∞
⋂

n=1

An

�

≥ 1−
∞
∑

n=1

(1−P(An ))

Solution. This is a very easy direct computation:

P
�∞
⋂

n=1

An

�

=P
��∞
⋃

n=1

Ac
n

�c �

= 1−P
�∞
⋃

n=1

Ac
n

�

≥ 1−
∞
∑

n=1

P(Ac
n )

as required.

Question 28 (Homework sheet 2) Show that if an event A has P(A) = 0 or P(A) = 1, then A is independent
to any other event B .

Solution. We start with the case P(A) = 0. Then we observe that since A ∩ B ⊆ A, one has that 0 ≤
P(A∩B )≤P(A) = 0. Therefore P(A∩B ) = 0=P(A)P(B ) as required. (Observe the crucial requirement that
we are in a probability space in this last step!). Now suppose that P(A) = 1, then Ac is independent to
B , and as such:

P(Ac ∩B ) =P(Ac )P(B )

But one easily observes that P(Ac ∩B ) =P(B \A) =P(B )−P(A∩B ). The right hand side reads (1−P(A))P(B ).
Rearranging gives the required result.

Question 29 (Homework sheet 2) Show that if A, B , C are independent events, then A ∪ B and C are
independent.

Solution. Pretty straightforward once you see the idea. For convenience, let ⋆= (A∪B )∩C . Observe that
⋆= (A ∩C )∪ (B ∩C ). This is just some easy boolean algebra. Now we can see that

P(⋆) =P(A ∩C ) +P(B ∩C )−P(A ∩B ∩C )

But since we are given all these events are independent, we may nicely rewrite this as:

P(⋆) =P(C )[P(A) +P(B )−P(A)P(B )]

But noticing that the thing inside the square brackets is nothing but P(A ∪B ), we finish the claim.
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2 Convergence of Measurable Functions

Definition 2.0.1 (Modes of convergence of measurable functions) Let (Ω,E ,µ) be a measure space, ( fn ) be
a sequence of measurable functions, and f a measurable function.

1. fn → f almost everywhere if µ
�

{x ∈Ω | fn (x ) ̸→ f (x )}
�

= 0. In words: it converges pointwise every-
where except on a set of measure zero. In the context of a probability space we say almost sure
convergence.

2. fn → f in measure if for all ε > 0, one has µ
�

{x ∈Ω | | fn (x )− f (x )|>ε}
�

→ 0 as n →∞. In words:
fixing any tolerance, the measure of the set of points that give an error greater than the tolerance
converges to 0. In the context of a probability space we say convergence in probability

3. If we are talking about random variables, we say that Xn → X in distribution if the distribution
function of Xn converges to the distribution function of X at each point of continuity.

Remark 3 (Common probability space? (Seen on 2021)) Note that for almost sure and convergence in
probability we made reference to the random variables living on the same probability space, however, for
the case of convergence in distribution, we only care about pointwise convergence of two distribution
functions, therefore the underlying probability spaces could be distinct.

Theorem 2.0.1 We have the following convergence implications

( fn
unif−−→ f ) ( fn

pt
−−→ f ) ( fn

a.e−−→ f ) ( fn
µ
−−→ f )

µ(Ω)<∞

Proof. ( fn
p t
−−→ f ) =⇒ ( fn

a .e−−→ f ): The set of points x where fn (x ) ̸→ f (x ) is precisely the empty set which
has zero-measure.

( fn
a .e−−→ f ) =⇒ ( fn

µ
−−→ f ) if µ(Ω) <∞: Fix an ε. The strategy is as follows. We will construct a

decreasing sequence of sets, that in the limit capture the behaviour of almost everywhere convergence
and the expression is made in terms of the measure. So define the set

AN = {x ∈Ω | ∃n ≥N with | fn (x )− f (x )|>ε}

Notice that if x ∈ AN+1 then it also belongs to AN , so we can consider the decreasing limit
⋂∞

N=1 AN . Here
you use the hypothesis of µ(Ω) being finite, to guarantee that every AN has finite measure so that you
can use the fact that limn→∞µ(An ) =µ

�⋂∞
N=1 AN

�

=µ
�

{x ∈Ω | | fn (x )− f (x )|>ε infinitely often}
�

which is
zero by assumption of almost everywhere convergence.
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Example 3 (Breaking the opposite directions) Let us present some examples to break the reverse direc-
tions of these implications.

1. A sequence of random variables that converges in distribution but not in probability: Consider
the probability space ([0, 1],B(R), m ) where m is the Lebesgue measure, and define Xn : [0, 1]→ R
by:

X2n (x ) = x X2n−1(x ) = 1− x

We check that they converge in distribution to the uniform distribution. Indeed,

m (X2n ≤ x ) =m ([0, x ]) = x m (X2n−1 ≤ x ) =m (1− x , 1) = x

thus for all n , Xn has the uniform distribution, in particular it converges to the uniform distribution.
Now we check that there is no convergence in probability. Indeed, let ε > 0 be given and let X be
the random variable X (x ) = x then:

m ({x | |Xn −X |>ε}) =







0 n is even

some constant c (ε)> 0 otherwise

one sees that this quantity does not converge to zero.

2. A sequence of random variables that converge in probability but not almost surely: Define the
sequence of IIDs

Xn ∼ B e r n (1/n )

This sequence converges in probability to the zero random variable. Indeed, P(|Xn | > ε) = 1/n →
0. However, let AN be the event {|XN | > ε}. These events are independent and

∑∞
N=1P(AN ) =

∑∞
N=1 1/N =∞ so by BC2, P({AN infinitely often }) = 1. So Xn does not converge almost surely to

zero.

3. A sequence of measurable functions that converges almost everywhere but not pointwise: exp(−n x ).
This converges to the zero function everywhere except when x = 0. Take a suitable measure space
to make this work now.

4. The example above also works in (0, 1) to have an example of a sequence of functions that converge
pointwise but not uniformly.

Remark 4 (On the importance of µ(E ) <∞ for a.e =⇒ µ convergences) Observe that the Theorem
needed µ(E )<∞ for almost everywhere convergence to imply convergence in measure. Indeed, consider
the sequence of functions fn (x ) = 1[n ,2n ](x ) on (R,B(R), m ) where m is the Lebesgue measure. Then

1. Obviously fn converges pointwise to zero so in particular we have fn → f ≡ 0 a.e.
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2. However, let 0<ε< 1 be given, then

m
�

{x | | fn (x )− f |>ε}
�

=m ([n , 2n ]) = n

thus showing that we don’t have convergence in measure.

Question 30 (2023) Prove that if f = h a.e and h = g a.e, then f = g a.e

Proof. Let x ∈ {ω ∈Ω | f (ω) ̸= g (ω)}=: X1. Then either:

1. f (x ) = h (x ) and g (x ) ̸= h (x )

2. f (x ) ̸= h (x ) and g (x ) = h (x )

3. f (x ) ̸= h (x ) and g (x ) ̸= h (x )

Thus: X1 ⊆
�

{ω ∈Ω | f (ω) = h (ω)}∩ {ω ∈Ω | h (ω) ̸= g (ω)}
�

∪
�

{ω ∈Ω | f (ω) ̸= h (ω)}∩ {ω ∈Ω | h (ω) = g (ω)}
�

∪
�

{ω ∈Ω | f (ω) ̸= h (ω)}∩ {ω ∈Ω | h (ω) ̸= g (ω)}
�

By countable sub-additivity and monotonicity, the measure of X1 is less than or equal to the sum
of the measures of the three sets on the right-hand side. Each of these sets is in turn a subset of
{ω ∈ Ω | h (ω) ̸= g (ω)}, {ω ∈ Ω | f (ω) ̸= h (ω)} and {ω ∈ Ω | h (ω) ̸= g (ω)} respectively, which by assumption
all have measure 0. Once again, by monotonicity, it follows that the overall sum is less than or equal to
zero. Measures being non-negative means that µ(X1) = 0. This explanation can be made much shorter
and still be valid.

Question 31 (Spin-off 2023) Let (Ω,F ,µ) be (Z,P (Z),µcounting). Give sufficient and necessary conditions
for two functions f , g :Ω→R to be equal almost everywhere.

Proof. f , g are equal almost everywhere if and only if they differ on a set of measure zero. The only
set of measure zero with respect to the counting measure is the empty set. Thus it is sufficient and
necessary for f and g to take the same values on the integers.

Question 32 (2023) Give a condition on two measurable sets A and B so that the condition holds if and
only if 1A = 1B almost everywhere.

Proof. One must have µ(A \B ) =µ(B \A) = 0.

Theorem 2.0.2 Convergence Xn → X in probability implies convergence in distribution
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Proof. We recall the following important Lemma: For random variables X , Y , a ∈R,ε> 0

{Y ≤ a } ⊆ {X ≤ a +ε}∪ {|X −Y |>ε}

With this, observe the following two facts:

1. P(Xn ≤ x )≤P(X ≤ x +ε) +P(|Xn −X |>ε)

2. P(Xn ≤ x −ε)≤P(X ≤ x ) +P(|Xn −X |>ε)

Combine them to get:

P(Xn ≤ x −ε)−P(|Xn −X |>ε)≤P(X ≤ x )≤P(X ≤ x +ε) +P(|Xn −X |>ε)

If x is a point of continuity of FX (x ), then we take ε→ 0 and as n→∞:

lim
n→∞
P(Xn ≤ x )≤P(X ≤ x )≤ lim

n→∞
P(Xn ≤ x )

Theorem 2.0.3 The converse to Theorem 2.0.2 holds when X is a constant random variable.

Proof. By assumption:
P(Xn ≤ x )→ 1{x≥c }(x )

Let ε> 0 be given. It is quite clear that

P({x : |Xn − c |>ε}) =P({x : Xn < c −ε}∪ {x : Xn > c +ε})

By subaditivity, we then see that

P({x : |Xn − c |>ε})≤P({x : Xn ≤ c −ε}) +1−P({x : Xn ≤ c +ε})

As n→∞, this latter quantity is precisely

1{x≥c }(c −ε) +1−1{x≥c }(c +ε) = 0+1−1= 0

as required.

Question 33 (Specimen 2024) Let Un be Uniformly distributed in {1, · · · , n}. Show that 1
n Un converges

in distribution to U ∼Unif([0, 1])
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Proof. Note:
P
�

1

n
Un ≤ x

�

=P(Un ≤ x n ) =
⌊x n ⌋

n
→ x

Question 34 (Specimen 2024) With Un as in the previous question, does 1
nαUn converge in distribution?:

1. α< 1

2. α> 1

Solution. 1. If α < 1 then: P(Un ≤ nαx ) = ⌊n
αx ⌋
n → 0 as n →∞. Regardless of x . This cannot be the

case since we require distribution functions to approach 1 as x →∞

2. Otherwise, as n→∞, P(Un ≤ nαx ) will be 1 because nαx becomes eventually greater than n and
P(Un ≤ n ) = 1. This holds for any x ∈ [0, 1] so if α > 1 the random variable converges to the zero
random variable in distribution.

Question 35 (2022 B3 + Mock 2022 + Homework shet 4) Determine whether the following sequences
of functions R→R converge: almost everywhere, in measure. Find their limits if they exist with respect
to each mode of convergence.

1. fn (x ) = exp(−x 2/2n 2)

2. fn (x ) = exp(−n 2 x 2/2)

3. fn (x ) =
1p
n exp(−x 2/n )

4. fn (x ) = 1[− log(n+1),log(n+1)]

5. fn (x ) =
1[−n2,n2 ](x )
log(n+1)

6. Xn is a sequence of random variables such that Xn ∼Unif[1, 1+1/n ]

7. fn (x ) = n1[1/n ,2/n ]

8. fn (x ) = 1R\[n ,n+1](x )

9. fn (x ) =







1 x ∈Q

1/n x /∈Q

Solution. 1. The first function converges pointwise to the function f (x ) ≡ 1. Therefore it converges
a.e. However, it does not converge in measure. Indeed, fixing any ε and regardless of how large n

is, for values of |x | large enough, the distance between 1 and fn (x ) will be larger than ε. So the
measure of the set of points where the discrepancy is larger than ε is always infinite in measure.
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2. The second function converges obviously a.e to zero. And given any ε > 0, the only point that is
always further away than ε from zero is precisely the point x = 0. Thus we have convergence in
measure.

3. Observe that the numerator converges pointwise to 1, so the whole function converges pointwise
to 0. Moreover, since the numerator is bounded, the denominator squishes it down towards zero
and as such eventually it will lie below the ε threshold away from zero.

4. This function converges pointwise to the constant function f (x ) ≡ 1 just like the first case. But
the convergence in measure does not happen because the set of points that disagree more than ε
with 1 is precisely (−∞,−l o g (n +1))∪ (log(n +1),∞) which has measure infinite.

5. It is easy to see that this function converges pointwise to the zero function, hence almost surely.
Now let us verify whether it converges in measure. Indeed, given any ε> 0 the set of points where
fn is larger than ε has initially positive measure, but as n →∞, fn falls below the threshold and
as such, no points lie above the ε threshold.

6. By hypothesis, P(Xn ∈ [1, 1+ 1/n ]) = 1 or in other words, P(|Xn − 1| > 1/n ) = 0. Now we claim that
Xn → 1 almost surely. We shall employ the Borel-Cantelli Lemma. Let ε > 0 be given then by our
observation, for n large enough P(|Xn −1|>ε) = 0, therefore, the sum

∞
∑

n=1

P(|Xn −1|>ε)

is finite and as such Xn → X almost surely.

