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Notation

K: denotes importance of a concept, with three being maximum.
Ω: a sample space.
F : a σ-algebra.
P: a probability measure.
mF : the set of F -measurable functions.
bF : the subset of mF of bounded functions.
E(X ): the integral of some X ∈mF with respect to the measure P. Also denoted by

∫

Ω

X dP or
∫

Ω

X (ω)P(dω) or
∫

Ω

X (ω)dP(ω)

1A: the indicator function of a set A.
σ(A ): the σ-algebra generated by a family of sets A .
n ∧m : min(n , m ).
n ∨m : max(n , m ).
Cb (M ): continuous and bounded functions M →R where (M , d ) is some metric space.
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0 Review of Measure Theory

0.1 Basic concepts

Definition 0.1 Let Ω be a non-empty set. A family of subsets of Ω, denoted by F , is called a
σ-algebra if it contains Ω, and it is closed under complements and countable unions. We refer to a
pair (Ω,F ) as a measurable space. We refer to elements of F as measurable sets, or events in the
context of probabilities.

Theorem 0.2 Given a subset S ⊆Ω, there exists a smallest σ-algebra containing S , denoted σ(S ).

Example 0.3 If (Ω,τ) is a topological space, we call σ(τ) the Borel σ-algebra.

Definition 0.4 A measure µ is a non-negative function µ :F → [0,∞] such that

1. µ(∅) = 0

2. For a disjoint sequence (An ) of measurable sets, the measure of the union is the sum of the
measures:

µ

�

⋃

n

An

�

=
∑

n

µ(An )

A triple (Ω,F ,µ) is referred to as a measure space. If µ(Ω) = 1, we refer to this as a probability space
and we write P instead of µ.

Definition 0.5 Given two measurable spaces (A,A ), (B ,B ), a function f : A → B is said to be
measurable if given any S ∈B , we have f −1(S ) ∈A . In the context of probabilities, a measurable
function is called a random variable.

0.2 Integration

Definition 0.6 A measurable function f : Ω→ R is called simple if it takes finitely-many values.
That is to say,

f =
n
∑

i=1

ai 1Ai
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Where (An ) are without loss of generality disjoint.

Remark 0.7 Any non-negative measurable function f :Ω→R can be uniformly and monotonically
approximated by simple functions, for example:

fn = 2−n ⌊2n f ⌋ ∧n

Definition 0.8 The integral of a simple function f with respect to a measure µ is given by

∫

Ω

f dµ :=
n
∑

i=1

aiµ(Ai )

We also write the integral of f as µ( f ) when convenient.

Remark 0.9 The integral can be shown to be independent of choice of the representation of f

as a simple function

Definition 0.10 The integral of a non-negative measurable function f , can be defined in view of
Remark 0.7 as

∫

Ω

f dµ= sup{µ(g ) : g ≤ f simple}

We say f is integrable if µ( f ) <∞. We extend this to an integral of general functions in mF by
writing f = f +− f − where f + = f ∨0 and f − =−( f ∧0) and setting

∫

Ω

f dµ=

∫

Ω

f +dµ−
∫

Ω

f −dµ

A general measurable function is said to be integrable if both f + and f − are integrable.

Proposition 0.11 (Properties of the Lebesgue integral) Let (Ω,F ,µ) be a measure space.

1. The integral is a linear operator mF →R.

2. Monotone Convergence Theorem: If ( fn ) is a sequence in mF + and fn ↑ f , then µ( fn )→µ( f )

3. Fatou’s Lemma: with ( fn ) as before: µ(lim infn fn )≤ lim infn µ( fn )
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4. Dominated Convergence Theorem: if ( fn ) is dominated by an integrable g ∈ mF +, then
µ( fn )→µ( f )
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0.3 Product measure spaces

Recall the following definition:

Definition 0.12 (σ-algebra generated by a function) Let Ω be a set, and (A,A ) be a measurable
space. Let f : Ω→ A be any function. Then the σ-algebra generated by f , denoted σ( f ), is the
smallest σ-algebra, F that makes f an F −A measurable function. That is to say, σ( f ) is the
σ-algebra generated by f −1(S ) for all S ∈A .

Definition 0.13 (Product σ-algebra) Let (A,A ) and (B ,B ) be two measurable spaces. Consider
the projection maps πA : A×B → A and πB : A×B → B defined in the obvious ways. We define the
product sigma algebra, denoted by A ⊗B (nothing to do with the tensor product) is the σ-algebra
generated by the projection maps, i.e:

A ⊗B =σ(πA,πB )

Remark 0.14 Since given any measurable set S ∈A , we have that π−1
A (S ) = S×B , and something

identical holds for πB , we have that A ⊗B contains all sets of the form S1×S2, where S1 ∈A and
S2 ∈B . For the case of a countable product of σ-algebras, it can be shown that Cartesian products
like that of S1×S2 actually generate the product of algebras, so we may use either characterisation,
depending on what’s more useful. For uncountable products however, we use the definition given
above.

The goal is to construct a measure on A ⊗B , and we do so by explicit construction.

Lemma 0.15 Let (A,A ,µA) and (B ,B ,µB ) be measure spaces. Let E =A⊗B and f = f (x1, x2) ∈
mE+. Then the function

x1 7→
∫

B

f (x1, x2)µB (d x2)

is A -measurable.

This Lemma ensures that the following result makes sense.

Theorem 0.16 Let (A,A ,µA) and (B ,B ,µB ) be measure spaces. Let E =A ⊗B . Then there
exists a unique measure µ which is sometimes denoted as µA ⊗µB on A ⊗B such that

µ(S1×S2) =µA(S1)µB (S2)

8



Proof. The measure is constructed as

µ(S ) =

∫

A

�∫

B

1S (x1, x2)µB (d x2)

�

µA(d x1) S ∈A ⊗B

♥

Theorem 0.17 (Fubini’s / Tonelli’s Theorem) Let f ∈m (A ⊗B )+. Then

∫

A×B

f d (µA ⊗µB ) =

∫

A

�∫

B

f dµB

�

dµA =

∫

B

�∫

A

f dµA

�

dµB
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1 Conditional Expectation

1.1 Motivation

Suppose (Ω,F , P) is a probability space, and X ∈mF is a random variable. Recall from elementary
probability that given two events A, B ∈F , one may define the conditional probability of A given B

as follows:
P(A | B ) =

P(A ∩B )
P(B )

From this, one may define the conditional expectation of X given an event B by:

E[X | B ] =
E[X 1B ]

P(B )

With this recap done, let us make the following thought experiment: suppose that no information
about X is known. Intuitively, our best guess for the value of X would be E[X ]. Now suppose that
some information is known to us, in the form of a sequence of disjoint events (Gn ) whose union is the
entirety of Ω, that is to say, for a given random outcome ω of our sample space, we do not know what
X (ω) is, but we may know in which Gn ω falls into, or in other words, we may know which event has
occurred. The finer this sigma algebra, the better information we’ll have. Then, if we know ω ∈Gk ,
our best guess for X will be E[X |Gk ]. This concept is central to the rest of this manuscript.

Definition 1.1 Let (Gn ) be a sequence of disjoint events whose union is Ω. Define G =σ(Gn : n ≥ 0).
Then the conditional expectation of X given G , E[X | G ] is defined by

E[X |G ] =
∞
∑

i=1

E[X |Gi ]1Gi

Figure 1: A visual picture of conditional expectation

We now see a first result about conditional expectation:
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Lemma 1.2 (Discrete Conditional Expectation, 
) Given X ∈ L 1(F ), and G as above, E[X | G ]
satisfies the following:

1. E[X | G ] is G -measurable.

2. E[X | G ] ∈ L 1(G ), and for any A ∈G :

E[E[X |G ]1A] = E[X 1A]

Main idea: The first statement is obvious, showing integrability is a straightforward computation
involving the convergence Theorems. For the last part, we use the fact that {Gn} is a disjoint cover of
Ω, and so a union or intersection of these "atoms" remains some sort of union of said "atoms".