7. We see that given any x ∈R, fn (x )→ 0, so we have pointwise convergence and in particular, almost
everywhere convergence. We also see that the set of points of disagreement between fn and 0 has
measure 1/n , hence we have convergence in measure.

8. Here we have pointwise convergence to 1, indeed, this sequence of functions is just a constant line
at y = 1 with a dip to zero between [n , n +1]. However, the points of disagreement between 1 and
fn has constant length of 1 therefore we do not have convergence in measure.

9. We see that fn → 1Q pointwise, so in fact fn → 0 almost everywhere, for Q has measure zero. By
a similar argument, we see that the set of points of disagreement between fn (x ) and 0 is precisely
the rationals so it also converges in measure.

Question 36 (2021 A1) Show that if fn : E →R is a sequence of measurable functions whose a.e limit is
f , then f is measurable.

Proof. We recall that a function f : E →R is measurable if and only if f −1(a ,∞) is a measurable set for
all a ∈ R. Now we aim to show that lim supn→∞ fn is measurable. First we show that supn fn (x ) is a
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measurable function. Recall that the meaning of supn fn (x ) is:

sup
n

fn (x ) = sup
�

fn (x ) | n ∈N
	

and as such, the set:

{x | sup
n

fn (x )> c }=
�

x | sup
�

fn (x ) | n ∈N
	

> c
	

=
∞
⋃

n=1

{x | fn (x )> c }

this latter set is measurable since each fn is measurable. Similarly one shows that infn fn is measurable.
Now we see that

lim sup fn = inf
n

sup
m≥n

fn

is measurable as required.

Question 37 (2019 3 (c)) With Xn as in the previous question, give necessary and sufficient conditions
on α ∈R such that X n/nα→ 0 in probability.

Solution. X n/nα→ 0 in Probability if given any ε> 0, we have that:

P =P
��

�

�

�

Xn

nα

�

�

�

�

>ε

�

→ 0

Noting that Xn ≥ 0 and rearranging inside the probability sign gives:

P = 1−P(Xn ≤ nα ·ε) = 1−
∫ nα ·ε

0

dx

(x +1)2
= 1−

�

−
1

x +1

�nα ·ε

0
=

1

nα ·ε+1

This last quantity converges to 0 as n→∞ if and only if α> 0.

Question 38 (Homework sheet 7) Show that if Xn → X in distribution, then X 2
n → X 2 in distribution.

Solution. Observe that
P(X 2

n ≤ x ) =P(Xn ≤
p

x )−P(Xn ≤−
p

x )

Naturally we take x ≥ 0 as X 2
n cannot take negative values. Thus if FX is discontinuous as ±

p
x , then

FX 2 is discontinuous at x . Suppose then that FX 2 is continuous at x , we may write

P(X 2
n ≤ x )→P(X ≤

p
x )−P(X ≤−

p
x ) =P(X 2 ≤ x )
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Question 39 (Homework sheet 4) Let (Un ) be a family of IID Uniform distributions on [0, 1]. Define
Mn =max{U1, · · · ,Un}. Show that

1. Mn → 1 in probability.

2. n (1−Mn ) converges in distribution. Identify the limit.

Solution. To show the first part, let ε> 0 be given. We are interested in studying

P(|Mn −1|>ε)

By drawing a diagram or something, convince yourself that this probability is the same as the probability
of each Ui being less than or equal to 1−ε. That is to say:

P(|Mn −1|>ε) =
n
∏

i=1

P(Ui ≤ 1−ε) = (1−ε)n → 0

Here we have used the fact that (Ui ) are IIDs in order to introduce the product.

For the second task, don’t ask me how I thought of this, we consider the probability P(n (1−Mn ) ≥ x )

instead of ≤ x . Rearranging, this is equal to

P (Mn ≤) =
n
∏

i=1

P
�

Ui ≤ 1−
x

n

�

=
�

1−
x

n

�n
→ exp(−x )

thus showing that n (1−Mn ) converges in distribution to an exponential random variable with parameter
1.

3 The Borel–Cantelli Lemmas

Now we have perhaps our first interesting result in this measure-theoretic framework of probability, and this
result has to do with how can we determine the long-run behavior of a sequence of events.

Definition 3.0.1 Let (An ) be a sequence of events. We say that (An ) holds:

1. Infinitely Often:

{An holds infinitely often} := {x : x ∈ An for infinitely many n} := lim sup An

2. Eventually:

{An holds eventually} := {x : x ∈ An for all n large enough} := lim inf An

27



Proposition 3.0.1 Let (An ) be a sequence of events. Then we may express events:

1. Infinitely Often:

{An holds infinitely often}=
∞
⋂

k=1

∞
⋃

n=k

An

2. Eventually:

{An holds eventually}=
∞
⋃

k=1

∞
⋂

n=k

An

Theorem 3.0.1 (Borel-Cantelli Lemma 1) Let (An ) be a sequence of events. If
∑

n≥1P(An ) <∞ then
P({An i.o }) = 0

Proof. Slogan - If the sum converges, then the summands must eventually go to zero. Now stare at the
definition of infinitely often and observe that if

�⋃∞
n=k An

�

holds for all k > 0, we can write for any N :

P({An i.o})≤P
� ∞
⋃

k=N

An

�

≤
∞
∑

k=N

P(Ak )

Now letting N →∞ we get that P({An i.o})→ 0

Theorem 3.0.2 (BC2) Let (An ) be a sequence of independent events such that
∑

n≥1P(An ) =∞. Then
P({An i.o }) = 1

3.1 Application of Borel-Canteli

The BC Lemmas are very useful to prove or disprove that sequences of random variables converge or not
almost surely.

Proposition 3.1.1 Let (Xn ) be a sequence of random variables and X another random variable on the
same probability space (Ω,F ,P). Suppose that

∀ε> 0
∞
∑

n=1

P({|Xn −X |>ε})<∞

Then Xn → X almost surely

Proof. We have that for any ε> 0, the event {|Xn −X |>ε infinitely often } has probability zero. That is
to say, for any ε> 0, with probability 1, there exists an N such that whenever n >N , |Xn −X |<ε.
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Proposition 3.1.2 Suppose (Xn ) is a sequence of IID random variables such that for any ε > 0, the
following sum diverges:

∞
∑

n=1

P(|Xn −X |>ε) =∞

Then Xn ̸→ X almost surely.

Proof. By BC2, given any ε > 0, the event {|Xn −X | > ε} holds infinitely often so in particular, P(Xn →
X ) ̸= 0

3.2 Practice Questions

Question 40 Let (An ) be a sequence of independent events such that: P(An ) =
1

(n+1)2 . Moreover, let (Bn )

be a sequence of events defined by Bn = { exactly one of A1, · · · , An holds}

1. Find P({An i.o})

2. Show P(Bn )≥ 1
3P(Ac

1 ∩Ac
2 ∩ · · · ∩Ac

n )

3. Establish whether
∑∞

n=1P(Bn ) is finite or infinite.

4. Decide whether P({Bn i.o}) is equal to 0, 1 or something in between.

Proof. -

1. We use Borel-Cantelli.
∞
∑

n=1

P(An )<∞

therefore P({An i.o}) = 0.

2. Observe that
Bn = {A1 ∩Ac

2 ∩ · · · ∩Ac
n}∪ · · ·

therefore
P(Bn )≥P({A1 ∩Ac

2 ∩ · · · ∩Ac
n})

since the events are assumed to be independent, we see

P(Bn )≥P(A1)P({Ac
2 ∩ · · · ∩Ac

n}) =
1

4
P({Ac

2 ∩ · · · ∩Ac
n})

Observe that

P({Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n}) = (1−P(A1))P({Ac

2 ∩ · · · ∩Ac
n}) =

3

4
P(Ac

2 ∩ · · · ∩Ac
n})

combining these two last lines gives the desired result.
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3. One has
∞
∑

n=1

P(Bn )≥
1

3

∞
∑

n=1

P(Ac
1 ∩ · · · ∩Ac

n ) =
1

3

∞
∑

n=1

n
∏

i=1

�

1−
1

(i +1)2

�

=

=
1

3

∞
∑

n=1

n
∏

i=1

i (i +2)
(i +1)2

=
1

3

∞
∑

n=1

n +2

2(n +1)
=∞.

4. We notice that P({Bn i.o}) =P(Ai exactly once i ≥ 1). On the one hand,

P(Ai exactly once i ≥ 1) = 1−P(Ac
1 ∩Ac

2 · · · )−P(Ai at least twice )≤ 1−P(Ac
1 ∩Ac

2 · · · ) = 1−
1

2

On the other hand

P(Ai exactly once i ≥ 1) =P({A1 ∩Ac
2 ∩ · · · } ∪ · · · )≥P({A1 ∩Ac

2 ∩ · · · }) =
1

6

Question 41 Consider a sequence of independent experiments, where the n th experiment has a probability
of n−α where 0<α< 1 of succeeding.

1. What is the probability that infinitely many successes will be observed?

2. Fixing a k ≥ 2, what is the probability that k successes in a row will be observed infinitely often?

Solution. The first question is an immediate consequence of the Borel Cantelli Lemmas (and so is the
second one, but requires slightly more thought). Denote by An the event that the n th experiment is a
success.

1. Observe that
∞
∑

n=1

P(An ) =
∞
∑

n=1

n−α

Since α is too small, this decay is too slow and so the sum diverges. Since the events are assumed
to be independent, it follows that P({An i.o }) = 1.

2. Now we have to put some more thought. Observe that we are interested in the probability of the
following event Bn occurring infinitely often:

Bn = {An , An+1, · · · , An+k−1 all succeed}

We also make the observation that since all Ai are independent, we can bound above and below
the probability of Bn occurring. Since

P(Bn ) =
k−1
∏

i=0

(n + i )−α

we deduce that
(n +k −1)−kα <P(Bn )< n−kα
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the important thing is that the asymptotic behaviour is the same both sides. Therefore from this
we deduce that the sum to infinity of P(Bn ) will converge if and only if kα> 1. That is to say:

(a) If α> 1/k then the probability of observing k successes in a row infinitely often is 1.

(b) Otherwise its zero.

Question 42 (2019 Q3 (e-f)) Let (Xn ) be IID random variables with density function fX (x ) =
1

(x+1)2 1{x≥0}.
Show that

Mn := min
1≤i≤n

Xn → 0

almost surely. Then show:
nMn →M

In distribution, where M is a random variable you need to identify.

Solution. As before, the strategy is to show that for any ε> 0. One has:

∞
∑

n=1

P(|Mn |>ε)<∞

Observe that P(Mn > ε) = P(X1 > ε, X2 > ε, · · · , Xn > ε) = [P(X1 > ε)]n . This last equality is since each X i is
independent. We compute that:

P(X1 >ε) = 1−
∫ ε

0

dx

(1+ x 2)
=

1

1+ε

Since ε> 0 and therefore (1+ε)> 1 it follows that the following sum converges:

∞
∑

n=1

P(|Mn |>ε) =
∞
∑

n=1

1

(1+ε)n
<∞

Finishing the proof of the first part. To solve the second part we need to identify the pointwise limit of
the function FnMn

(x ) = P(nMn ≤ x ) = P(Mn ≤ x/n ) = 1−P(Mn ≥ x/n ) = 1− [P(X1 ≥ x/n )]n = 1− 1
(1+x/n )n →

1−e −x . Thus we see that nMn converges in distribution to an exponential random variable of parameter
λ= 1

Question 43 (Summer 2021 Question A2 (c) (iii)) Let Xn → X almost surely. Suppose E[Xn ] = 0 for all
n ≥ 1. Does it follow E[X ] = 0?

Solution. The answer is no. Consider the sequence of random variables Xn defined by

Xn =







−1 with probability n 2−1
n 2

n 2−1 with probability 1
n 2
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We check that E[Xn ] =−1 · n 2−1
n 2 + (n 2−1) · 1

n 2 = 0. We check that Xn →−1 almost surely. Indeed, we see
that

∑∞
n=1P(|Xn + 1| > ε) =

∑∞
n=1

1
n 2 <∞ so by the Borel Cantelli Lemma, we see that Xn →−1 almost

surely. However, the expectation of the constant random variable −1 is not 0.

Question 44 (Summer 2021 Question A2 (c) (iv)) Let Xn → X almost surely, with |Xn | ≤ 1 and E[Xn ] = 0

for all n ≥ 1. Does it follow that E[X ] = 0?

Solution. The answer is yes. We can apply the Dominated Convergence Theorem with dominating
function 1. Note that

∫

Ω
1dP = 1 so the function 1 is integral, so the Theorem applies. It follows that

we can interchange the integrals with the limits and we deduce that E[X ] = 0

4 Tail Events

We are interested in looking at the tail events, that is to say, events that depend on the asymptotic behavior
of a sequence of random variables.

Definition 4.0.1 (Tail σ-algebra) Let (Xn ) be a sequence of random variables, define τn =σ(Xn , Xn+1, · · · ),
i.e, the sigma algebra generated by Xn , and so on. (For a refresher on what this means please see the
Analysis Intermezzo). Then we define the tail σ-algebra to be

τ=
⋂

n

τn

Remark 5 (Intuitive Explanation of Tail σ-algebras) Suppose (Xn ) is a sequence of random variables.
For convenience, we can think of the sequence as some process indexed by a time variable n . We can
explain the meaning of τT in very simple terms: it is simply the events that can be determined purely
by knowing the value that the process takes for values of time larger than T . That is to say, whatever
happened before T has no impact on the probability of the event occurring. The events that therefore
lie in τ, are those that are determined by what occurs in the far distant future, that is to say, if you
alter the values of (Xn ) for any finite number of time units, the event will remain unaffected.