Remark 1.3 An alternative way to phrase the second result is that for any A ∈G ,

E[E[X | G ]|A] = E[X | A]

or also
∫

A

E[X | G ]dP=

∫

A

X dP

An informal interpretation is that since E[X | G ] is a "best guess" for X given the information
encoded in G , when we average this "best guess" over sets already contained in G , we obtain the
same average as we would by using the original X . In other words, E[X | G ] serves as a surrogate
for X that captures the essential features of X in a way that is consistent with the information
available in G .
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Proof. The first statement is obvious. To show the second, we first note that

E[|E[X | G ]|] = E

�
�

�

�

�

∞
∑

i=1

E[X |Gi ]1Gi

�

�

�

�

�

≤ E

� ∞
∑

i=1

E[|X | |Gi ]1Gi

�

=
∞
∑

i=1

E(E[|X | |Gi ]1Gi
) (Monotone convergence)

=
∞
∑

i=1

E[|X | |Gi ]P(Gi )

=
∞
∑

i=1

E[|X |1Gi
] (Elementary conditional probability)

= E

� ∞
∑

i=1

|X |1Gi

�

(Monotone convergence)

= E[|X |] (Gn ) partitions Ω

<∞

Showing the preservation of integrals first involves analysing what a typical element of G looks
like. The key is that since (Gn ) are disjoint and their union is all of Ω, any countable union,
intersection of Gn ’s or their complements will remain being a countable union of Gn ’s, i.e: any
A ∈G has the shape

A =
⋃

n∈I

Gn for some I ⊆N

Now we can simply perform calculations, and by repeated use of the Dominated Convergence
Theorem, the proof follows. Indeed:

E[E[X | G ]1A] =

∫

Ω

∞
∑

i=1

E[X |Gi ]1Gi
1A dP

=

∫

Ω

∑

i∈I

E[X |Gi ]1Gi
dP (structure of A)

=
∑

i∈I

∫

Ω

E[X |Gi ]1Gi
dP (Dominated Convergence Theorem)

=
∑

i∈I

E[X 1Gi
]

= E[X 1A] (Dominated Convergence Theorem)

♥

The beauty of these two conditions is that they in fact fully characterise conditional expectation. More
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precisely, we can show that up to a set of measure zero, there is only one random variable that satisfies
the two properties in the above Lemma, and moreover, we can now generalise conditional expectations
to more general sub-sigma algebras. This is formalised in this theorem

Theorem 1.4 (Existence and uniqueness of conditional expectation, ♩) Let X ∈ L 1(Ω,F , P) and
G ⊆F a sigma algebra. Then there exists a random variable Y ∈ L 1(Ω,F , P) that is G -measurable
and given any A ∈G ,

E [Y 1A] = E [X 1A]

Moreover, if Y ′ is another random variable with these two properties, we have that Y = Y ′ almost
surely.

Main idea: For uniqueness, use a general argument of considering G -measurable sets of the type
{Y > Y ′} and {Y < Y ′} and show that they have zero measure. For existence first use the geometry
of the Hilbert spaces L (G ) ⊆ L (F ) and then extend the result to L 1 random variables by suitable
monotone approximations, i.e:

Xn = X ∧n

Figure 2: X and its conditional expectation have the same average on each G -measurable set.

Definition 1.5 Given X ∈ L 1(Ω,F , P) and G ⊆F a sigma algebra, we refer to the random variable
Y of Theorem 1.4 as the conditional expectation of X given G .

Proof of Theorem 1.4. We first prove the almost-sure uniqueness of a version of X ′ = E [X | G ].
We then prove the existence of X ′ when X ∈ L 2, and finally, we prove existence in general.
Suppose that X ∈L 1 and that Y and Y ′ are both versions of E [X | G ]. Then Y , Y ′ ∈L 1 (we are
assuming existence at the moment), and

E
�

(Y −Y ′)1G

�

= 0 ∀G ∈G
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Clearly the set G = {Y > Y ′} is in G , but since on G we have that (Y −Y ′)> 0 almost surely, and
E [(Y −Y ′)1G ] = 0 it must be the case that P(G ) = 0. Which means that Y ≤ Y ′ almost surely.
Symmetry finishes the argument.

We now show existence of E [X | G ] for X ∈ L 2. We know that L 2(G ) ⊆ L 2(F ) is a complete
subspace, so we know (from linear analysis, or other general measure theory) that there exists an
orthogonal projection, i.e: a Y ∈L 2(G ) such that

E
�

(X −Y )2
�

= inf
�

E
�

(X −W )2
�

: W ∈L 2(G )
	

and
〈X −Y , Z 〉= 0 ∀Z ∈L 2(G )

Then taking any G ∈ G , we clearly see that 1G ∈L 2(G ) and since 〈X −Y , 1G 〉= E[(X − Y )1G ] = 0

then we have shown existence of conditional expectation in L 2. We now move to the case of L 1.
Without loss of generality we can assume X ≥ 0 because otherwise we can do the usual splitting
into positive and negative parts. Take X ∈L 1(F ). Then by constructing Xn = X ∧n , we have a
sequence of bounded random variables, which means they are in L 2, so we have the existence of
a version Yn of E [Xn | G ]. In a moment we will show that 0 ≤ Yn ↑ almost surely, but supposing
it is true, we can set Y (ω) = lim sup Yn (ω), and then we see that Y ∈ mG and Yn ↑ Y almost
surely, so from the monotone convergence theorem for regular expectations, we see that for any
G ∈G , E [Y 1G ] = E [X 1G ] where we have used MCT both for Xn and Yn . To prove the fact that
we used here, we can show something better, namely that when U is non-negative and bounded,
then E [U | G ]≥ 0 almost surely. Indeed: let W be a version of E [U | G ]. If P(W < 0)> 0, then for
some n , the set

G := {W <−n−1} ∈ G

has positive probability, which means that

0≤ E [U 1G ] = E [W 1G ]<−n−1P(G )< 0

thus contradicting our assumption. ♥

Proposition 1.6 Let X ,G be as before.

1. E[X | G ] = X if and only if X is G -measurable.

2. E(E[X | G ]) = E[X ]

3. If X ≥ 0 a.s, then E[X | G ]≥ 0 a.s.

14



L (F )

L (G )
0

X

Y

X −Y

1(G )

Figure 3: The diagram that says it all: existence of Conditional Expectation in L 2

4. If σ(X ) and G are independent σ-algebras, then E[X | G ] = E[X ]

5. If X1, X2 ∈ L 1(Ω,F , P), and α,β ∈R, then

E[αX1+βX2 | G ] =αE[X1 | G ] +βE[X2 | G ]

6. Monotone Convergence Theorem: If Xn ↑ X , then

E[Xn | G ]→E[X | G ]

7. Fatou’s Lemma: If Xn ∈mF +

E[lim inf
n→∞

Xn | G ]≤ lim inf
n→∞

E[Xn | G ]

8. Dominated Convergence Theorem: If Xn → X a.s. and Y ∈ L 1 with |Xn | ≤ Y for all n a.s,
then

E[Xn | G ]→E[X | G ]

9. Jensen’s Inequality: given g : R→R convex, then

E[g (X ) | G ]≥ g (E[X | G ])

And for p ≥ 1

∥E[X | G ]∥p ≤ ∥X ∥p

10. Tower Law: given a sub sigma algebra H ⊆G ,

E[E[X | G ] | H ] = E[X | H ]

15



11. Taking out what’s known: If Z ∈mG is bounded, then

E[Z X | G ] = Z E[X | G ]

Proof of properties (1)→ (3). The proof of the first three properties is almost immediate. For
the first one, we note that by definition, a random varible Y is a version of E[X | G ] if it’s G -
measurable and if the integrals coincide on G -measurable sets. Therefore if we assume X is already
G -measurable, then the claim follows since obviously the integrals will coincide. For property (2)
we recall that by definition, we have that

E[E[X | G ]1(A)] = E[X 1(A)]

For all A ∈ G , from this we gather that by taking A = Ω, we get the claim. Part (3) was proven
in the existence and uniqueness Theorem but for completeness we repeat the argument, take the
event A = {E[X | G ] < 0}. Assume towards a contradiction that P[A] > 0, then we have that for
some n large enough, the event An = {E[X | G ] < −n−1} also has positive probability. Then we
have that

0
(1)
≤ E[X 1(An )]

(2)
= E[E[X | G ]1(An )]

(3)
< −n−1P[An ]< 0

Where step (1) is due to assumption of X being non-negative, (2) is due to the definition of
conditional expectation, step (3) is due to a fundamental estimate. This is a contradiction. ♥

Proof of Property (4). Proving Property (4) as it is is quite trivial, indeed: if σ(X ) is independent
of G , then in particular, random variables with respect to these distinct sigma algebras will be
independent to each other, so in particular X is independent to 1(G ) for any G ∈G . Therefore:

E[X 1(G )] = E[X ]E[1(G )] = E[E[X ]1(G )]

However, due to a lack of self-respect I will state and prove a stronger statement. If H is a sigma
algebra that is independent of σ(σ(X ),G ), then we have that

E[X |σ(H ,G )] = E[X | G ]

Of course our goal is to show that

E[X 1(F )] = E[E[X | G ]1(F )]

For all F ∈σ(G ,H ). To do so we first notice that the maps

F 7→E[X 1(F )] F 7→E[E[X | G ]1(F )]

16



are two measures, so to ask whether they coincide on the complicated σ-algebra σ(G ,H ), a much
more tractable task is to ask if they agree on a simpler generating π system. Such a π-system is
the sets of the form {G ∩H : G ∈G , H ∈H }. Then we have that