Proposition 4.0.1 (Examples of tail events) Let (Xn ) be a sequence of real valued random variables. The
events

{x : lim Xn (x ) exists},
¦

x :
∑

Xn (x ) converges
©

,

¨

x : lim
k→∞

1

k

k
∑

i=1

X i (x ) exists

«
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all belong to τ.

Proof. 1. We note that

{x : lim Xn exists}= {x : lim sup Xn <∞}∩{x : lim inf Xn >−∞}∩ g −1({0})

where g (x ) = lim sup fn (x )− lim inf fn (x ). The task thus is reduced to showing that lim sup and
lim inf are τ-measurable. To do so, we simply note that for any given p ∈N:

lim inf Xn = lim inf Xn+p

It is now easy to see that each function in the sequence (Xn+p )n is σ(Xp , Xp+1, · · · ) measurable.
Invoking the result from Measure Theory that if ( fn ) is a sequence of measurable functions, then
so is lim inf and lim sup of fn , we finish the claim.

2. Follows immediately from 1, using Sn =
∑n

i=1 X i .

3. Follows immediately from previous work.

Theorem 4.0.1 (Kolmogorov 1−0 law) Let (Xn ) be a sequence of independent random variables. Let τ
be their tail sigma algebra. Then, given any A ∈ τ, either P(A) = 0 or P(A) = 1. Consequently, if Ξ is a
τ-measurable random variable, then Ξ is almost surely constant. That is to say, P(Ξ= c ) = 1 for some c .

Proof. The strategy is to show that τ is independent of itself as a sigma algebra. It will then follow that
any event will be independent of itself, and the desired result will follow.

Define ϕn =σ(X1, · · · , Xn ). We have that ϕn is generated by the π-system of events of the form

{X1 ≤ x1, · · ·Xn ≤ xn}

whereas τn is generated by events of the form

{Xn ≤ xn+1, · · ·Xn+k ≤ xn+k }

where k is some natural number. We use the fact that if the generating π-systems are independent,
then the σ-algebras are independent. Hence, since each Xn is independent, it follows that ϕn and τn are
independent. The fact that τ⊆τn for each n automatically implies that ϕn and τ are independent. We
now claim that ϕ∞ := σ(Xn : n ∈ N) is independent of τ. We note that the π-system

⋃

n ϕn generates
ϕ∞. Moreover,

⋃

n ϕn and τ are independent as π-systems due to a preceding argument: indeed, if
A ∈

⋃

n ϕn , then A ∈ϕk for some k but we know that ϕk and τ are independent. Thus σ
�⋃

n ϕn

�

=ϕ∞
and τ are independent as σ-algebras. We now finalise the claim by noting that τ ⊆ σ

�⋃

n ϕn

�

= ϕ∞.
Therefore τ is independent of itself.
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Remark 6 In light of Proposition 4.0.1, we see that for example, if (Xn ) is a sequence of independent
random variables:

1. P(lim Xn exists) is zero or one.

2. P
�∑

Xn converges
�

is zero one.

And so on.
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5 Integration

5.1 Integration of simple functions

Definition 5.1.1 Let (Ω,F ,µ) be a measure space. A function f : Ω→ R is said to be simple if f takes
finitely many values, or in other words:

f (ω) =
n
∑

i=1

ai 1An
(ω)

Where each An ∈F and ai ≥ 0. Then the integral of f with respect to µ is defined to be

∫

Ω

f dµ=
n
∑

i=1

aiµ(An )

It is also common notation to write µ( f ) for the integral.

Remark 7 Note that by definition, simple functions are measurable.

5.2 Integration of measurable functions

Definition 5.2.1 Let f :Ω→R be non-negative measurable function. The integral of f is defined as

∫

Ω

f dµ= sup

�∫

Ω

g dµ
�

�

�

�

g simple, and g ≤ f

�

Remark 8 This definition is not nonsensical because every non-negative measurable function can be
monotonically, uniformly approximated by simple functions. For example, for a given measurable f :

Ω→R, we have
fn (ω) = 2−n

�

2n f
�

A result that justifies that this approximation of functions yields the correct integral is the following:

Theorem 5.2.1 (Monotone Convergence Theorem) Let ( fn ) be a monotone sequence of measurable
functions, whose almost-everywhere pointwise is f . This means:
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1. 0≤ fi (x )≤ f j (x ) ∀i ≤ j

2. fn (x )→ f (x ) for µ−almost all x ∈Ω

Then:

lim
n→∞

∫

Ω

fn dµ=
∫

Ω

f dµ

Example 4 (Monotonicity is crucial) The sequence

fn (x ) = n1[0,1/n ]

has µ-almost everywhere pointwise limit f = 0, yet this convergence is not monotone, for example
f1(3/4)≥ f2(3/4)

Definition 5.2.2 A measurable function f :Ω→R is integrable if:

∫

Ω

f +dµ<∞ &

∫

Ω

f −dµ<∞

where f + =max( f (x ), 0) and f −(x ) =−min( f (x ), 0). We then define

∫

Ω

f dµ=
∫

Ω

f +dµ−
∫

Ω

f −dµ

A whole new world opens now

Question 45 (Homework sheet 7) Show that if f is a measurable function, then f + (and hence f −) are
measurable.

Proof. We shall check whether ( f +)−1(−∞, a ] is Borel. If a < 0 then there is nothing to show, since f +

does not output negative values. Otherwise

( f +)−1(−∞, a ] = ( f +)−1[0, a ] = f −1[0, a ]

and this latter set is obviously measurable. To show measurability of f − we do an identical argument.

Theorem 5.2.2 (Properties of the integral) Let f , g be integrable functions and α,β ≥ 0 be constants.
Then

1. The integral is linear:
∫

Ω

α f +βg dµ=α
∫

Ω

f dµ+β
∫

Ω

g dµ
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2. The integral is “almost-everywhere" inequality preserving: if f ≤ g almost everywhere, then

∫

Ω

f dµ≤
∫

Ω

g dµ

3. The integral is “non-degenerate", i.e:

∫

Ω

f dµ= 0 if and only if f = 0 a .e

A whole new world opens up now, because this last Theorem tells us that integrable functions actually form
a linear space, the L 1 space. We have a natural generalisation

Definition 5.2.3 Let (Ω,E ,µ) be a measure space. Then we define L p (Ω,E ,µ) as

L p (Ω,E ,µ) = { f measurable :µ(| f |p )<∞}

This is a linear space, but it turns out that it (almost) is something much better. We have the following
result

Theorem 5.2.3 (Minkowski’s Inequality) Let f , g ∈L p (Ω,E ,µ), then

µ(| f + g |p )1/p ≤µ(| f |p )1/p +µ(|g |p )1/p

This looks awfully lot like a triangle-type inequality, and so we may wonder whether L p (Ω,E ,µ) is actually a
normed space, with the norm of a function f given by µ(| f |p )1/p . After all, we also have that µ(|α f |p )1/p =
|α|µ(| f |p )1/p , but the problem we have is that non-degeneracy fails, indeed, it is easy to see that there will be
functions for which the integral is zero, yet the function is not the zero function. However, in view of Theorem
5.2.2, we have that actually, if the integral is zero, then the function must be zero almost everywhere, so there
turns out to be an easy fix to turn L p (Ω,E ,µ) into a normed space. The solution is to take a quotient.

Definition 5.2.4 Let (Ω,E ,µ) be a measure space, we define the linear space

L p (Ω,E ,µ) =L p (Ω,E ,µ)/∼

where f ∼ g if f = g almost everywhere.

Although this space is no longer a function space, but rather a space of equivalence classes, it is easy to see
that this forms a linear space under appropriate notions of addition and scalar multiplication. Moreover, we
now can define a norm on this space, where ∥ f ∥ = µ(| f |)1/p . What’s even better, is that this space enjoys
some great metric properties, most importantly

Theorem 5.2.4 The space L p (Ω,E ,µ) is complete with respect to its norm.

In other words, L p (Ω,E ,µ) is a Banach space.
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5.2.1 Practice Questions

Question 46 True or False: a simple function integrates to zero if and only if it is equal to zero almost
everywhere. What if instead of simple, the function is integrable?

Solution. True. Indeed, since simple functions are non-negative by definition, it must be that if f =
∑n

i=1 ai 1An
and some ai is not zero, then it must be that µ(Ai ) is zero. Thus we conclude that f is

almost everywhere zero. For the second part the answer is False, indeed: the function f = 1[0,1] −1[−1,0]

is integrable and integrates to zero.

Question 47 Is every measurable function integrable? If f is measurable and integrable, is | f | integrable?
If ( fn ) is a sequence of measurable integrable functions, and f = limn→∞ fn a.e, is f integrable?

Solution. -

1. No. We know continuous functions are measurable, yet the simplest continuous function f :R→R,
the constant function f ≡ a > 0 is not integrable on the whole of R.

2. Yes. If f is integrable then both its negative and positive parts integrate to a finite number so the
sum of two finite numbers is finite.

3. No. Consider the sequence of functions: fn = 1[−n ,n ] living in (R,B(R),λ) where λ is the Lebesgue
measure. Clearly, fn is measurable and integrable. Its limit is simply the constant function 1. Is 1

Integrable? Hell no

Remark 9 Can a function be Riemann Integrable but not Lebesgue integrable? Yes! Consider the
function f (x ) = sin(x )

x . The limit

lim
N→∞

∫ K

2π

f (x )dx <∞

in the Riemann sense, but f + and f − have infinite Lebesgue integral so f is not Lebesgue integrable.

Question 48 (2022) Are the following true or false?

1. If f : E →R is integrable then f 2 is integrable.

2. If f : E →R is measurable and f 2 is integrable, then f is integrable.

3. if f : [0, 1]→R is measurable where [0, 1] is equipped with the Borel measure, and f 2 is integrable,
then f is integrable.
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Solution. -

1. False. Take E = (0, 1) and f (x ) = 1p
x . We know that

∫ 1

0
f (x ) <∞ so f is integrable. However,

∫ 1

0
1
x dx is not finite.

2. False. Take E = (1,∞) and f (x ) = 1/x . Clearly f is continuous hence measurable, and f 2(x ) is
integrable. Yet f is not integrable.

3. We refer to the Cauchy-Schwarz inequality for random variables:

E[X Y ]2 ≤E[X ]E[Y ]

Observe that in this setting, f corresponds to a random variable. We can take X = f and Y = 1.
Observe that due to the finiteness of [0, 1], E[Y ] = 1. Therefore

E[ f ]2 =

�

∫

[0,1]

f dx

�2

≤
∫

[0,1]

f 2 dx <∞

5.3 Convergence of Integrals

We have already seen one tool to study convergence of integrals, namely the Monotone Convergence Theorem,
there is another useful tool.

Theorem 5.3.1 (Dominated Convergence Theorem) Let ( fn ) be a sequence of measurable functions with
almost-everywhere pointwise limit f . Moreover, suppose there exists a measurable function g such that
| fn | ≤ g almost everywhere for all n , and g is integrable. Then for all n , fn and f are integrable and
moreover

∫

Ω

fn dµ→
∫

Ω

f dµ

5.3.1 Practice Questions

Example 5 (The case where Ω has finite measure) Suppose ( fn ) and f are as in Theorem 5.3.1 and
moreover, suppose that fn is uniformly bounded, i.e: there exists a constant C > 0 such that for all n ,
| fn | ≤C almost-everywhere. Noticing that

∫

Ω

C dµ=Cµ(Ω)<∞

gives that
∫

Ω

fn dµ→
∫

Ω

f dµ
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Example 6 (Example of DCT usage) Evaluate the limit n→∞:

∫ ∞

0

exp(−n x )dx

Solution. This is an easy application of the DCT: Observe that 0 < exp(−n x ) < exp(−x ) for all n , and
moreover,

∫ ∞

0

exp(−x )dx = 1<∞

It follows that
∫ ∞

0

exp(−n x )dx → 0

Example 7 (Another example of DCT) Evaluate the limit n→∞:

∫ π

0

sin
�

x +
cos(x )n

n

�

dx

Solution. This is a clear use of the remark made in Example 5. Since fn (x ) = sin
�

x + cos(x )n
n

�

is uniformly
bounded by your favourite number greater than or equal to one, the DCT applies and as such

∫ π

0

sin
�

x +
cos(x )n

n

�

dx →
∫ π

0

sin(x )dx = 2

Question 49 (2022 B3) Determine whether the limit

lim
a→0

∫ 1

a

sin(x )
x 3/2

dx

exists, and determine whether sin(x )/x 3/2 is integrable on [0, 1]

Solution. We translate this integral into the language of the DCT using the simple observation that

lim
a→0

∫ 1

a

f (x )dx = lim
N→∞

∫ 1

0

f (x )1[1/N ,1]dx

We thus are looking at a sequence of functions

fn (x ) =
sin(x )

x 3/2
1[1/n ,1](x )
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It is easy to see that | fn (x )| ≤ 1p
x for all x ∈ [0, 1] and this latter function is integrable on [0, 1]. It follows

that the limit of fn (x ), namely sin(x )/x 3/2 is integrable, and of course the limit of the integral also
exists.

Question 50 (2021 B3) Compute the n→∞ limits of the following Lebesgue integrals:

1.
∫ ∞

0

sin(exp(n x ))
n + x 3/2

dx

2.
∫ 2

0

sin(n 2 x )
x

dx

3.
∫ 1

0

1Cn
dx

where Cn is a decreasing sequence of subsets Cn ⊆ [0, 1] converging to a set C =
⋂

n Cn of measure
zero.

Proof. 1. Use DCT. We see that the integrand is a sequence fn of measurable functions and moreover

| fn | ≤
1

1+ x 3/2

which is an integrable function on [0,∞). Therefore the integral equals zero.

2. Make a substitution and see that the integral is equal to

∫ 2n 2

0

sin(x )
x

dx

we know this integral is not well defined in the Lebesgue sense.

3. The integral is precisely equal to µ(Cn ). By continuity of the measure we see that limn→∞µ(Cn ) =

µ
�⋂

Cn

�

=µ(C ) = 0.

Question 51 (Mock 2022) Compute the following integral, where f is some measurable and continuous
function [0,π]→R

I = lim
n→∞

∫ π

0

f (sin(x )n )dx

Solution. Since f is continuous on [0,π], which is a compact interval, it is then bounded so we may
apply the DCT. Since f is continuous we pass the limit inside the function and easily see that

I =π f (0)
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Question 52 (Homework sheet 7) Compute (if it exists) the limit of the following integrals.

1.
∫

R

sin(exp(x ))
1+n x 2

dx

2.
∫ 1

0

n sin(x )
1+n 2

p
x

dx

3.
∫ 1

0

sin(n x )
x

dx

Solution. 1. DCT with 1
1+x 2 , which is integrable. Limit is zero.

2. Obviously uniformly bounded by some large enough number. DCT applies. Limit is zero.

3. Limit doesn’t exist, indeed, making a substitution n x = y , the integral becomes

∫ n

0

sin(y )
y

dy

which does not converge in the sense of Lebesgue. (But it does in the sense of Riemann)

Question 53 (Q2 (d) 2019) Does there exist a function g (x ) with
∫∞

0
| g (x ) | dx <∞ such that

e −a t − e −a 2 t

t
≤ |g (t )|

For all t > 0, a > 1?

Solution. No. Suppose there was such a function. Then by the Dominated Convergence Theorem,
letting fa (t ) =

e −a t −e −a 2 t

t , one would have
∫∞

0
fa dx →

∫∞
0

f where f is the a .e limit of fa . Clearly fa

converges pointwise to 0 for t > 0 so in particular, it converges almost everywhere to the zero function.
However, in the previous part we have computed the integral

∫∞
0

fa dx , which is equal to log(a ). Since
a > 1 it follows log(a ) ̸= 0, contradiction, since according to the DCT we would expect the integral

∫∞
0

fa

to converge to 0.
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Question 54 (2019 Q2 (e)) Compute the following limits:

lim
n→∞

∫ 1

0

1− e −n x sin(n x )
1+ x 2

dx , lim
n→∞

∫ 1

0

n log
�

1+
x

n

�

dx

Solution. Let us compute the first limit. Notice that we are performing an integration over a space of
finite measure (the interval [0, 1]) and the integrand is uniformly bounded. Indeed: let fn =

1−e −n x sin(n x )
1+x 2 .

Then for any n , we have for example fn < 2. So by the DCT, we have that:

∫ 1

0

fn dx →
∫ 1

0

f dx

Where f is the a .e limit of f . Observe that fn → 1
1+x 2 pointwise. Now we conclude that:

∫ 1

0

fn dx →
∫ 1

0

1

1+ x 2
dx = arctan(1)−arctan(0) =

π

4
.

A similar argument can be used for the second problem. First note that

fn = n log
�

1+
x

n

�

= log
h�

1+
x

n

�n i

In particular, in the limit n→∞ one has:

fn → log(e x ) = x

Returning to the integral, we can apply once again the DCT because the interval has a finite measure
and the function is uniformly bounded. Therefore:

∫ 1

0

fn dx →
∫ 1

0

x dx = 1/2.

5.4 Product measure spaces, Fubini’s Theorem

Recall the following definition:

Definition 5.4.1 (σ-algebra generated by a function) Let Ω be a set, and (A,A ) be a measurable space.
Let f :Ω→ A be any function. Then the σ-algebra generated by f , denoted σ( f ), is the smallest σ-algebra,
F that makes f an F −A measurable function. That is to say, σ( f ) is the σ-algebra generated by f −1(S )

for all S ∈A .

Definition 5.4.2 (Product σ-algebra) Let (A,A ) and (B ,B ) be two measurable spaces. Consider the
projection maps πA : A × B → A and πB : A × B → B defined in the obvious ways. We define the product
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sigma algebra, denoted by A ⊗B (nothing to do with the tensor product) is the σ-algebra generated by
the projection maps, i.e:

A ⊗B =σ(πA ,πB )

Remark 10 Since given any measurable set S ∈A , we have that π−1
A (S ) = S ×B , and something identical

holds for πB , we have that A ⊗B contains all sets of the form S1×S2, where S1 ∈A and S2 ∈B . For the
case of a countable product of σ-algebras, it can be shown that Cartesian products like that of S1 ×S2

actually generate the product of algebras, so we may use either characterisation, depending on what’s
more useful. For uncountable products however, we use the definition given above.

The goal is to construct a measure on A ⊗B , and we do so by explicit construction.

Lemma 5.4.1 Let (A,A ,µA) and (B ,B ,µB ) be measure spaces. Let E =A ⊗B and f = f (x1, x2) be
E -measurable. Then the function

x1 7→
∫

B

f (x1, x2)µB (d x2)

is A -measurable.

This Lemma ensures that the following result makes sense.

Theorem 5.4.1 Let (A,A ,µA) and (B ,B ,µB ) be measure spaces. Let E =A ⊗B . Then there exists a
unique measure µ which is sometimes denoted as µA ⊗µB on A ⊗B such that

µ(S1×S2) =µA(S1)µB (S2)

Proof. The measure is constructed as

µ(S ) =

∫

A

�∫

B

1S (x1, x2)µB (d x2)

�

µA(d x1) S ∈A ⊗B

Theorem 5.4.2 (Fubini’s / Tonelli’s Theorem) Let f be non-negative A ⊗B-measurable. Then

∫

A×B

f d (µA ⊗µB ) =

∫

A

�∫

B

f dµB

�

dµA =

∫

B

�∫

A

f dµA

�

dµB

5.4.1 Practice Questions
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Question 55 (Q2 (b) 2019) Let 0< a < b and

f (x , y ) =







e −x y if x ∈ (0,∞), y ∈ [a , b ]

0 otherwise

Show f is integrable.

Solution. By Fubini’s Theorem:

∫

R2

f (x , y )dµ=
∫ b

a

∫ ∞

0

e −x y dx dy = log(y )

�

�

�

�

y=b

y=a

<∞

Question 56 (Q2 (c) 2019) By using Fubini’s Theorem or otherwise evaluate:

∫ ∞

0

e −a t − e −b t

t
dt

Solution. Looking at the previous question, we see that:

∫

R2

f dµ= log(b )− log(a )

We could have swapped the order of integration using Fubini’s Theorem and get that:

log(b /a ) =

∫ ∞

0

∫ b

a

e −x y dy dx =

∫ ∞

0

e −a t − e −b t

t
dt

5.5 Expectation

In this chapter, we shall concentrate on spaces of measurable functions whose moments have finite expec-
tation, it turns out that the geometry of one of these spaces, L 2(Ω,F ,P) has deep insights into probabilistic
results.

Definition 5.5.1 Let (Ω,F ,P) be a probability space and X : Ω→R a random variable. The expectation
of X is defined to be

E[X ] =
∫

Ω

X dP
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If we take X ∈ L 2 (Ω,E ,P), we may define the variance,

Var[X ] =E[(X −E[X ])2]

Note that the variance corresponds to the square of the distance between the vectors X and E[X ] in L 2, this
is a great geometric insight into probability because in this measure-theoretic formulation of probability, the
variance (or rather the standard deviation) corresponds to how far away X and E[X ] are as vectors in L 2, this
is truly fascinating if you ask me, because it links a concept from elementary probability with geometry, and
it goes to show how powerful this theory of probability is.

Proposition 5.5.1 (Properties of expectations and variances) Let X , Y ∈ L 2 (Ω,E ,P) Then the expectation
is:

1. Linear:
E[a X + b Y ] = aE[X ] + bE[Y ]

2. Almost surely monotonic: if X ≤ Y a.s then:

E[X ]≤E[Y ]

The variance satisfies:

(a) (Variance is square of norm) Quadratic scaling:

Var(a X ) = a 2 Var(X )

(b) (Expectation is linear) Translational invariance:

Var(X + b ) =Var(X )

(c) (Pythagoras’ Theorem) If X and Y are independent:

Var(X +Y ) =Var(X ) +Var(Y )

Notice in this last statement of the Proposition, I have labeled this result as Pythagoras’ Theorem. This is
because L 2 is actually even better than a Banach space, it is actually a Hilbert space, since it is equipped
with an inner product




f , g
�

=µ( f g )

Which enables the measurement of ”angles". It turns out that the angle between two random variables is their
correlation. Hence the interpretation of two random variables being orthogonal is that they are uncorrelated, so
technically, the result could be relaxed to just say uncorrelated instead of independent. Obviously, independent
random variables are uncorrelated.

Question 57 Is it true that if Xn → X in distribution and E[Xn ]→E[X ], then E[X 2
n ]→E[X ]?
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Solution. False. Indeed, define the random variable

Xn =







p
n with P= 1/n

0 with P= 1−1/n

We verify that given any ε> 0,
P(Xn >ε) = 1/n→ 0

and as such Xn → 0 in distribution. Moreover,

E[Xn ] =
p

n

n
→ 0

but E[X 2
n ] = 1

Example 8 (Two examples of expectations) Here are two well known examples of expectations, phrased
in this better language:

1. Dirac δ measure: given a measure space (E ,E ) and x0 ∈ E , we define the point-mass measure at x0

δx0
(A) =







1 x0 ∈ A

0 x0 /∈ A
, A ∈ E

Now given a function f : R→ R, a random variable X = c a.s, and the Dirac measure δc we see
that

E[ f (X )]
d e f
=

∫

R
f (X )dδc =

∫

R
f (c )1{c }dδc = f (c )δc ({c }) = f (c )

2. Discrete random variable: given X taking values in {1, 2, · · · } then almost surely

X = lim
N→∞

N
∑

n=1

n1{X=n}

since this is a monotone limit, we may apply MCT and see that

E[X ] = lim
N→∞
E

�

N
∑

n=1

n1{X=n}

�

= lim
N→∞

N
∑

n=1

nE[1{X=n}]

this latter quantity is precisely
∞
∑

n=1

nP(X = n )

Let’s take a second to appreciate this last example. Once again, we see how this incredibly technological
formulation of probability, through the use of measure theory and Lebesgue integration, recovers familiar
concepts such as the expectation of a discrete random variable, whilst opening the doors to a myriad of more
complicated insights that elementary probability could have not given us.
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Question 58 (Homework sheet 7) Let (Xn ) be a collection of non-negative random variables. By using
the MCT, show that

E

�∞
∑

n=1

Xn

�

=
∞
∑

n=1

E[Xn ]

Then show that if X is an N-valued random variable, then

E[X ] =
∞
∑

n=1

P(X ≥ n )

Hence, show that if E[X ] =∞, then with probability one, Xn ≥ n infinitely often.

Solution. We define the sequence of measurable functions

fn =
n
∑

k=1

Xk

Given that Xn is non-negative, this sequence is monotone increasing, so by the Monotone Convergence
Theorem:

E

�∞
∑

n=1

Xn

�

=E

�

lim
N→∞

N
∑

n=1

Xn

�

= lim
N→∞
E

�

N
∑

n=1

Xn

�

= lim
N→∞

N
∑

n=1

E[Xn ] =
∞
∑

n=1

E[Xn ]

Now we can focus on the next part. Indeed, if X is N-valued, we can write X =
∑∞

n=1 n1{n}. Hence using
the first part,

E[X ] =E

�∞
∑

n=1

n1n

�

=
∞
∑

n=1

nE[1n ] =
∞
∑

n=1

nP(X = n )

I now claim that this last quantity is precisely equal to
∑∞

n=1P(X ≥ n ) its really just a trivial combinatoric
argument, but here is a pictorial proof, sorry for the messy drawing.

Now to solve the last part, we simply use the Borel-Cantelli Lemma.

Definition 5.5.2 Let (Ω,F ,P) be a probability space, X : Ω → R be a random variable, and PX be the
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measure induced by X on (R,B(R)). If there exists a function f such that

PX (A) =

∫

R
fX 1A dx

then we refer to fX as the probability density of X .

Remark 11 (Unicity of probability densities) Suppose fX and f̃X are two functions satisfying the defining
property of a density function, then define the set A = {x ∈ X | fX (x ) ̸= f̃X (x )}. By hypothesis:

∫

R
( fX − f̃X )1A dx = 0

Therefore by the non-negativity of fX , f̃X , it follows:

( fX − f̃X )1A = 0 µ−almost-everywhere

but by assumption, on A, the two functions differ so it follows that µ(A) = 0.

Remark 12 The density depends not only on the random variable but also on the underlying probability
space. Indeed, if dx is the Lebesgue measure on R, suppose the zero random variable X = 0 had a density
fX . Then

1=PX ({0}) =
∫

R
fX dx =

∫

{0}
fX dx = fX (0)dx ({0}) = 0

However, if we take µ to be the counting measure, then it does! and fX (x ) =







1 x = 0

0 otherwise

Question 59 (2022 Mock) Let X and Y be two random variables with densities fX and fY , is it true
that the random variable X +Y has density fX + fY ?