E[X 1(G ∩H )] = E[X 1(G )1(H )]
(!)
= E[X 1(G )]P[H ]

= E[E[X | G ]1(G )]P[H ]

= E[E[X | G ]1(G ∩H )]

Where the only questionable step is (!), and this is due to the assumption of H being independent
to the sigma-algebra σ(σ(X ),G ). Thus we see that the two measures agree on a generating
π-system and so they agree on the whole sigma algebra as required. ♥

Proof of Property (5). Proving property (5) (linearity) is trivial. Indeed, let G ∈ G , and for sim-
plicity let Y1 = E[X1 | G ] and define Y2 in the same manner. Then

E[(αX1+βX2)1(G )] =αE[X1 1G ] +βE[X2 1(G )]

=αE[Y1 1(G )]+βE[Y2 1(G )]

= E[(αY1+βY2)1(G )]

♥

Proof of the Conditional Monotone Convergence Theorem. Let Yn = E[Xn | G ]. Since {Xn} is
monotone increasing, it follows from monotonicity of the conditional expectation that Yn ≤ Yn+1

and so Yn ↑ lim supn Yn , which we label by Y . Letting G ∈G we have that

E[X 1(G )] = E[ lim
n→∞

Xn 1(G )]

= lim
n→∞

E[Xn 1(G )]

= lim
n→∞

E[Yn 1(G )]

= E[ lim
n→∞

Yn 1(G )]

= E[Y 1(G )]

Where the swapping of limits occurs because of monotonicity. Hence showing that

E[X | G ] = lim sup E[Xn | G ] = lim E[Xn | G ]

We note that here we have written limit instead of limsup at the very end because Xn is a monotone
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increasing sequence. ♥

Proof of the Conditional Fatou Lemma. The idea is to apply the Conditional Monotone Conver-
gence Theorem to the fact that the sequence of functions

�

infk≥n Xk

	

n
is monotone increasing

(making the set smaller makes the infimum no smaller). Therefore:

E
h

lim inf
n→∞

Xn | G
i

:= E
h

lim
n→∞

inf
k≥n

Xk | G
i

(1)
= lim

n→∞
E
h

inf
k≥n

Xk | G
i

(2)
≤ lim

n→∞
inf
k≥n

E[Xk | G ]

= lim inf
n→∞

E[Xn | G ]

Where (1) comes from the Conditional MCT and (2) comes from the fact that conditional expec-
tation is monotone and so since infk≥n Xk ≤ X j for all j ≥ n , then the inequality on conditional
expectations also holds. ♥

Proof of the Conditional Dominated Convergence Theorem. Since we assume |Xn | ≤ Y we then
have that both Y +Xn and Y −Xn are non-negative. Therefore we may write

E[Y +X ] = E
h

lim inf
n
(Y +Xn )

i

≤ lim inf
n→∞

E[Y +Xn ]

and
E[Y −X ] = E

h

lim inf
n
(Y −Xn )

i

≤ lim inf
n→∞

E[Y −Xn ]

which rearranging gives that
lim sup

n
Xn ≤ E[X ]≤ lim inf

n
Xn

as required. ♥

Proof of Conditional Jensen Inequality. The key of this proof is that any convex function f may
be expressed as the supremum of countably many affine functions:

f (x ) = sup
i
(ai x + bi )

Then

E[ f (X ) | G ] = E
�

sup
n

an X + bn | G
�

(!)
≥ sup

n
an E[X | G ] + bn = f (E[X | G ])
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f

f (x0) = supi (ai x0+ bi )

x0

Figure 4: The key idea in the proof of Conditional Jensen

Where step (!) is not that it’s unclear but rather there is a big subtlety that’s easy to overlook: to
do this we needed the supremum to be countable, so that the mechanism in the proof that condi-
tional expectation is monotone (i.e: respects inequalities) works. To prove the "non-lengthening"
property, we use a direct application of Jensen’s Inequality. Note that it is important that p ≥ 1

so that x 7→ |x |p is convex:

∥E[X | G ]∥pp = E[|E[X | G ]|p ]

≤ E[E[|X |p | G ]]

= E[|X |p ].

♥

The proof of the Tower Law is truly trivial, the only thing left to prove is Taking What’s Known:

Proof of Taking Out What’s Known. This is just a matter of knowing that given a G -measurable
random variable Y , one may express this as a monotone increasing limit of simple functions, i.e:

n
∑

i=1

ai 1(Ai ) ↑ Y

With each Ai ∈ G . Then we can just use the conditional MCT and linearity and a tiny bit of
algebra and get the claim. ♥

Remark 1.7 Note that we can make sense of things like E[X | Z ] for some other random variable
Z . Simply, we set E[X | Z ] = E[X |σ(Z )], similarly, E[X | Z1, Z2, · · · ] = E[X |σ(Z1, Z2, · · · )].
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1.2 Agreement with traditional usage

Example 1.8 (Two RVs with joint density) Suppose that X and Z are two random variables with
a joint density function

fX ,Z (x , z ).

Then

f (z ) =

∫

R

fX ,Z (x , z )d x

acts as a probability density function for Z . We can define the elementary conditional density
function

fX |Z (x | z ) :=
fX ,Z (x , z )

fZ (z )
1{ fZ (z )̸=0}

Let h : R→R be a Borel function such that h (X ) ∈L 1. Set

g (z ) :=

∫

R

h (x ) fX |Z (x | z )d x

Then the claim is that g (Z ) is a version of E [h (X ) | Z ].

Proof. The typical element of σ(Z ) takes the form {ω : Z (ω) ∈ B } for B ∈B (R). Hence, we wish
to show that

E [h (X )1B (Z )] = E
�

g (Z )1B (Z )
�

But the left hand side simply equates to

x
h (x )1B (z ) fX ,Z (x , z )d x d z

and the right hand size equals

∫

g (z )1B (z ) fZ (z )d z =

∫ �∫

h (x ) fX |Z (x | z )d x

�

1B (z ) fZ (z )d z

thus Fubini’s Theorem and the definition of the elementary conditional density finishes the claim.
♥

Example 1.9 (Gaussian random variables) Let (X , Y ) be a random Gaussian vector, that is to
say, a X + b Y is a one-dimensional Gaussian for all a , b ∈ R. Let G = σ(Y ), and let us compute
X ′ = E [X | G ].
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Solution. Since X ′ is G -measurable and G = σ(Y ), then we can write X ′ = f (Y ) for some Borel
function f . We make an Ansatz that f (y ) = a y + b , i.e: X ′ = a Y + b , and then solve for the
constants a and b and finally check whether this satisfies the properties of conditional expectation.
Since E[X ′] = E[X ] we have that by linearity,

a E[Y ] + b = E[X ]

By the orthogonality property of conditional expectation in L 2 (note that Gaussians have finite
variance so they are indeed in this space):

0=Cov
�

X −X ′, Y
�

so that
Cov (X , Y ) = aVar (Y )

Then, since (X −X ′, Y ) is a Gaussian vector, by elementary probability we know that X −X ′ and
Y are independent, so for any A ∈σ(Y ), we will have that

E[(X −X ′)1A] = E[(X −X ′)]E[1A] = 0

thus showing that with this choice of a and b , we have that X ′ is indeed a version of the conditional
expectation.

♥
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2 Discrete-time Martingales

In this chapter, we explore the concept of discrete-time Martingales, which are mathematical models
that capture the idea of fair games or unbiased processes over time. Intuitively, a Martingale represents
a sequence of random variables, where each value is the best prediction of the next value given all
the past information. This means that, on average, the future value is expected to be the same
as the current one, reflecting the notion that there is no predictable gain or loss. Martingales are
powerful tools in probability theory, with applications in finance, gambling strategies, and stochastic
processes, helping to model situations where outcomes evolve over time in a manner that is "fair" and
memoryless. The first concept we need is that of a filtration

Definition 2.1 Let (Ω,F , P) be a probability space. An increasing family of sub-σ-algebras {Fn :

n ≥ 0}, i.e:
F0 ⊆F1 ⊆ · · · ⊆F

We define

F∞ =σ
�

⋃

n

Fn

�

Remark 2.2 The significance of a filtration is that they model the information available to us
at a given stage of the random process. This information comes in the shape of events, which
one may think of being able to know whether they have occurred. Naturally, as n grows larger,
the filtration becomes finer, and as such more detailed information is available to us. The choice
of wording indicates that as n grows, the information gets filtered, say through a sieve, and we
get finer details. Another way to think about this is that for a given random outcome ω ∈ Ω of
our sample space, the only information known to us about ω at time n , is the value Z (ω) of all
Fn -measurable functions Z .

Figure 5: Illustration of a filtration
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Example 2.3 If (Xn ) is a sequence of random variables, the filtration F X
n :=σ(X1, · · · , Xn ) is called

the natural filtration.