Solution. False. Take the probability space to be (R,B(R), m ) where m is the Lebesgue measure and
take Y =−X where X is any random variable with density fX . Then X + Y is the zero random variable
but as seen above, in this probability space, the zero random variable has no density.

Question 60 (2022 Mock) Let X :Ω→R be a random variable with density fX . Is it true that Y = X + c

has density fX (x − c )?
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Proof. Yes! Indeed:

P(Y ∈ (−∞, a ]) =P(X ∈ (−∞, a − c ]) =

∫ a−c

−∞
fX (x )dx =

∫ a

−∞
fX (x − c )dx

as required.

Question 61 (2022 Mock) If X has density fX , what is the density of the random variable Y = exp(X )?

Proof. We can perform this via direct method or using some technology which gives a shortcut, now we
restrict ourselves to the direct method. Suppose firstly that x > 0:

P(Y ∈ (−∞, x ]) =P(exp(X ) ∈ (−∞, x ]) =P(X ∈ (−∞, log(x )] =

∫ log(x )

−∞
fX (x )dx

now we make a substitution x → log(x ) and we reach the conclusion that this last integral is precisely

∫ x

−∞

fX (log(x )
x

dx

Clearly if x ≤ 0 then P(Y ∈ (−∞, x ]) = 0 so we reach the conclusion that

P(Y ∈ (−∞, x ]) =

∫ x

−∞
1>0

fX (log(x )
x

dx

for all x .

Question 62 (2022 Mock) Suppose X is a random variable such that P(X ∈ Q) > 0. Does X have a
density with respect to the Lebesgue measure?

Proof. Hell no. Indeed:

0<P(x ∈Q) =
∫

Q
fX (x )dµ= 0 since µ(Q) = 0

where µ is the Lebesgue measure.

Question 63 (Homework sheet 8) Let R ∼Exp(λ) and let A be the random variable denoting the area of
a circle of radius R . Find the density of A.

Solution. We begin by finding the distribution of A:

P(A ≤ a ) =P(πR 2 ≤ a ) =P
�

R ≤
s

a

π

�
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in this last equality we have used the fact that R , being exponentially distributed, does not take negative
values. This last quantity is obviously equal to

1−exp

�

−λ
s

a

π

�

and by differentiating this quantity we reach the conclusion of fA(a ).

Definition 5.5.3 (Change of measure) Let (Ω,F ,µ) be a measure space and f : Ω→R be a non-negative
measurable function. The change of measure given by f is the measure ν :F →R given by

ν(A) =

∫

A

f dµ=
∫

Ω

f 1A dµ

Proposition 5.5.2 The measure induced by a non-negative measurable function is indeed a measure.
Moreover, if g is an integrable function, then

∫

Ω

g dν=
∫

Ω

f g dµ

Proposition 5.5.3 Let Let (Ω,F ,P) be a probability space and X :Ω→R be a random variable. Then

E[X ] def=

∫

Ω

X dP=
∫

R
x dPX =

∫

R
x fX dx

where the second equality holds if fX exists.

Question 64 (2022, pending verification) True/False: If there exists some c ∈ R so that PX ({c }) > 0,
then X does not have a density function.

Proof. Suppose it has a density function fX (x ). Then

0<PX ({c }) =
∫

{c }
dPX =

∫

{c }
fX (x )dx = 0

contradiction.

Question 65 (2022, pending verification) If X has a density function, then so does |X |.
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Solution. Yes. Let fX (x ) be the density function of X . We must find a function f|X |(x ) such that

P(|X | ∈ (−∞, x )) =

∫ x

−∞
f|X |(y )dy

Observe that P(|X | ∈ (−∞, x )) = P(X ∈ (−x , x ))) =
∫

R fX (y )1[−x ,x ]dy =
∫ x

−∞ fX (y )1[−x ,x ]dy . Thus we have
our density function.

Remark 13 If FX (x ) is the distribution function of a random variable and FX (x ) is continuously differen-
tiable for all but finitely many points, then F ′X (x ) is the distribution of X . This follows by the FTC.

Example 9 (Exponential distribution) A random variable X is said to be of exponential distribution with
parameter λ if

P(X ≥ x ) = exp(−λx )

From the above remark it follows that λexp(−λx ) is the pdf of X .
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5.6 Inequalities concerning expectations

Theorem 5.6.1 (Markov’s Inequality) Let X be a non-negative random variable. Then

P(X ≥ a )≤
E[X ]

a

Note that if X has infinite expectation this still holds vacuously.

Key of proof. Consider the expectation of Y = a 1{X≥a }

Theorem 5.6.2 (Chebyshev’s Inequality) Let X be a random variable with finite mean and variance.
Then for all k > 0.

P(|X −µ|> kσ)≤
1

k 2

Key of proof. Apply Markov with Y = (X −µ)2

Theorem 5.6.3 (Chernoff bounds) Let X be a random variable with finite mean and variance and t ≥ 0

be such that E[exp(t X )]<∞. Then

P(X ≥ a )≤
E[exp(t X )]

exp(t a )

Theorem 5.6.4 (Jensen’s inequality) Let X be an integrable random variable and g : R→ R a convex
function, then:

E[g (X )]≥ g (E[X ])

Theorem 5.6.5 (Cauchy-Schwarz) Let X , Y be two random variables, then

(E[|X Y |])2 ≤E[X 2]E[Y 2]

5.6.1 Some questions

Question 66 (Homework sheet 8) Show that for a random variable X and p ∈ (0,∞), we have that

P(|X | ≥ x )≤
E[|X |p ]

x p
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Solution. This follows from a simple application of Markov’s inequality:

P(|X | ≥ x ) =P(|X |p ≥ x p )

Question 67 (Homework sheet 8) Let X ≥ 0 almost surely. Show that for some range of z ,

P(X ≥ x )≤
E[z X ]

z x

Solution. We apply once again Markov’s inequality but now we will apply it to the variable z X . The
thing to be careful of, is that in order to preserve the order of the inequalities, we must have z ≥ 1.

Question 68 (Homework sheet 8) Let Xn ∼ Bin(n , 1/3). By using Markov’s Inequality, Chebyshev’s
Inequality and the inequality obtained in Question 67, obtain upper bounds on P

�

Xn ≥ 2n
3

�

.

Solution. 1. Markov:
P
�

Xn ≥
2n

3

�

≤
n/3

2n/3
= 1/2

So this is not a great inequality because its always the same. But that’s to be expected because
Markov is a very “dumb" inequality.

2. Chebyshev: We rather implement “the proof" of Chebyshev’s inequality to obtain this bound:

P(Xn ≥ 2n/3) =P(Xn −µ≥ n/3) =P((Xn −µ)2 ≥ n 2/9)≤
Var[Xn ]

n 2/9
=

2

n

Much better.

3. PGF: We must first compute

E[z Xn ] =
n
∑

k=0

z k

�

n

k

�

p k (1−p )n−k =
n
∑

k=0

�

n

k

�

(z p )k (1−p )n−k = (z p +1−p )n =
�

2

3
+

z

3

�n

Hence
P(X ≤ x )≤

�

2+ z

3z 2/3

�n

Now one could sweat a bit to find a nice value of z that minimises the thing inside the bracket. In
fact when z = 4, the thing inside the bracket is 2−1/3 so we see that this inequality is super good.
As its usual in Mathematics, the more you have to think the better the result it.
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Question 69 (Homework sheet 7) We say Xn → X in L1 if E[|Xn −X |]→ 0. Show that convergence in L1

implies convergence in probability.

Solution. We use Markov’s inequality. For a fixed ε> 0:

P(|Xn −X |>ε)≤
E[|Xn −X |]

ε
→ 0

5.7 Change of variables

Sometimes we are given some random variable X with its density, and we wish to study the density of g (X ) for
some measurable function g . This can be done in two different ways. The direct way and the sledgehammer
approach.

Example 10 (Direct way) Consider X ∼Exp(λ) and set Y = c X . Compute the distribution function of Y

using the direct way:
P(Y ≤ x ) =P(c X ≤ x ) =P(X ≤ x/c ) = 1−exp(−λx/c )

Sometimes this is too hard to do, so we resort to some extra technology:

Proposition 5.7.1 (Beefed up change of variables) Let X be a continuous random variable with density
fX (x ) and g :R→R a measurable function such that

1. g is strictly monotonic, thus ensuring the existence of g −1 as per the inverse function theorem.

2. g −1 is differentiable everywhere.

Then the density of Y is given by

fY (y ) = fX (g
−1(x ))

�

�

�

�

d

d y
g −1(y )

�

�

�

�

Key of proof. Consider the distribution function:

FY (y ) =P(g (X )≤ y ) =P(X ≤ g −1(y )) = FX (g
−1(y ))

Now use the chain rule.

Example 11 (Example 10 revisited) We now perform the same task using our proposition. Here g (x ) = c x ,
which satisfies the conditions. Clearly g −1(x ) = 1

c x and you can easily verify that the same result as
obtained in Example 10 holds.
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6 Multivariate Probability

Definition 6.0.1 Let (X , Y ) be an R2-valued random variable (which we refer to as a random vector). The
joint distribution function is defined as

FX ,Y (x , y ) =P(X ≤ x , Y ≤ y )

The joint density is (if it exists) the function fX ,Y :R2→ [0,∞) that satisfies

FX ,Y (x , y ) =
x ,yx

−∞,−∞
fX ,Y (u , v )d ud v

Remark 14 By the Fundamental Theorem of Calculus, it follows

fX ,Y = ∂x ∂y FX ,Y

provided that FX ,Y is differentiable with respect to x and y .

Definition 6.0.2 (Marginal density) Let (X , Y ) be a random vector with density fX ,Y . The marginal density
fX (x ) is defined as:

fX (x ) =

∫

R
fX ,Y (x , y )dy

Remark 15 This allows us to recover the expectations of each individual random variable, indeed, since
given a measurable g :R2→R we have that

E[g (X , Y )] =

∫

R2

g (X , Y ) fX ,Y dx dy

we can choose the projection map πX (x , y ) = x , which is clearly measurable, and as such

E[X ] =E[πX (X , Y )] =

∫

R
X

�∫

R
fX ,Y dy

�

dx =

∫

R
X fX (x )dx

Example 12 (Sheet 9) Let (X , Y ) be a random vector uniformly distributed in the triangle

T = {y ≥ x | 0≤ x , y ≤ 1}

Compute E[X ].
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Proof. We begin by computing the density of (X , Y ). Given that T has area of 1/2, then fX ,Y (x , y ) = 21T .
To compute E[X ], we could do two things, compute the integral

∫ ∫

R2

x fX ,Y (x , y )dx dy

Or alternatively, compute the marginal density

fX (x ) =

∫ ∞

−∞
21T (x , y )dy = 2(1− x )1[0,1]

Hence E[X ] =
∫

R 2x (1− x )1[0,1]dx
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6.1 Covariance and dependence

Definition 6.1.1 (Covariance) Let (X , Y ) be a random vector. Define g (x , y ) = (x −E[X ])(y −E[Y ]). Then
E[g (X , Y )] =E[X Y ]−E[X ]E[Y ] is the covariance of (X , Y ), denoted Cov(X , Y )

Remark 16 (Geometric interpretation in L 2) Suppose that X , Y ∈ L 2 (Ω,E ,P) are both zero-mean random
variables. Then Cov(X , Y ) = 〈X , Y 〉. This has a deep geometric interpretation as hinted in the chapter
on Expectations. Since inner product measures angles, we see that the interpretation of two random
variables being orthogonal in L 2 corresponds to them having zero covariance. Something even cooler is
actually true, the cosine of the angle between the two random variables corresponds to their correlation.

Definition 6.1.2 (Correlation) Let X and Y be two random variables, then

Corr(X , Y ) :=
Cov(X , Y )

p

Var(X )Var(Y )

Remark 17 Correlation is scale invariant and by the Cauchy-Schwarz inequality, Corr(X , Y ) ∈ [−1, 1],
which checks out with the fact that it corresponds to the cosine of an angle.

Remark 18 (Independence of random variables and covariance) By definition, X and Y are independent if
and only if FX ,Y (x , y ) = FX (x )FY (y ) so by taking suitable derivatives, we see that X and Y are independent
if and only if fX ,Y = fX (x ) fY (y ), that is to say, fX ,Y splits as a product of two function, one that depends
strictly on X , one that depends strictly on Y . A consequence to this observation is that if X and Y

are independent, E[X Y ] will split as an integral into E[X ]E[Y ] which implies that Cov(X , Y ) = 0. The
converse is however not true.

Example 13 (Zero covariance yet not independent) Consider the random variable

X =







1 P= 1/2

−1 P= 1/2

Now construct the random variable Y , as follows

Y =















0 if X = 1






1 P= 1/2

−1 P=−1/2
if X =−1

Obviously these random variables are not independent. Yet it is easy to see that E[X Y ] =E[X ] =E[Y ] = 0.
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Proposition 6.1.1 Given a collection of random variables X1, · · · , Xn ,

Var

�

∑

i

X i

�

=
∑

i , j

Cov(X i , X j )

Proposition 6.1.2 (Covariance is bilinear) The Covariance is bilinear.

7 Transformations of Multivariate Random Variables

7.1 Convolutions, simple case of transformations.

Proposition 7.1.1 Suppose X and Y are independent Random Variables with densities fX and fY . Then
the density of Z = X +Y , fZ is given by

fZ (z ) = ( fX ∗ fY )(z )

Proof. We start by considering the distribution function

FZ (z ) =P(X +Y ≤ z ) =

∫

{x+y≤z }
fX ,Y (x , y )dx dy =

=

∫ ∞

x=−∞

∫ z−x

y=−∞
fX (x ) fY (y )dy dx

substitute y =ω− x and get

=

∫ ∞

−∞

∫ z

−∞
fX (x ) fY (ω− x )dωdx =

=

∫ z

−∞

∫ ∞

−∞
fX (x ) fY (ω− x )dx dω=

∫ z

−∞
g (ω)dω

where g (ω) = ( fX ∗ fY )(ω). Now differentiating finishes the claim.

Example 14 Let X and Y both be distributed according to E x p (λ) and consider Z = X +Y , then noting
that fX (x ) =λexp(−λx )1{x≥0}, it also follows that fY (z − y ) =λexp(−λ(z − y ))1{y≤z }

fZ (z ) =λ
2

∫ z

0

exp(−λx )exp(−λ(z − x ))dx =λ2z exp(−λz )
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Remark 19 This is a particular case of a more general phenomenon, that of the family of distributions
called the Gamma distribution, denoted by Γ (n ,λ), where n = 1, 2, · · · . Its density is

x n−1 exp(−λx )
λn

(n −1)!
1{x≥0}

and generally speaking if X1, · · · , Xn are I.I.D exponentials with parameter λ, it follows that

n
∑

i=1

X i ∼ Γ (n ,λ)

7.2 General case of transformations

Proposition 7.2.1 Let (X , Y ) be a random variable with joint density fX Y (x , y )1D and

φ : D ⊆R2→C ⊆R2

be an injective map. We define the random variable

(U , V ) =φ(X , Y ) = (u (X , Y ), v (X , Y ))

If φ−1 has continuous partial derivatives almost everywhere on the codomain, then the density fU V of
(U , V ) is given by

fU V (u , v ) = fX Y (φ
−1(u , v ))|J (φ−1)|1C

Where J (φ−1) is the Jacobean of φ−1. Generally, if ϕ(x , y ) = (u (x , y ), v (x , y )), then

J (ϕ) =

�

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

�

7.2.1 Example computations

Example 15 Let X and Y be two I.I.D E x p (λ) random variables. Define the random variables

Z = X +Y Q =
X

X +Y

and compute fZ ,Q .

Solution. We begin by noting that our map is given by

φ : (X , Y ) 7→
�

X +Y ,
X

X +Y

�
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this map is injective, and we may write the inverse:

φ−1 : (Z ,Q ) 7→ (ZQ , Z (1−Q ))

which has continuous partial derivatives, so we may apply the proposition above. First we construct the
Jacobean J (φ−1):

J (φ−1) =

�

Q Z

1−Q −Z

�

and its determinant is nothing but

|J (φ−1)|= | −Q Z +Q Z −Z |= Z

Since fX Y (x , y ) = fX (x ) fY (y ) given that they are I.I.D, we see that

fX Y (φ
−1(u , v )) = fX (u v ) fX (u −u v ) =λ2 exp(−λu )

and as such fZQ (z , q ) = λ2z exp(−λz )1{z≥0} notice that incidentally, Q is uniformly distributed as that
accounts for a 1 in the product above, and Z has the shape of Γ (2,λ) as computed before via the
convolution.

Example 16 Let X and Y be two I.I.D standard Normal distributions. By writing X = R cos(Θ) and
Y =R sin(Θ) where now (R ,Θ) is another random vector, study the joint distribution of (R ,Θ).

Solution. We proceed as standard. First we notice that fX Y =
1

2π exp
�

− (x
2+y 2)

2

�

. We have some φ :

(X , Y ) 7→ (R ,Θ). The inverse of this map is very easy to write. Indeed:

φ−1 : (R ,Θ) 7→ (R cos(Θ), R sin(Θ))

We construct the Jacobean

J (φ−1) =

�

cos(Θ) −R sin(Θ)

sin(Θ) R cos(Θ)

�

The determinant is very clearly R and so applying the Proposition, we see that

fR ,Θ(r,θ ) =
1

2π
exp

�

−
1

2
r 2
�

r

What we conclude for this, is that fΘ(θ ) = 1/2π and fR (r ) = exp
�

− 1
2 r 2

�

r . Meaning that the random
vector (X , Y ) is radially symmetric

A good observation is that

|J (φ)|=
1

|J (φ−1)|

this might ease some computations.

61



Question 70 (Homework sheet 9) Let T ⊆R2 be the triangle with vertices (0, 0), (0, 1), (1, 1). Let (X , Y )∼
Unif(T ). Let S = X +Y and U = Y −X . Find fSU (s , u ). Are S and U independent? Find E[S ] and E[U ].

Solution. Clearly fX Y ≡ 2. The map φ is as follows φ(X , Y ) = (X +Y , Y −X ) so J (φ) =

�

1 1

−1 1

�

There-

fore |J −1(φ)| = 1
|J (φ)| = 1/2. Note that φ(T ) = T ′ where T ′ is the triangle with vertices φ(0, 0) = (0, 0),

φ(0, 1) = (1, 1) and φ(1, 1) = (2, 0). This gives fS ,U = 1T ′ , which is consistent with the fact that T ′ has area
one, therefore the integral of the density over the whole T ′ is one as should be expected.

The density does not split as a product, so they are not independent.

To find the expectation, we note that fS ,U is symmetric about S = 1 so E[S ] = 1. To compute E[U ] we
perform the integral

E[U ] =
x

T ′

ud ud s = 2

∫ s

0

∫ 1

0

ud s d u =
1

3

Question 71 (Homework sheet 9) Let X , Y be independent random variables. Define S = X +Y . Compute
the joint density of (X ,S ) and by finding the marginal distribution of S , verify the convolution result.

Solution. We have that the map φ given by

φ : (X , Y ) 7→ (X , X +Y )

has Jacobean

J (φ) =

�

1 1

0 1

�

Hence by the observation in the box above, we have that |J (φ−1)|= 1. As such

fX ,S (x , s ) = fX ,Y (x , s − x ) = fX (x ) fY (s − x )

now we find the marginal.

fS (s ) =

∫

R
fX ,S (x , s )dx =

∫

R
fX (x ) fY (s − x )dx = ( fX ∗ fY )(s )

as required.

Question 72 (Homework sheet 9) Let X and Y be two random variables with joint density fX Y . Find
the joint density of Z = Y /X and the marginal of Z .
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Solution. The map is given by
φ : (X , Y ) 7→ (X , X /Y )

so the Jacobean is 1/x , so |J (φ−1)|= |x |. Therefore

fX ,Z (x , z ) = |x | fX ,Y (x , x z )

You can find the marginal.

Question 73 (Homework sheet 9 + 2020) Let X ∼ E x p (λ) and Y ∼ E x p (µ) be independent. Determine
the distribution of min(X , Y ). Define Yn =min1≤i≤n X i . What is the distribution of Yn? Determine if Yn

converges in probability or almost surely, and if it does, determine which random variable it converges to.
Also determine necessary and sufficient conditions on α ∈R so that Yn/n

α converges to zero in probability
and determine the distribution of n Yn .

Solution. Determining the distribution of min(X , Y ) is a pretty standard computation:

P(min(X , Y )≥ x ) =P(X ≥ x , Y ≥ x ) =P(X ≥ x )P(Y ≥ x )

where in the last equality we have used independence. Now, inspecting the shape of the exponential
distribution, we see that this last product is also the distribution of the exponential distribution with
parameters µ+λ. Therefore min(X , Y ) ∼ E x p (µ+λ). Inductively, now one argues that Yn ∼ E x p (λn ).
And by inspecting the distribution function, it seems reasonable to guess that as n →∞, this should
converge in some sense to the zero random variable. Let us inspect firs:

1. Convergence in probability: Let ε> 0 be given, then P(Yn >ε) = exp(λnε)→ 0 as n→∞. Thus we
have convergence in probability.

2. Almost sure convergence. We employ the Borel-Cantelli lemma. Let ε> 0 be given, then

∞
∑

n=1

P(Yn >ε) =
∞
∑

n=1

exp(−λnε)<∞

and as such we have almost sure convergence.

3. If we want Yn/n
α to converge to zero in probability, we want that for any given ε> 0, the probability

P(Yn >εnα)

goes to zero. This quantity is precisely exp(−λnα+1ε), which provided α>−1, does indeed converge
to zero.

4. To conclude, we note that if Yn ∼ E x p (λn ), then n Yn ∼ E x p (λ). No need for further calculations.
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8 Conditional probability

Definition 8.0.1 (Conditional distribution of X given A) Let X be a random variable on a probability
space (Ω,F ,P). We define the random variable X subject to an event A ∈ F with P(A) > 0 by having the
distribution function

P(X ∈C | A) =
P({X ∈C }∩A)
P(A)

Remark 20 Provided that P(A)> 0, the definition above satisfies the definitions of a distribution and we
can define

FX |A(x ) =P(X ≤ x | A)

Example 17 (Memory-less property of the exponential distribution) Let X ∼ E x p (λ) and A = {X ≥ a }.
Then

(X | A)∼ a +E x p (λ)

Indeed:
P(X ≥ t +a | X ≥ a ) =

P(X ≥ t +a )
P(X ≥ a )

= exp(−λ(t +a ))/exp(−λa ) = exp(−λt )

We now take a look at the concept of conditional expectation, which will be central in our later discussion of
Martingale Theory. Conditional expectation should, as we will see later, be seen as our best approximation to
a given random variable, provided that we restrict our information available about said random variable.

Definition 8.0.2 (Expectation conditioned to an event) By observing Definition 8.0.1 it is natural to define
for an event A ∈F of non-zero probability, the expectation of X given A to be

E[X | A] =
1

P(A)
E[X 1A]

Definition 8.0.3 (Conditional expectation) Let (Gn ) be a collection of pairwise disjoint events with the
property that

Ω=
⋃

n

Gn

Define G =σ({Gn : n ≥ 0}). The random variable E[X | G ] is defined to be

E[X | G ] =
∞
∑

n=1

E[X |Gn ]1Gn

The way to think about this is as follows: our collection Gn partitions our sample space Ω, and the interpretation
of the conditional expectation of X given G is that the only information about the chosen sample point ω ∈Ω
is which “box" it lands in, and as such, we can say that our best guess for the value of X given that we only
know in which “box" we are, is precisely the average of X in that box.
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We would now like to understand this random variable a bit more profoundly. First we make a geometric
statement, which should be fairly natural to the reader who has understood the definition of conditional
expectation.

Proposition 8.0.1 Let L 2(Ω,G ,P) be the subspace of L 2(Ω,F ,P) of G -measurable functions. Then if
X ∈ L 2(Ω,F ,P), then E[X | G ] is the orthogonal projection of X onto L 2(Ω,G ,P).

This formalises the intuition that the conditional expectation is the best guess you can do given the information
encoded in G .

Proof of Proposition 8.0.1. It suffices to show that dist(X , L 2(G )) is minimised by E[X | G ]. The key here
is that since G = σ({Gn : n ≥ 0}), we have that any G -measurable function W is constant on the Gk ’s,
indeed: [JUSTIFY]

Hence,

W =
∞
∑

n=1

an 1Gn

Thus,

E[(X −W )2] =E





�∞
∑

n=1

(X −an )1Gn

�2




=

8.1 Conditioning on an event of zero probability

Sometimes we have a random vector (X , Y ) and make an observation on X , and still want to obtain some
information on Y . Naturally, if X is continuous, and X was observed to take the value X = x , this event has
probability zero. However, we can still make a meaningful definition:
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Definition 8.1.1 Let (X , Y ) be a random vector with density fX ,Y the conditional density of (Y | X = x ) is
given by

fY |X=x =
fX ,Y (x , y )

fX (x )

Remark 21 (Comment on independence) It is easy to verify that if X and Y are independent, then

fY |X=x = fY

This gives a sensible way of defining conditional expectation of one random variable subject to another random
variable.

Definition 8.1.2 The expectation of a random variable Y given that X takes value x is given by:

E[Y | X = x ] =

∫

R
y fY |X=x (y )dy =:ψ(x )

We may then try to make sense of E[Y | X ] by defining it as the random variable ψ(X ).

Example 18 (Question sheet 10) Let X ∼ Γ (2,λ) and let Y conditioned on X = x take the distribution
U ni f (0, x ). Find:

1. The joint density fX ,Y .

2. The marginal density of Y .

3. The conditional density of X given Y = y .

4. E[X | Y = y ]

Comment on the distribution (X | Y = y ) and the joint distribution of Y and X −Y

Solution. 1. To find the joint density we see that fY |X=x = 1[0,x ](y ) and fX (x ) = λ2 x exp(−λx )1{≥0}(x ).
Putting this together we see that

fX ,Y (x , y ) =λ2 exp(−λx )1[0,x ](y ).