2.1 Adapted Processes

Definition 2.4 A family of random variables, usually called a process, (Xn ) is called adapted to a
filtration (Fn ) is Xk is Fk -measurable.

Remark 2.5 The idea is that if (Xn ) is an adapted process, then the value Xk (ω) is known to us
at time k . An alternative way to think about this is that a process is adapted to (Fn ) if and only
if F X

n ⊆Fn .

2.2 Martingale, superMartingale, subMartingale

Definition 2.6 (KKK, Martingale ) A process (Xn ) is called a Martingale relative to ((Fn ), P) if:

1. (Xn ) is (Fn )-adapted.

2. (Xn ) is integrable, that is to say, E[|Xn |]<∞ for all n .

3. E[Xn | Fn−1] = Xn−1 a .s

We distinguish between two other kinds of Martingales:

Definition 2.7 With conditions 1. and 2. from Definition 2.6, we have that if

• E[Xn | Fn−1]≤ Xn−1, then (Xn ) is referred to as a super-Martingale.

• E[Xn | Fn−1]≥ Xn−1, then (Xn ) is referred to as a sub-Martingale.

Remark 2.8 (Interpretation) It is useful to think of Martingales in terms of betting games. See
the introductory paragraph of this chapter again.

Remark 2.9 (Equivalent characterisations) It is easily shown that an adapted integrable process
(Xn ) is a Martingale if and only if E[Xn | Fm ] = Xm for m < n . Indeed: one direction is obvious,
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but supposing this property holds, we can use the Tower Law, and see that

E[Xn | Fm ] = E[E[Xn | Fm+1] | Fm ]

which for convenience we write as E[X | Fm+1 | Fm ]. We can repeatedly use the Tower Law until
we reach the conclusion

E[Xn | Fm ] = E[Xn | Fn−1 | Fn−2 | · · · | Fm ] = Xm

Example 2.10 (Three examples of Martingales) Let us look at three examples

1. Sums of independent zero-mean RVs: Let (Xn ) be an L 1 sequence of independent RVs
with zero-mean. Define (S0 := 0)

Sn :=
n
∑

i=1

X i Fn =σ(X1, X2, · · · , Xn )

Observe that
E[Sn | Fn−1] = E[Xn | Fn−1] +E[Sn−1 | Fn−1]

Since the RVs are independent, σ(Xn ) and Fn−1 are independent σ-algebras and as such
E[Xn | Fn−1] = E[Xn ] = 0. Since Sn−1 is Fn−1-measurable, the whole quantity above is equal
to Sn−1, thus showing (Sn ) is a Martingale.

2. Product of non-negative independent RVs of mean 1: Let (Xn ) be a sequence of
independent non-negative RVs with E[Xn ] = 1 for all n . Define (M0 := 1,F0 := {∅,Ω})

Mn :=
n
∏

i=1

X i Fn =σ(X1, X2, · · · , Xn )

Then we see that
E[Mn | Fn−1] = E[Xn Mn−1 | Fn−1]

Recalling property 12 of Proposition 1.6, we can rewrite this quantity as Mn−1E[Xn | Fn−1].
But the fact that once again, the random variables are independent makes this quantity equal
to Mn−1E[Xn ] =Mn−1, showing (Mn ) is a Martingale.

3. Accumulating data about a random variable: Let (Fn ) be a given filtration and ξ ∈
L 1(Ω,F , P) be a random variable we are extracting information about. Define Mn := E[ξ | Fn ].
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By the Tower Law,

E[Mn | Fn−1] = E[ξ | Fn | Fn−1] = E[ξ | Fn−1] =Mn−1

2.3 Stopping times

With the analogy in mind that Martingales model fair betting games, we may now add a layer of
complexity which enables us to stop playing the game at a given time. This idea is given by the notion
of a stopping time. A real life example of a stopping time would be the time in which a trader wishes
to exercise an American option.

Definition 2.11 (KKK, Stopping Time) Let (Ω,F ,{Fn}, P) be as usual. A map T :Ω→{0, 1, 2, · · · ,∞}
is called a stopping time if given any n ∈ {0, 1, 2, · · · ,∞}, the set

{T ≤ n} := {ω : T (ω)≤ n} ∈Fn

Remark 2.12 (Intuition) If T (ω) is the time we stop playing our game according to some strategy,
we may know whether to keep playing or stop just by looking at the information available to us at
the moment, but not in the future.

Proposition 2.13 (Equivalent characterisation for Stopping Times in discrete time) A map T :

Ω→{0, 1, 2, · · · ,∞} is a Stopping Time if and only if for any n ∈ {0, 1, 2, · · · ,∞},

{T = n} ∈Fn

Proof. Observe that {T = n} = {T ≤ n} \ {T ≤ n − 1}. If T is a stopping time, then since {T ≤
n −1} ∈Fn−1 ⊆Fn , we have that {T = n} ∈Fn . Conversely, if {T = n} ∈Fn , then one has that

{T ≤ n}=
n
⋃

k=0

{T = k} ∈Fn

♥

Example 2.14 Let us see some (non) examples of Stopping Times.

• First Passage Time: Let (An ) be an adapted process, and let B ∈B be some Borel set,
then the least time in which (An ) enters B ,

T = inf{n : An ∈ B }
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is a stopping time, this is because

{T ≤ n}=
n
⋃

k=0

{Ak ∈ B } ∈Fn .

• However, if we set
L = sup{n : An ∈ B }

then L is not a stopping time, because in some sense, it is looking into the future. Indeed,
if it were, {L ≤ k} ∈ Fk , i.e: if we can know that k is largest value for which An ∈ B , then
we know that Ak+1 does not belong to B , so {Ak+1 ∈ B c } ∈Fk , which could be true in some
cases, but not generally.

With the notion of a stopping time we can talk about stopped processes.

Definition 2.15 Let (Xn ) be a process adapted to a filtration Fn , and let τ be a stopping time.
The process X τ ≡ Xn∧τ is referred to as a stopped process.

Naturally, a stopped process Xn∧τ agrees with the underlying process Xn until the stopping time occurs,
after which the process stays constant and equal to Xτ. This should be interpreted as some strategy
by which the gambler decides to stop playing.

Something else we are interested in, is to know with respect to what σ-algebra is the random variable
Xτ measurable. I.e: we would like to make sense of something of the shape Fτ. Of course, since τ is
a random variable, Fτ doesn’t make much sense yet.

Definition 2.16 Let (Ω,F ,{Fn}, P) be a filtered space, (Xn ) an adapted process and τ a stopping
time for (Fn ). Then we define

Fτ = {A ∈F∞ : A ∩{τ≤ n} ∈Fn}

Lemma 2.17 Fτ as above is a σ-algebra.

Proof. It is clear that Ω ∈Fτ. Let (An ) be a sequence of sets in Fτ, then

�

⋃

n

An

�

∩{τ≤ n}=
⋃

n

An ∩{τ≤ n}

By definition, each An∩{τ≤ n} ∈Fn , and as such this union is also inFn , showing thatFτ is closed
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under countable unions. Suppose now that A ∈Fτ, then Ac ∩{τ≤ n}= {τ≤ n}\(A∩{τ≤ n}) ∈Fn .
♥

Example 2.18 Let us give an example of some Fτ to illustrate the choice of that definition.
Suppose τ = k for some k ∈ N, i.e: τ is a constant random variable. Then the claim is that
Fτ =Fk . Indeed, if A ∈Fτ, then

A ∩{k ≤ n} ∈Fn

if k ≤ n , then this is equivalent to saying that A∩Ω ∈Fn , i.e: A ∈Fn . If k > n , then A∩{k ≤ n}=
A ∩∅=∅ ∈Fn , therefore Fτ ⊆Fn . It is also easily seen that Fn ⊆Fτ

Proposition 2.19 Let S , T , (Tn ) be stopping times for a filtration (Fm ). Show the following
properties:

1. T ∧S , T ∨S , supn Tn , infn Tn , lim sup Tn , lim inf Tn are all stopping times.

2. If T ≤ S , then FT ⊆FS .

3. XT 1{T<∞} ∈mFT .

4. If (Xn ) is an adapted process, then so is (Xn∧T ).

5. If (Xn ) is an integrable process, then so is (Xn∧T ).

Proof. .

1. Let us first show T ∨S is a stopping time. If n ∈N∪{∞}, then

{T ∨S ≤ n}= {T ≤ n}∩ {S ≤ n}

since both of these belong to Fn , then T ∨S is a stopping time. For T ∧S we show that
the complement belongs to Fn , and since this is a sigma algebra, the defining property will
follow.