2. From this we may compute the marginal of Y :

fY (y ) =

∫ ∞

−∞
fX ,Y (x , y )dx =

∫ ∞

y

λ2 exp(−λx )dx =λexp(−λy )1{≥0}(y )

3. Now we have that fX |Y =y =
fX ,Y (x ,y )

fY (y )
=λexp(−λ(x − y ))1[0,x ](y )
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4. A quick computation gives

E[X | Y = y ] =λexp(λy )

∫

R
x exp(−λx )1[0,x ](y )dx =

1

λ
+ y

Observe that given Y = y , P(X ≤ x ) is given by some function Φ(x ) =
∫ x

−∞ fX |Y =y (x )dx . Therefore
P(X − y ≤ x ) =Φ(x + y ) which is precisely the distribution function of an exponential distribution, in other
words, subject to Y = y , X − Y ∼ E x p (λ) and since this distribution is independent of what value Y

takes, it follows that X − Y and Y are independent Exponential distributions with parameter λ, and as
such the joint PDF splits as a product.

Proposition 8.1.1 (Tower Law)
E[E[Y | X ]] =E[Y ]

Key ideas: Use the law of total probability inside an integral.

Remark 22 The expectation of a random variable conditioned to another random variable taking a value,
i.e:

E[X | Y = y ]

is a linear operator in its own right!

9 Gaussian Random Variables

Definition 9.0.1 A Gaussian Random Variable X is a Random Variable distributed according to a Normal
Distribution, X ∼N (µ,σ2). That is to say, X is a Gaussian if its density is of the form

fX (x ) =
1
p

2πσ
exp

�−1

2

� x −µ
σ

�2�

Proposition 9.0.1 (Scaling of the Normal Distribution) If X ∼N (0, 1), then Z =σX +µ∼N (µ,σ2)

Idea of proof. The idea of the proof is to use moment generating functions, recall that

mX (t ) :=E[exp(t X )]

So in particular, for the case of X ∼N (0, 1) we have

mX (t ) = exp

�

t 2

2

�
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and generally, if X ∼N (µ,σ2), then

mX (t ) = exp
�

µt +σ2t 2/2
�

And it is known that if two random variables X and Y with the same domain have that for every t in
some neighborhood of 0, (−ε,ε) the two MGFs agree, then X

d= Y .

Proposition 9.0.2 Independent Normal distributions are closed under linear combinations.

Proof. Using the MGF of X1 ∼N (µ1,σ2
1) and X2 ∼N (µ2,σ2

2), one can check that

mX1+X2
= exp

�

t (µ1+µ2) +
(σ2

1 +σ
2
2)t

2

2

�

hence X1+X2 ∼N (µ1+µ2,σ2
1 +σ

2
2)

Remark 23 The converse is generally not true!

This motivates the next section

9.1 Gaussian Random Vectors

Definition 9.1.1 A random vector (X , Y ) is Gaussian if: for all b , c ∈R:

b X + c Y is a one-dimensional Gaussian

Remark 24 We always have that for any two random variables X , Y :

E[b X + c Y ] = cE[X ] + cE[Y ]

and
Var[b X + c Y ] = b 2 Var[X ] + c 2 Var[Y ] +2b c Cov[X , Y ]

so one may rewrite this in terms of Linear Algebra to see that:

E[b X + c Y ] = (b c )

�

E[X ]
E[Y ]

�

and

Var[b X + c Y ] = (b c )

�

Var[X ] Cov[X , Y ]

Cov[Y , X ] Var[Y ]

�

(b c )T

We can make our definition slightly more general now:
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Definition 9.1.2 (Gaussian vector) A random vector X = (X1, · · · , Xn ) ∈ Rn is a Gaussian vector if given
any u ∈Rn

〈u , X 〉

is a one-dimensional Gaussian vector. Given a random vector X ∈Rn , we define the expectation µ=E[X ]
to be coordinate-wise, i.e:

µ= (E[X1], · · · ,E[Xn ]) ∈Rn

and the covariance matrix V to be as

V = (Cov[X i , X j ])i , j =E[



X −µ, X −µ
�

] ∈Matn×n (R)

Proposition 9.1.1 (Projection of a Gaussian vector) If X is a Gaussian vector with mean µ and covariance
matrix V =Cov(X ), then given any u ∈Rn

〈u , X 〉 ∼N
�


u ,µ
�

, 〈u , V u〉
�

Proof as per Homework sheet 10. We first compute the expectation:

E[〈u , X 〉] =
n
∑

i=1

uiE[X i ] =
n
∑

i=1

uiµi =



u ,µ
�

Similarly:

Var

�

n
∑

i=1

ui X i

�

=
∑

i , j

Cov[ui X i , u j X j ] ==
∑

i

ui

∑

j

Cov(X i , X j )u j =
∑

i

ui (Cov(X )u )i = 〈u , Cov(X )u〉

Question 74 (2022 Mock) Let (Xn ) be a sequence of Gaussian vectors, with mean µn =
�

1+ 1
n , 2− 1

n

�

and
covariance matrix

Cov(Xn ) =

�

2 1+ 1
n 2

1+ 1
n 2 3

�

If Xn = (Yn ,1, Yn ,2), what is the distribution of 2Yn ,1−2Yn ,2?

Solution. We note that 2Yn ,1 − 2Yn ,2 = 〈u , Xn 〉 where u = (2,−2), so we know that 2Yn ,1 − 2Yn ,2 is a one-
dimensional Gaussian and as such we only need to finds its expectation and variance to conclude the
problem. By using linearity of expectation we easily see that

E[2Yn ,1−2Yn ,2] =−2+
4

n
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Now to find the variance, we note that

Var[2Yn ,1−2Yn ,2] =Cov[2Yn ,1−2Yn ,2, 2Yn ,1−2Yn ,2]

and now by bilinearity this is equal to

4 Var[Yn ,1]−8 Cov[Yn ,1, Yn ,2] +4 Var[Yn ,2]

Now use the covariance matrix to fill in the details.

Proposition 9.1.2 (Properties of Linear Combinations of Gaussian vectors) Let X be a random Gaussian
vector, A ∈Matn×n (R) and b ∈Rn . It is easy to see that AX +b is a Gaussian random vector. Moreover:

1. E[AX + b ] = AE[X ] + b

2. Cov(AX ) = A Cov(X )AT , where Cov(X ) is the covariance matrix V .

Proof. I use Einstein’s summation notation, tough shit if you don’t understand it.

1.
(E[AX + b ])i =E[Ai j X j + bi ] = Ai jE[X j ] + bi = Ai jE[X ] j + bi = (AE[X ] + b )i

2.

Cov(AX ) =E[(AX −Aµ)(AX −Aµ)T ] =E[A(X −µ)(X −µ)T AT ] = AE[(X −µ)(X −µT )]AT = A Cov(X )AT

Question 75 (2023 B4) Show that if A is an n ×n matrix and X is a Gaussian vector, then AX is a
Gaussian vector.

Proof. Easy, let u ∈Rn be any given vector, let us compute

〈u , AX 〉=



AT u , X
�

Clearly AT u is just another vector in Rn . X being Gaussian means that this latter vector is also a one
dimensional Gaussian as required.

9.2 MGFs in Rn

Definition 9.2.1 Let X be a random vector in Rn , the MGF of X is given by

mX (u ) =E[exp(〈u , X 〉)]
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for some u ∈Rn

Remark 25 The corresponding result about MGFs in the case of random vectors is that if two random
vectors X and Y have that for some neighborhgood [−ε,ε]n , their MGFs are both finite and agree, then
the two random vectors are equal in distribution.

In some situations, including the Gaussians, the fast decay will ensure the MGF converges for any u ∈Rn

Proposition 9.2.1 (MGF of Gaussian Random Vector) This is the analogous result to Proposition 9.0.2.
We have that if X is a Gaussian random vector, then

mX (u ) = exp
�




u ,µ
�

+
1

2
〈u , V u〉

�

Proof. Immediate consequence of Proposition 9.1.1

9.3 Bivariate Gaussians

Proposition 9.3.1 Let (X , Y ) be a random Gaussian vector. Then X and Y are idendependent if and
only if Cov(X , Y ) = 0.

Remark 26 This does not hold in general for other random variables!

Key idea of proof. The key is that it is generally true, that two random variables X and Y are inde-
pendent if and only if the MGF of (X , Y ) splits as a product of a function of X1 and a function of X2.
Thus one can check that if Cov(X , Y ) = 0, then the corresponding MGF splits.

Proposition 9.3.2 Let (X , Y ) be a Gaussian random vector. Then there exists a scalar a ∈ R and a
Gaussian random variable Z such that:

1. Y = a X +Z

2. (X , Z ) are independent.

Key ideas. 1. Take Z = Y −a X . Then obviously Z is Gaussian.

2. Observe that (X , Z ) is a Gaussian vector.

3. To force independence of X and Z , observe that

Cov[X , Z ] =Cov[X , Y −a X ]
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now use bilinearity of Covariance and set a so that the left hand side vanishes.

9.4 Standard Gaussians

Observe that we have waffled quite a lot about Gaussian vectors but actually we haven’t really proved that
any Gaussian vector exists at all! In this subsection we will aim to combine the previous results to try to write
any given Gaussian vector as some combination of the Standard Gaussian Vector, much like the result of
Proposition 9.0.1.

Definition 9.4.1 The Standard Gaussian vector in Rn is the random vector X = (X1, · · · , Xn ) where each
X i ∼N (0, 1). Its density is gien by

fX (u ) =
n
∏

i=1

1
p

2π
exp

�

−
1

2
x 2

i

�

=
1

(2π)n/2
exp(−

1

2
||x ||2)

Remark 27 In view of Proposition 9.0.2, since each X i is independent, it follows that X as above is
indeed a Gaussian random vector.

To achieve this goal of ours, we resort to some Linear Alebra, recall the following thing from Year 1:

Lemma 9.4.1 Let A ∈ Matn×n (R) be a positive semi-definite matrix, that is to say, for any u ∈ Rn ,
〈u , Au〉 ≥ 0, then there exists some matrix B ∈Matn×n such that A = B B .

Then one shows the following:

Lemma 9.4.2 The covariance matrix is positive semi-definite.

Now we are ready.

Theorem 9.4.1 (Existence of Gaussian Random Vectors) Let µ ∈Rn be given and V be a positive semi-
definite matrix, then there exists a Gaussian Random Vector X such that E[X ] = µ and Cov(X ) = V .
Moreover, if det(V ) ̸= 0, the density of X is given by

fX (x ) =
1

(2π)n/2
p

det(V )
exp

�

−
1

2




x −µ, V −1(x −µ)
�

�

x ∈Rn

Main idea of proof. Construct X as X = V 1/2Z +µ, where Z is the Standard Gaussian and V 1/2 is the
“square root" of V . Now show the rest.
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10 Random Walks

Definition 10.0.1 Let (Xn )n≥1 be a sequence of IID random variables. The sequence of random variables
(Sn )n≥0 where S0 = 0 and otherwise Sn =

∑N
i=1 X i is called a random walk.

Example 19 (Simple random walk) Let X ∼ 2 · B e r (1/2)− 1 and construct the random walk with the
sequence (Xn ) where each Xn = X . For example, let n be even. If we wish to calculate P(Sn = 0), the best
strategy is enumeration:

P(Sn = 0) =
#{paths from (0, 0) to (n , 0)}

#{total paths}
=

1

2n

�

n

n/2

�

Example 20 (Biased simple random walk) Similarly to before, we can take X ∼ 2·B e r (p )−1 and construct
the random walk in the same way we did. Now we may wonder what happens to (Sn ) as n→∞ in view
of the drift, E[X ].

10.1 Limiting Results

Theorem 10.1.1 (Strong Law of Large Numbers) Let (Sn )n≥0 be a random walk with E(S1) = µ <∞.
Then we have almost surely Sn/n→µ

Question 76 (2019 3 (b)) Let X1, X2, · · · be IID random variables each with density f (x ) = 1
(x+1)2 for x ≥ 0.

Does the SLLN apply to the sample average 1
n

∑n
i=1 X i ?

Solution. It does not. Indeed:

E[X1] =

∫ ∞

0

x

(x +1)2
dx =∞

Theorem 10.1.2 (Weak Law of Large Numbers) With (Sn ) as before, we have that Sn/N →µ in probability

Remark 28 Since almost sure convergence implies convergence in probability, it is no surprise that one
of these theorems is called Strong and the other one is called Weak.

As another comment, it can be shown that convergence of a sequence of random variables to a constant
in probability is equivalent to it converging in distribution, thus we may phrase the Weak Law in either
way, it doesn’t really matter.
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Question 77 (Homework sheet 11) Define the following sequence of independent random variables

X i =















1 P= 1/2

0 P= 1/2−n−α/2

−nα P= n−α/2

Define the random walk Sn = X1+ · · ·Xn

1. By adapting the proof of WLLN, (that is, using Chebyshev’s inequality) show that Sn/n
P−→ 0 when

α< 1

2. Show that SLLN does not hold for α> 1, yet P(Sn/n converges) = 1. Explain.

3. Show that when α= 1, P(Sn/n converges) = 0.

Solution. 1. Recall Chebyshev’s inequality:

P(|X −µ|> kσ)≤ 1/k 2

Before doing anything, let us compute µ. That’s not hard, because E[X i ] is easily verified to be
zero. Therefore E[Sn ] = 0. Our setup is that given ε> 0, we can bound:

P(|Sn | ≥ εn ) =P
�

|Sn | ≥
εnσ

σ

�

≤
Var(Sn )
ε2n 2

So our goal is to show that Var(Sn ) = o (n 2). Let us compute it then:

Var(Sn ) =Var

�

n
∑

i=1

X i

�

=
∑

i , j

Cov(X i , X j ) =
n
∑

i=1

Var(X i )

Observe that for any n ,

Var(Xn ) =E[X 2
n ] =

nα+1

2
=O (nα)

Hence
1

n 2
Var(Sn ) =O

�

nα+1

n 2

�

=O (nα−1)

When α< 1, it follows that the desired quantity converges to zero, and as such we have convergence
in probability.

2. Observe that P{Xn =−nα infinitely often} is zero due to a simple consequence of the Borel Cantelli
Lemma. This means that with probability one, Xn eventually takes values 1 and 0 with equal
probability and as such the proportion converges to 1/2 almost surely. This violates the SLLN
which prescribes the limit to be E[Sn ] = 0.

3. To show this one, we employ an approximation argument, its good to have seen this argument
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at least once: By similar reasoning as before, now that α = 1, with probability one, Xn will take
the value −nα infinitely often. When this happens, Sn −Sn−1 =−nα hence

�

�

�

�

Sn

n
−

Sn−1

n −1

�

�

�

�

≈ 1

For Sn/n to converge it is necessary that successive terms become closer as n →∞, yet we see
that infinitely often, a term will be approximately a distance of 1 away from the next term.

Theorem 10.1.3 (Central Limit Theorem) With Sn as before, and now assuming finite variance of the
increments, i.e: Var(X1)<∞ one has that

Sn −nµ
p

nσ
d−→N (0, 1)

Remark 29 (Interpretations of CLT) From the CLT we gather that:

1. Sn becomes concentrated around nµ.

2. The fluctuations about nµ are of order
p

n .

3. The exact distribution becomes approximately normal.

10.2 Using the Limiting Results

10.2.1 Strong and Weak Laws

Example 21 (Generalised coin tossing) Let X ∼ B e r (p ) and construct the random walk Sn via X . It is
not hard to see that Sn ∼ B i n (n , p ) and the quantity Sn/n represents the proportion of successes among
the first n trials. Observe that E[X ] = p . Let’s interpret Sn/n as n →∞ in view of the laws of large
numbers.

1. The WLLN tells us that the probability of finding the proportion of successes to be away from p

becomes arbitrarily small as n→∞. In other words, the proportion of successes is very likely to be
close to p when n is large.

2. The SLLN tells us that in fact, with probability 1, the proportion of successes will converge to the
constant p as n gets large. This is what one may take as an intuitive definition of probability!

Knowing the proportion of course tells us information about Sn as well. Knowing that almost surely
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Sn/n→µ=E[X ] tells us that almost surely:

Sn →







+∞ if p > 0

−∞ if p < 0

this follows by a very simple analytic argument.

Example 22 (Poisson Process) Let X ∼ E x p (λ). We know X represents the time taken for an arrival to
occur. We may build a random walk Sn by using X and then Sn/n represents the total time taken for
the n th arrival to occur in proportion to n . It is not a surprise then that the SLLN guarantees that with
probability one,

Sn/n→E[X ] = 1/λ

because Sn/n as n →∞ symbolises the average waiting time. Instead of this, let us try to understand
how many arrivals occured during a given timespan.

N (t ) := #{number of arrivals duringt time units}=max{n : Sn < t }

To convince yourself of this last line, notice that Sn measures the total time taken for the n th arrival to
occur, so max{n : Sn < t } measures how many arrivals occured before the total time surpassed t .

Proposition 10.2.1
N (t )

t
a .s−→λ

Proof. We begin by noting the two following facts

N (Sn ) = n SN (t ) ≤ t < SN (t )+1

Moreover, since Sn/n converges almost surely to 1/λ as n →∞ and N (t )→∞ as t →∞, then
N (t )/SN (t )→λ almost surely as t →∞. Now we sandwich the desired quantity:

N (t )
SN (t )+1

≤
N (t )

t
≤

N (t )
SN (t )

equivalently
N (t ) +1

N (t ) +1

N (t )
SN (t )+1

≤
N (t )

t
≤

N (t )
SN (t )

Now observing that almost surely
N (t )

N (t ) +1
→ 1

as t →∞ finishes the claim.

Observe how in this argument, by sandwiching the quantities, we have converted SLLN from discrete to
continuous times.
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Question 78 (Homework Sheet 11) Let (X1, X2, · · · ) be a collection of independent random variables such
that (X2, · · · ) are also identically distributed. Given that E[X2] =µ<∞, show that

X1+ · · ·+Xn

n
a .s−→µ

Proof. Observe that since a single random variable cannot take the value ∞, it follows that almost
surely X1/n→ 0 as n→∞. Now observe that

∑n
i=2 X i

n
=

n +1

n

1

n +1

n
∑

i=2

X i
a .s−→µ

combine this and fuck yourself.

Question 79 (Homework Sheet 11) Let X1, · · · , Xn be Poisson Random variables with parameter one.
What is the distribution of X1+ · · ·+Xn? By writing

exp(−n )

�

1+n +
n 2

2!
+ · · ·+

n n

n !

�

as a probability, use the CLT to show this quantity converges to 1/2 as n→∞.

Proof. We know that the MGF of the sum of two independent Poisson random variables with parameters
λ1 and λ2 is

mX1+X2
(t ) =E[exp([X1+X2]t )] =E[exp(X1t )]E[exp(X2t )] = exp(−λ1(1− t ))exp(−λ2(1− t ))

which is the MGF of a Poisson random variable with parameter λ1 +λ2. Therefore by induction we see
that Sn = X1+ · · ·Xn ∼ P o i s s o n (n ). We see that the quantity in question is precisely

P(Sn = 0) +P(S1 = 1) + · · ·+P(Sn = n ) =P(Sn ≤ n )

We note that E[X1] =Var[X1] = 1, and as such:

P(Sn ≤ n ) =P
�

Sn −n
p

n
≤ 0

�

→P(Z ≤ 0) = 1/2

where Z ∼N (0, 1).

Question 80 (Homework sheet 11) What is the distribution of the sum of n independent Bernoulli
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random variables with parameter p? Let 0≤α<β ≤ 1. With this inspiration, determine

lim
n→∞

∑

r∈N:αn≤r≤nβ

�

n

r

�

p r (1−p )n−r

Solution. We know that the sum of Bernoullis as given is distributed according to B i no mi a l (n , p ).
Coincidentally, the sum in question is precisely: limn→∞P(αn ≤ B ≤ nβ ) where B ∼ B e r no ul l i (n , p ).
We know that E[X ] = np and Var[X ] = np (1−p ). Therefore we may rewrite our sum as

lim
n→∞
P
�

αn −np

n
p

p (1−p )
≤

B −np

n
p

p (1−p )
≤

βn −np

n
p

p (1−p )

�

=Φ

�

β −p
p

p (1−p )

�

−Φ
�

α−p
p

p (1−p )

�

Question 81 (Homework sheet 10) Let (X i )∼N (0, 1) be a family of IID normals, and define the random
walk Sn =

∑n
i=1 X i . Prove that the random vector

S = (S1, · · · ,Sn )

is a Gaussian random vector.

Proof. Let u ∈Rn be given, then

〈u ,S〉=
n
∑

i=1

ui

 

i
∑

j=1

X j

!

=
n
∑

j=1

 

n
∑

i= j

ui

!

X j

which is a linear combination of IID normals. Hence another normal distribution. Recall that it is
absolutely crucial that the normals are assumed to be independent from the start, because we know that
if X ∼N (µ1,σ2

1) and Y ∼N (µ2,σ2
2) are independent, then we can guarantee that X+Y ∼N (µ1+µ2,σ2

1+σ
2
2).

Otherwise we cannot guarantee that this sum is also a normal.

Question 82 (Homework sheet 10) Let X ∼N (0, 1) and define

Y =







X |X |< 100

−X |X | ≥ 100

Show that Y is normally distributed. Is (X , Y ) a Gaussian random vector?

Solution. We shall study the distribution of Y , that is to say P(Y ≤ y ). And we shall do so via the Law
of Total Probability:

P(Y ≤ y ) =P(Y ≤ y | |X |< 100)P(|X |< 100) +P(Y ≤ y | |X | ≥ 100)P(|X | ≥ 100)
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Call k1 =P(|X |< 100) and k2 =P(|X | ≥ 100) for convenience, and we may rewrite the above as:

P(Y ≤ y ) = k1P(X ≤ y ) +k2P(X ≥−y )

Since X has mean zero, it is symmetric about zero and as such P(X ≥ −y ) = P(X ≤ y ) (Sketch the
distribution to convince yourself of this). And as such:

P(Y ≤ y ) = (k1+k2)P(X ≤ y ) =P(X ≤ y )

so in fact Y ∼N (0, 1).

Finally we note that (X , Y ) is not a Gaussian vector. Indeed, if it were, we could take the linear
combination X + Y which should be a Gaussian, in which case P(X + Y = 0) should be zero because the
probability of a Gaussian taking any single value is always zero, however, we see that in this case, that
probability is the same as the probability of |X | ≥ 100, which is most definitely not zero.

10.3 Exam Questions

Question 83 (2023 B4) Let W ∼ N (0, 1) and define, conditional on W = w , the IID random variables
(Z1, · · · ) distributed according to N (ω,σ2). Consider the random walk Rn =

∑n
i=1 Zi .

1. Show that (W , Rn ) is a Gaussian random vector.

2. Find P({Rn ≥ 0 for infinintely many n})

Proof. First of all, let’s make the following “moral observation" about what this question is saying:

P({Zi ≤ x } | {W =ω}) =P(Y ≤ x ) Y ∼N (ω,σ2)

From this, we see that

P({Zi −W ≤ x } | {W =ω}) =P(Y ′ ≤ x ) Y ′ ∼N (0,σ2)

This is of course just a “moral observation" because we cannot condition on an event of probability zero.
Regardless, since the distribution of the random variable (Zi −W | {W = w }) is irrespective of ω, we
gather that the density of (Zi −W | {W =ω}), fZi−W |W =ω has no ω dependence. Now using the fact that

fZi−W |W =ω =
fZi−W ,W (x ,ω)

fW (ω)

we see that in fact fZi−W ,W (x ,ω) splits as a product of two functions depending on each parameter and
from this we gather that Zi−W is independent of W . Thus we may write Zi = X i+W where X i ∼N (0,σ2)

and X i and W are independent. From this we easily conclude that (W , Rn ) is a Gaussian vector.
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Now we show the second part. From the Law of total probability we see that

P({Rn ≥ 0 i.o}) =P({Rn ≥ 0 i.o} | {W ≥ 0})P({W ≥ 0}) +P({Rn ≥ 0 i.o} | {W ≤ 0})P({W ≤ 0})

Observe that Rn ≥ 0 if and only if Rn/n ≥ 0, and given that Rn/n → ω, Rn ≥ 0 if and only if, in
the almost sure limit, Rn/n ≥ 0, or in other words, if ω ≥ 0. Noticing that since W is symmetric,
P(W ≥ 0) =P(W ≤ 0) = 1/2, we can rewrite

P({Rn ≥ 0 i.o}) =
1

2
P({Rn ≥ 0 i.o} | {W ≥ 0}) +

1

2
P({Rn ≥ 0 i.o} | {W ≤ 0})

The first of these probabilities is one, and the second is zero.

10.4 Moment Generating Functions in limiting processses

We have seen before that if two Random Variables have MGFs that agree on a neighborhood, then the random
variables are equal in distribution. Now we are going to see an analogous result in terms of sequences. The
following Theorem will explain why if a sequence of random variables have MGFs converging to the MGF
of some limiting random variable, then we actually have convergence in distribution of this sequence to said
random variable.

Theorem 10.4.1 (Lévy’s continuity Theorem) Let (Xn ) be a sequence of Random Variables and X be
a random variable with MGFs mXN

(t ) and mX (t ) respectively. Suppose mX (t ) <∞ for all t in some
neighborhood (−ε,ε) of zero. Then if

mXN
(t )→mX (t ) for allt ∈ (−ε,ε)

we have convergence in distribution Xn → X .

Question 84 (2024 Specimen) Let (Zn ) be a sequence of random variables defined by Zn ∼ N (µn ,σ2
n ).

Where µn is a sequence converging to µ and σ2
n converges to σ2. Show that Zn

d−→ Z ∼N (µ,σ2
n ).

Proof. We employ Lévy’s continuity Theorem. To do so, we must show that the Moment Generating
Functions of (Xn ) exhibit convergence towards that of X .

mXn
(t ) = exp

�

µn t −
σ2

n t 2

2

�

Clearly mXn
(t ) is a continuous function in t so we may pass the limit n →∞ inside it, and as such we

see that
mXn
(t )→mX (t )

which is in turn defined for all t due to the fast decay of the exponential. The convergence in distribution
follows immediately.
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Question 85 (2024 Specimen Spinoff) With (Zn ) defined as in the previous question and assumed to be
independent, define the random walk Rn =

∑n
i=1 Zn? An inexperienced probability student would think

that since Zn → Z ∼N (µ,σ2) in distribution, then the Central Limit Theorem, says that

Rn −nµ
p

nσ
→N (0, 1)

Is this true?
Hint: take σn ≡ 1 and you may use the fact that (n +1)α−nα→ 0 as n→∞ for all 0<α< 1.

Proof. It’s false, indeed, define Zn ∼N (µn ,σ2
n ) where µn = (n + 1)α −nα and σn ≡ 1. Then since the Zi

are assumed to be independent:
Rnp

n
∼N

�

1
p

n

n
∑

i=1

µi , 1

�

but with our choice of µn :
1
p

n

n
∑

i=1

(i +1)α− iα =
(n +1)α
p

n

pick 1/2<α< 1. Then this quantity goes to +∞ as n gets large.

11 Martingales
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