({T ∧S ≤ n})c = {T ∧S > n}= {T > n}∩ {S > n}= {T ≤ n}c ∩{S ≤ n}c ∈Fn

Next, notice that
n

inf
m

Tm ≥ n
o

=
⋂

m

{Tm ≥ n}

and the sup follows similarly, and lim inf and lim sup follow immediately now.
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2. Let A ∈FT , then since {S ≤ n} ⊆ {T ≤ n}

A ∩{S ≤ n} ⊆ A ∩{T ≤ n} ∈Fn

Thus A ∈FS .

3. To show that XT 1(T <∞) is FT -measurable we have to show that for a Borel set A, we
have that {XT 1(T <∞) ∈ A} ∈FT , that is to say, for n ∈N:

{XT 1(T <∞) ∈ A}∩ {T ≤ n} ∈Fn

But this event can be seen as

n
⋃

s=0

{X s ∈ A}∩ {T = s } ∈Fn

as required.

4. To show that the stopped process is adapted, we first note that XT ∧t is FT ∧t -measurable,
as this new stopping time is always finite, and since T ∧ t ≤ t , then this sigma algebra is
contained in Ft .

5. To show that the stopped process is integrable, we have that

E[|XT ∧t |] = E

�

t−1
∑

s=0

|X s |1(T = s )

�

+E

� ∞
∑

s=t

|X t |1(T = s )

�

≤ E

�

t−1
∑

s=0

|X s |1(T = s )

�

+E|X t |

≤
t
∑

s=0

E|X s |<∞

♥

2.3.1 Optional Stopping

Theorem 2.20 (The Optional Stopping Theorem) Let (Xn ) be a Martingale. Then

1. If T is a stopping time, then the stopped process X T is also a Martingale, which in particular
implies that E

�

(X T )n
�

= E [X0].

2. If S ≤ T are bounded stopping times, then E [XT | FS ] = XS almost surely.

28



3. If S ≤ T are bounded stopping times, then E [XT ] = E [XS ].

4. If there is some Y ∈ L 1 so that |Xn | ≤ Y almost surely for all n , then if T <∞ almost surely,
we have E [XT ] = E [X0]

5. If X has bounded increments, i.e: |Xn+1−Xn | ≤M for all n , and T is a stopping time with
E[T ]<∞, then E [XT ] = E [X0]

We will add the intuition sections as the proofs appear
Main idea: Use the standard decomposition of the stopped process and then perform a routine
computation.

Proof of 1. For the first claim, we will use the following decomposition trick, which will be used
a lot in the future:

(X T )n ≡ XT ∧n =
n−1
∑

k=0

Xk 1(T = k ) +Xn 1(T > n −1)

By linearity of conditional expectation

E [XT ∧n | Fn−1] = E

�

n−1
∑

k=0

Xk 1(T = k ) | Fn−1

�

+E [Xn 1(T > n −1) | Fn−1]

=
n−1
∑

k=0

E [Xk 1(T = k ) | Fn−1] +Xn−1 1(T > n −1) !=

in this last step, we have used the fact that 1(T > n −1) ∈mFn−1 to take 1(T > n −1) out of the
expectation as well as the Martingale property on Xn . Notice as well that Xk 1(T = k ) is Fn−1

measurable for k ∈ [n −1], which means that the expression above becomes

!=
n−1
∑

k=0

Xk 1(T = k ) +Xn−1 1(T > n −1) = XT ∧(n−1)

by using the decomposition again in reverse. ♥

Main idea: This is also a decomposition argument, but since we want to talk about both stopping
times S and T , the decomposition we will use is

XT = XS + (XT −XT−1) + (XT−1+XT−2) + · · ·+ (XS+1−XS )

Then we write this decomposition as a sum and verify that the definition of conditional expectation
holds.
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Proof of 2. The trick for this proof is to consider the increments

XT = (XT −XT−1) + (XT−1−XT−2) + · · ·+ (XS+1−XS ) +XS

By assumption T is bounded, say T ≤ n , so we can write this decomposition as

XT = XS +
n
∑

k=0

(Xk+1−Xk )1(S ≤ k < T )

(We are summing all the way to n from zero and only keeping the relevant summands). Now we
let A ∈FS . Then

E [XT 1A] = E [XS 1A] +
n
∑

k=0

E [(Xn+1−Xn 1(S ≤ k < T )1A]

Naturally:
{S ≤ k}∩A ∩{T > k} ∈Fk

by definition of the stopped sigma algebra, so by {Xn} being a Martingale E [(Xk+1−Xk 1(S ≤ k < T )1A]

vanishes. This gives E [XT 1A] = E [XS 1A] as required.
♥

Proof of 3. Follows from 2 by taking expectations of both sides. ♥

Main idea: This one follows from the first one and using DCT.

Proof of 4. We prove the case where X is bounded almost surely and T is almost-surely finite.
We start by noting that since T is almost surely finite, then XT ∧n → XT almost surely as n→∞.
Moreover, since X is bounded, we can apply the Dominated Convergence Theorem and see that

E[XT ] = E
h

lim
n→∞

XT ∧n

i

= lim
n→∞

E[XT ∧n ] = E[X0]

♥

Main idea: Show that the sequence XT ∧n −X0 has bounded expectation and use the DCT.

Proof of 5. For the case where E[T ] <∞ and bounded increments, say bounded by M ≥ 0. We
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consider the following decomposition of XT ∧n −X0:

|XT ∧n −X0|=

�

�

�

�

�

T ∧n
∑

i=1

X i −X i−1

�

�

�

�

�

≤
T ∧n
∑

i=1

|X i −X i−1| ≤M (T ∧n )≤M T

By taking expectations we see that E[|XT ∧n −X0|]≤M E[T ]<∞, and so by the DCT, followed by
the first part of the OST:

E[XT −X0] = lim
n→∞

E[XT ∧n −X0] = 0

As required. ♥

Example 2.21 (Non-example) In the conditions of the Optional Stopping Theorem, to deduce
that E [XT ] = E [X0], we needed that T was deterministically bounded, i.e: for all ω ∈Ω, T (ω)<∞.
To show that we cannot relax this assumption to being almost surely bounded, we consider the
following example:

Let (ξk )
i i d∼







+1 w p = 1/2

−1 w p = 1/2
Then setting X0 = 0 and Xn =

∑

k≤n ξk , gives that (Xn ) is a Martingale,

because each ξk is i i d and centered. Define now the stopping time of the first passage time of
1, i.e:

T = inf{t ≥ 0 : X t = 1}

It is a known fact that a SSRW on Z is recurrent, so the probability that T is finite is of 1.
However, it is also clear that T is not deterministically bounded. Therefore the assumptions are
not satisfied. This is why we have that

E [XT ] = 1 ̸= 0= E [X0]

(Just to be thorough, could not be in the last case either because even though our increments are
bounded, it is not the case that ET <∞)

Of course the inequalities in the above Theorem can be adjusted for super and sub Martingales
respectively. Now we see a classic result of Martingale Theory

2.3.2 Gambler’s Ruin

Let us use the Optional Stopping Theorem to show a more general version of a classical result. Suppose
you are a gambler with initial wealth 0 and your wealth increases or decreases by 1 with equal probability
at each time step t . Your wealth X = (X t ) is clearly a Martingale. Define Tc = inf{t ≥: X t = c } be the
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hitting time for c . This is obviously also a stopping time. For fixed a , b > 0, we can now understand
what’s the probability of hitting −a before b (i.e: going broke before getting rich in gambling terms)

Theorem 2.22 (Gambler’s Ruin)

P (T−a < Tb ) =
b

a + b

Main idea: T−a and Tb are both stopping times, you are interested in T = T−a ∧Tb . Use the fact that
X has bounded increments and show that E[T ]<∞.

Proof. It is clear that X has bounded increments, and moreover, note that we can bound above
T by the first time that (a + b ) consecutive +1s appear. If we think of looking at consecutive
(a + b ) games, since all are games are iid, each (a + b ) string of games has probability 2−(a+b ) of
occurring, so the waiting time until the first one with all +1s appears, is distributed geometrically,
so the expected number of (a +b ) strings needed is precisely 2a+b , however, we need to take into
account that each of these strings takes a + b turns to finish so in total we have that

T ≤ (a + b )2a+b

which in particular means that the expectation of T is finite. Now that we have established
bounded increments and finite expectation of T , we can use the Optional Stopping Theorem and
conclude that

E[XT ] = E[X0] = 0

But XT =−a 1(T−a < Tb ) + b 1(Tb > T−a ), so

E [XT ] =−a P(T−a < Tb ) + b 1(Tb > T−a ) = 0

We also have the set of equations

1=P(Tb > T−a ) +P(Tb > T−a )

which finishes the claim. ♥
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2.4 The Martingale Convergence Theorem

Let us now study the problem of when does a Martingale (Xn ) converge, i.e. under which conditions,
do we have that almost surely

Xn → X

And what properties can be attribute to X : what integrability properties does X satisfy? With respect
to which σ-algebra is it measurable? To understand this convergence let us talk about a characterisa-
tion of convergence of sequences in R that perhaps the reader didn’t think about before:

Let a < b be two real numbers, and (xn ) ∈R∞, let us define the number of upcrossings between a and
b . Let us define the following times: T0 = 0, and recursively for n ≥ 1

Sn = inf{k ≥ Tn−1 : xk ≤ a } Tn = inf{k ≥ Sn : xk ≥ b }

We note that each Tn corresponds to an upcrossing: we started below a and we traveled all the way
above b . We thus define the total number of upcrossings up to time n as

Un ([a , b ], x ) = sup
k≥0
{Tk ≤ n} ↑ sup

k≥0
{Tk <∞} :=U ([a , b ], x )

And similarly we have the total number of upcrossings in the infinite life of the sequence. A clear
result is that

Lemma 2.23 A sequence x ∈ R∞ converges if and only if for each pair a < b of real numbers,
U ([a , b ], x )<∞.

This is intuitively clear because a sequence that converges will not oscillate forever between any pair
of real numbers, and a sequence that oscillates infinitely between some pair of real numbers will not
converge.

This is precisely the strategy we will use to prove a convergence Theorem for Martingales. This
ingenious argument, due to Doob, first proceeds by finding a bound on the expected number of
upcrossings that the Martingale does in an interval [a , b ]. We will then see that under mild integrability
conditions, this expectation can be bounded above by a finite number, which intuitively explains why
we will have convergence. Let us present the aforementioned bound on the upcrossings:

Theorem 2.24 (Doob’s Upcrossing Lemma K) Let X be a non-negative superMartingale. Then

(b −a )E [UN [a , b ]]≤ E
�

(XN −a )−
�
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Main idea: The idea is to count the "total winnings" made by our process between upcrossings.

Proof. We have the first trivial observation:

XTk
︸︷︷︸

≥b

− XSk
︸︷︷︸

≤a

≥ b −a

And now We wish to count the overall "net winnings if you wish" obtained by all the upcrossings
we have done up to time n . If we let Un =Un ([a , b ], x ), then we claim that

n
∑

k=1

(XTk∧n −XSk∧n ) =
Un
∑

k=1

(XTk
−XSk

) + (Xn −XSUn+1
)1(SUn+1 ≤ n )

This is because up to time n , it might be the case that SUn+1 occurs before time n , and TUn+1

occurs after time n , in which case, the sum on the left hand side will include a Xn −XSUn+1
but the

big sum on the right hand side will exclude these two quantities, therefore we add them on the
right hand side with an appropriate indicator function (see diagram for clarification).

Moving on, it is intuitively clear (or alternatively by induction) that (Tk )k and (Sk )k are both
sequences of stopping times. Hence, for all n , Sk ∧n ≤ Tk ∧n are bounded stopping times so we
can use the Optional Stopping Theorem to deduce that since (Xn ) is a superMartingale, then

E
�

XSk∧n

�

≥ E
�

XTk∧n

�

(The sooner you stop playing the higher your earnings), so taking expectations we see that by
combining the facts above:

0≥
n
∑

k=1

E
�

XTk∧n

�

−E
�

XSk∧n

�

≥ (b −a )E [Un ]−E
�

(Xn −a )−
�
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We have used in this very last line, the fact here that (Xn −SUn+1)1(SUn+1 ≤ n )≥−(Xn −a )− ♥

With this in mind we can finally say something about convergence of Martingales.

Theorem 2.25 (Doob’s Martingale Convergence Theorem ♩) Let (Xn ) be a superMartingale that
is bounded in L 1, that is to say

sup
n

E [|Xn |]<∞

Then, almost surely X∞ := lim Xn exists. Moreover X∞ is F∞ measurable, and X∞ ∈L 1(F∞).

Main idea: The set Λ :=
�

ω : Xn (ω) does not converge to a limit in [−∞,∞]
	

can be expressed as
a countable union of sets involving an infinite number of upcrossings for some interval. Use Doob’s
upcrossing inequality to study the probability of these sets. This is a nice proof!

Proof. We write

Λ :=
�

ω : Xn (ω) does not converge to a limit in [−∞,∞]
	

= {ω : lim inf Xn (ω)< lim sup Xn (ω)}

=
⋃

a ,b∈Q a<b

{ω : lim inf Xn (ω)< a < b < lim sup Xn (ω)}

:=
⋃

Λa ,b

Note also that Λa ,b ⊆ {ω : U∞[a , b ](ω) =∞}. However, by Doob’s upcrossing’s inequality, we
have that

(b −a )E [Un [a , b ]]≤ |a |+E [|Xn |]≤ |a |+ sup
n

E [|Xn |]<∞

By assumption of L 1 boundedness. Now using the monotone convergence theorem, we can take
n→∞ and obtain that

E [U∞[a , b ]]<∞

which means that
P(U∞[a , b ] =∞) = 0

And as such P(Λa ,b ) = 0, but since Λ is a countable union of such sets, we have that P(Λ) = 0.
Thus we have that

X∞ := lim Xn

exists almost surely in [−∞,∞] where we of course define X∞(ω) as lim Xn (ω). This construction
makes it clear that X∞ ∈mF∞, and moreover, using Fatou’s Lemma:

E [|X∞|] = E [lim inf |Xn |]≤ lim inf E [|Xn |]≤ sup E [|Xn |]<∞
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Showing that X∞ ∈L 1(F∞). ♥

2.5 L p convergence of Martingales

We have just seen how for a superMartingale (Xn ) (and hence also for a Martingale), we have that
under certain regularity conditions,

Xn → X∞ a .s

Where X∞ is some F∞ = σ(Fn : n ≥ 0)-measurable function. We would like now to generalise this
statement of convergence in the L p norms: when can we say that ∥Xn −X?∥p → 0? What can we say
about the mystery random variable X?. We need some prior results for this

Theorem 2.26 (Doob’s maximal inequality , ♩) Let X = (Xn ) be a non-negative sub-Martingale.
Let X ∗n = sup{|X t | : 0≤ t ≤ n} be the running maximum. Let λ≥ 0. Then

λP(X ∗n ≥λ)≤ E
�

Xn 1(X ∗n ≥λ)
�

≤ E [Xn ]

Main idea: Construct a stopping time T that tracks the first time the Martingale surpasses λ. Then
use the fact that T ≤ n if and only if X ∗n ≥ λ. Then use the Optional Stopping Theorem with the
bounded stopping times n ≥ T ∧n and decompose XT ∧n as XT 1(T ≤ n ) +Xn 1(T > n ).

Proof. Let T = inf{t ≥ 0 : X t ≥ λ}. This is obviously a stopping time. Then T ∧n is a bounded
stopping time. Clearly the constant time n is also a bounded stopping time with n ≥ T ∧n so by
the third point of the Optional Stopping Theorem we have that since (Xn ) is a sub-Martingale,
then

E [Xn ]≥ E [XT ∧n ]

We can use the usual trick of decomposing XT ∧n to see that

E [Xn ]≥ E [XT 1(T ≤ n )] +E [Xn 1(T > n )]

≥λP(T ≤ n ) +E [Xn 1(T > n )]

=λP(X ∗n ≥ n ) +E [Xn (1−1(T ≤ n ))]

Subtracting E [Xn ] from both sides and rearranging gives that

λP(X ∗n ≥ n )≤ E
�

Xn 1(X ∗n ≥λ)
�

≤ E [Xn ]

where the last inequality comes from the fact that Xn is non-negative. ♥
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Example 2.27 Doob’s Maximal Inequality can be used to show a version of the Azuma-Hoeffding
Inequality, See the Example Sheet 2.

Theorem 2.28 (Doob’sL p inequalityK) Let X be a Martingale or a non-negative sub-Martingale.
Then for all p > 1 we have that





X ∗n






p
≤

p

p −1
∥Xn∥p

Main idea:
Let X be a non-negative random variable and let k <∞, then

E [(X ∧k )p ] =

∫ ∞

0

P(X ∧k ≥ x 1/p )d x

=

∫ ∞

0

p u p−1P(X ∧k ≥ u )d u substitute u = x 1/p

=

∫ ∞

0

p u p−1E [1(X ∧k ≥ u )]d u

= E

�∫ ∞

0

p u p−1 1(X ∧k ≥ u )d u

�

Fubini

= E

�

∫ k

0

p u p−1 1(X ≥ u )d u

�

=

∫ k

0

p u p−1P(X ≥ u )d u Fubini

Proof.

E
�

(X ∗n ∧k )p
�

=

∫ k

0

p x p−1P(X ∗n ≥ x )d x

≤
∫ k

0

p x p−2E
�

Xn 1(X ∗n ≥ x )
�

d x (Doob’s Maximal Inequality)

=
p

p −1
E
�

Xn (X
∗
n ∧k )p−1)

�

(Above calculation in reverse)

Now we are going to apply Hölder’s inequality as follows:

E
�

Xn (X
∗
n ∧k )p−1

�

≤ E
�

X p
n

�1/p
E
�

(X ∗n ∧k )p−1· p
p−1

�
p−1

p

= ∥Xn∥p




(X ∗n ∧k )






p−1

p
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In summary we have that





X ∗n ∧k






p

p
= E

�

(X ∗n ∧k )p
�

≤
p

p −1
∥Xn∥p





X ∗n ∧k






p−1

p

Rearranging gives




X ∗n ∧k






p
≤

p

p −1
∥Xn∥p

Taking k →∞ and using monotone convergence finishes the proof. ♥

Armed with these two results, we are now ready to state and prove the goal of this section:

Theorem 2.29 (L p convergence of Martingales ) Let X be a Martingale and p > 1. Then the
following are equivalent:

• X is L p bounded. I.e:
sup

n
∥Xn∥p <∞

• X converges almost surely and in L p to some X∞

• There exists some Z ∈L p (F ) such that almost surely:

Xn = E [Z | Fn ]

Main idea: By Jensen, L p -boundedness implies L 1-boundedness, so we can extract a limit almost
surely. Then prove convergence in L p to this same object by using L p -Inequality, and the fact that
|Xn −X∞| ≤ |Xn |+ |X∞| ≤ 2X ∗∞ along with the DCT.

Proof of 1 =⇒ 2. If X is bounded in L p , then by a straightforward application of Jensen’s in-
equality, it follows that X is L 1 bounded, and so by the Martingale Convergence Theorem we have
that X converges almost surely to an almost surely finite limit X∞. Now we prove convergence
in L p .

By Doob’s L p inequality, we have that





X ∗n






p
≤

p

p −1
∥Xn∥−p
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By using the MCT on the fact that X ∗n ↑ X ∗∞, we get the bound that





X ∗∞






p
≤

p

p −1
sup
n≥0
∥Xn∥p <∞

Therefore, noting that |Xn −X∞| ≤ 2X ∗∞ ∈L
p , and the DCT we get that Xn → X∞ in L p . ♥

Main idea: Use the Martingale property of X to show that for Z = X∞, the L p distance between
Xn and E[X∞ | Fn ] is zero, and hence they are the same thing almost surely.

Proof of 2 =⇒ 3. We claim that Xn = E[X∞ | Fn ], where X∞ is the L p random variable to which
X converges to by hypothesis. Then, using the Martingale property (wlog m ≥ n):

∥Xn −E[X∞ | Fn ]∥p = ∥E[Xm −X∞ | Fn ]∥p
≤ ∥Xm −X∞∥p → 0 (m→∞)

Therefore ∥Xn −E[X∞ | Fn ]∥p = 0 and so the two random variables coincide almost surely by
definition of the L p space. ♥

Main idea: Conditional Jensen’s Inequality

Proof of 3 =⇒ 1. First of course, we note that ∥Z ∥p <∞. Now:

∥Xn∥pp = E[|Xn |p ]

= E[|E[Z |Fn ]|p ]

≤ E[E[|Z |p | Fn ]]

= E[|Z |p ] = ∥Z ∥pp

Where we have used Conditional Jensen’s Inequality on the convex function x 7→ |x |p and the Tower
Property. This finishes the proof noting that the right hand side of the bound is independent of
n . ♥

Remark 2.30 A Martingale X = (Xn ) of the form Xn = E [Z | Fn ] for Z ∈ L p (F ) is said to be a
Martingale closed in L p .

In the case where the Martingale X is closed in L p , we can also tell the form of X∞:
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Corollary 2.31 Let Z ∈L p and let Xn = E[Z | Fn ] be a Martingale closed in L p . Then we have

Xn → X∞ = E [Z | F∞] a.s and in L p

Where just as a reminder, F∞ =σ(Fn : n ≥ 0).

Main idea: The convergence to X∞ is guaranteed by the previous Theorem. One just needs to show
that X∞ = E[Z | F∞] almost surely. For this, just note that

⋃

nFn is a π-system generating F∞.

Proof. Let us show that X∞ = E[Z | F∞]. For this, we let A ∈
⋃

nFn , which is a π-system
generating F∞. We now show that E[X∞1(A)] = E[X∞1(A)], and as such we will get the desired
equality. Before doing the calculation, just note that if A ∈

⋃

nFn , then A ∈FN for some N . So
for all n ≥N

E[X∞1(A)] = E
h

lim
n→∞

Xn 1(A)
i

(1)
= lim

n→∞
E[Xn 1(A)]

(2)
= E[Z 1(A)]

Where (1) comes from the fact that L p convergence allows us to swap limit and integral, and (2)
comes from the fact that since n ≥ N , then A is also contained in Fn , and so we may use the
definition of Xn = E[Z | Fn ] to obtain the last equality. ♥

2.6 UI Martingales

Definition 2.32 (Uniform integrability) Let (Xα)α∈A be a family of random variables. We say (Xα)
is uniformly integrable if given any ε> 0, there exists some K > 0 such that

sup
α∈A

E[|Xα|1{|Xα|> K }]<ε.

An equivalent definition that perhaps fits more with the definition is (X i ) is UI, if it is bounded in
L 1 and for any ε > 0, there exists some δ > 0 such that whenever an event A has P[A] < δ, then
supi E[|X i |1(A)]<ε.

I.e: a family of random variables is uniformly integrable if the contribution of the tails of each random
variable can be made uniformly small across the entire family. Recall that the main point of wanting
uniform integrability is that it allows us to pass certain limits inside expectations.
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Theorem 2.33 Let X and (Xn ) be random variables. Then the following are equivalent:

1. Xn , X ∈ L 1 for all n , and Xn → X in L 1, i.e: E[|Xn −X |]→ 0

2. (Xn ) is uniformly integrable, and Xn → X in probability.

Proof. Consult [Wil14, Page 131] ♥

We now have a result about uniform integrability in the context of conditional expectation

Theorem 2.34 (UI Property of Conditional Expectation) Let X ∈ L 1, then the family

{E[X | G ] :G is a sub-σ-algebra of F}

is uniformly integrable.

To prove this Theorem we first need this Lemma:

Lemma 2.35 (Absolute continuity property) Suppose X ∈ L 1, then for any ε> 0 there exists some
δ > 0 such that whenever A ∈F is such that P(A)<δ, one has E[|X |1A]<ε

Proof of Lemma 2.35. Suppose to the contrary that there exists an ε0 > 0 such that we may
find a sequence (Fn ) of events with decreasing probabilities, P(Fn ) = 2−n , yet E[|X |1Fn

] ≥ ε0. By
Borel-Cantelli, since

∑

n

P(Fn )<∞

we have that P(lim sup Fn ) = 0. Recall the Reverse Fatou Lemma: if ( fn ) ∈mF + is dominated by
some integrable g ∈mF +, then

E[lim sup fn ]≥ lim sup E[ fn ]

Thus we would have

E[lim sup |X |1Fn
] = E[|X |1lim sup Fn

]≥ lim sup E[|X |1Fn
]≥ ε0

But E[|X |1lim sup Fn
] = 0. For a justification on the first equality, see 8.7. ♥

Main idea: Set K large enough so that K −1E|X | < δ, then show that P[|E[X | G ]| > K ] < δ and use
the absolute continuity property.
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Proof of Theorem 2.34. Let ε > 0 be given and as per Lemma 2.35, choose some δ > 0 so that
whenever an event F has P(F ) < δ, we have E[|X |1F ] < ε. Now choose K large enough so that
K −1E[|X |] < δ. Let G be any sub-σ-algebra of F . For simplicity let Y be a version of E[X | G ],
then by Jensen’s inequality

|Y | ≤ E[|X | | G ]

And as such, by the Tower Law:
E[|Y |]≤ E[|X |]

And as such we have the chain of inequalities

K P({|Y |> K })≤ E[|Y |]≤ E[|X |]

Therefore P(|Y |> K )<δ. And as such, we note that

E[|Y |1{|Y |>K }]≤ E[|X |1{|Y |>K }]<ε

♥

Theorem 2.36 (UI Martingale Convergence Theorem) Let X be a Martingale. The following are
equivalent:

• X is a UI family.

• Xn converges almost surely and in L 1 to a limit in X∞.

• There exists some Z ∈L 1 such that Xn = E [Z | Fn ]

Proof of 1 =⇒ 2. Since X is UI, by definition it is bounded in L 1, and so we have by the standard
Martingale Convergence Theorem, that it convergence almost surely to an almost surely finite
limit X∞. By Theorem 2.33 we also have convergence in L 1. ♥

Main idea: Prove that the L 1 distance is zero. To do this employ Martingale property and the
"non-expansive" corollary of conditional Jensen.

Proof of 2 =⇒ 3. The proof is identical to a previous argument. We use the Martingale property
and the hypothesis of convergence in L 1 to a limit X∞. For any m ≥ n , we have that

∥Xn −E[X∞ | Fn ]∥1 = ∥E[Xm −X∞ | Fn ]∥1 ≤ ∥Xm −X∞∥1→ 0 (m→∞)
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And so ∥Xn −E[X∞ | Fn ]∥= 0 which means they are almost surely equal. ♥

Main idea: UI Property of conditional expectation.

Proof of 3 =⇒ 1. We have shown that {E[X | G ] : G ⊆ F} is a UI family, so if we have the
sub-family where the sigma algebras are {Fn}, the result still holds. ♥

Remark 2.37 If X is UI Martingale, then X∞ = E [Z | F∞]. If X is a superMartingale, then
E [X∞ | Fn ]≤ Xn (Respectively for subMartingales).

Theorem 2.38 (Optional Stopping for UI Martingales) Let X be a UI Martingale and S and T

be stopping times with S ≤ T . Then
E [XT | FS ] = XS

Remark 2.39 (Reality check) Note that we have not required S and T to be bounded. To make
sense of XT and XS , we use the hypothesis of UI and simply set

XT =
∑

n≥0

Xn 1(T = n ) +X∞1(T =∞)

where X∞ = limn Xn .

Main idea: Show that for any stopping time T we have that E[X∞ | FT ] = XT . Then use this and
the tower property to extend to the general case.

Proof. To show that E[X∞ | FT ] = XT , we do to things:

• Check XT is integrable: we first note that E[|X∞| | Fn ] ≥ |E[X∞ | Fn ]| = |Xn |, which in turn
implies that for any A ∈Fn , E[|Xn |1(A)]≤ E[|X∞|1(A)]. Armed with this:

E[|XT |] =
∑

n≥0

E[|Xn |1(T = n )]+E[|X∞|1(T =∞)]

≤
∑

n∈N∪{∞}

E[|X∞|1(T = n )]

= E[|X∞|]<∞

Because X being UI means in particular that X∞ ∈L 1.
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• Check the conditional expectation property. Let B ∈FT . Then

E[1(B )XT ] =
∑

n∈N∪{∞}

E[1(B ∩{T = n}
︸ ︷︷ ︸

∈Fn

)Xn ]

(!)
=

∑

n∈N∪{∞}

E[1(B ∩{T = n})X∞]

= E[1(B )X∞]

Where step (!) comes from the fact that Xn = E[X∞ | Fn ] almost surely (UI MG Convergence
Theorem). Now that we have established the Optional Stopping Property for X∞, we extend
this to the general case as follows quite easily:

E[XT | FS ] = E[E[X∞ | FT ] | FS ]
(!)
= E[X∞ | FS ]

= XS

Where we have used the property proved above in the first and third steps, and on step (!)
we have used the Tower Law.

♥

2.7 Backwards Martingales

Definition 2.40 Let · · · ⊆ G−2 ⊆G−1 ⊆G0 be a decreasing family of σ-algebras. An integrable process
(Xn )n≤0 adapted to this filtration is called a backwards Martingale if

E [Xn+1 | Gn ] = Xn n ≤−1

A different way to think about this (I don’t like the minus signs, is that if you have a decreasing
sequence of sigma algebras (Gn )n≥0, an integrable process {Xn}n≥0 is a backwards Martingale if

E[Xn | Gn+1] = Xn+1

which when contrasted with the usual Martingale property:

E[Xn | Fn−1] = Xn−1

gives perhaps a clearer vision of what this means.
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Remark 2.41 By iterating the tower property we have that E [X0 | Gn ] = Xn , and since X0 ∈L 1 by
assumption we automatically get that Xn is a uniformly integrable family.

Theorem 2.42 (Convergence of Backwards Martingales) Let X be a backwards Martingale with
X0 ∈ L p for some p ∈ [1,∞). Then Xn → X−∞ as n → −∞ to the random variable X−∞ =

E [X0 | G−∞] almost surely and in L p , where G−∞ =
⋂

n≤0Gn

Main idea: Adapt Doob’s Upcrossing Lemma to work backwards in time and then just delegate the
rest of the proof to the usual Almost Sure MG Convergence Theorem, and then by showing Uniform
Integrability of the Martingale, upgrade the convergence to L p .

Proof. To extract a limiting random variable and its almost sure convergence, we essentially replay
the proof for the Almost Sure MG Convergence Theorem, and all we need to do is justify that
Doob’s Upcrossing Lemma works backwards in time. To do this, we simply note that for a fixed
n , the process (X−n+k ) is a usual Martingale with respect to the filtration Fk =G−n+k and so the
usual Doob’s Upcrossing Lemma works:

E[U−n ([a , b ], X )]≤
1

b −a
E[(X0−a )−]

Then passing the limit n →∞ (noting that the RHS of the bound does not depend on n), we
have that

E[total upcrossings from a to b]<∞

and so one may call upon the proof of the A.S MG Convergence Theorem to finish showing that
Xm → X−∞ as m→−∞ a.s, where X−∞ ∈mG−∞.

To upgrade this to L p convergence. We note that since Xn = E[X0 | Gn ] and X0 ∈ L p , then
Xn ∈ L p and by a usual Fatou Lemma argument we have that X−∞ ∈ L p . Now consider the
sequence {|Xn −X−∞|p }n . Since we have that

|Xn −X−∞|p = |E[X0−X−∞ | Gn ]| ≤ E[|X0−X−∞|p | Gn ]

and the latter is UI by the UI Property of Conditional Expectation, it follows that the sequence
{|Xn −X−∞|p }n is UI, and since it converges a.s to 0, it will also converge in L 1 to zero (this is
one of the equivalent characterisations of UI), which means that

E[|Xn −X∞|p ]→ 0
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showing the L p convergence we wanted.

To show the final part of the Theorem, namely that X−∞ = E[X0 | G−∞], we simply let A ∈ G−∞,
which by decreasingness means that A ∈ Gn for all n ≤ 0. And so by the Martingale Property on
X , we have that

E[X0 1(A)] = E[Xn 1(A)]

and by L 1 convergence to X−∞ we may pass the limit n→−∞ and finish the proof. ♥

2.8 Application of Martingales

Theorem 2.43 (Kolmogorov 0−1 Law) Let (X i ) be IID random variables, and letting Fn =σ(Xk :

k ≥ n ), and F∞ =
⋂

nFn . Then if A ∈F∞, we have that P[A] ∈ {0, 1}.

Main idea: Let A ∈F∞ and letting Gn =σ(Xk : k ≤ n ), consider the Martingale E[1(A) | Gn ]. Using
UI Martingale Convergence Theorem, and the fact that F∞ ⊆G∞ finish the claim.

Proof. Consider the sigma algebra Gn = σ(Xk : k ≤ n ) generated by the history of the process
up to time n . This sigma algebra is clearly independent from the future Fn+1 because {X i } are
independent. And so in particular, if we let A ∈F∞, the random variable 1(A) is independent of
the sigma algebra Gn for any n . From this we gather that

E[1(A) | Gn ] =P[A]

Moreover, since the process {E[1(A) | Gn ]}n is a Martingale and also UI by the UI Property of
conditional expectation, it follows that it converges almost surely to E[1(A) | G∞], where G∞ =
∧

n Gn :=: σ(Gk : k ≥ 0). However, it is also clear that F∞ ⊆ G∞, and so 1(A) ∈ mG∞, which
means that E[1(A) | G∞] = 1(A). Putting all this together:

1(A) = E[1(A) | G∞]

= lim
n→∞

E[1(A) | Gn ] a .s

=P[A]

Thus P[A] ∈ {0, 1}. ♥

Theorem 2.44 (Strong Law of Large Numbers) Let {X i } be IID integrable random variables and
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let µ be their common mean. Then letting Sn = X1+ · · ·+Xn gives that

Sn

n
→µ almost surely and in L 1

Main idea: The proof is via backwards Martingales. The decreasing sequence of sigma algebras is
{Gn} with Gn = σ(Sk : k ≥ n ). The backwards Martingale is just the process {Sn/n}n≥0. Once it is
shown that this is indeed a backwards Martingale, we have convergence a.s and in L 1 to some random
variable Y . But then by index shifting in the sum, it can be shown that Y is measurable with respect
to a tail sigma algebra and so by Kolmogorov, Y must be constant, and from here computing the
value of Y is straightforward.

Proof. We start by constructing the following decreasing sequence of sigma algebras: Gn =σ(Sk :

k ≥ n ) = σ(Sn ,Sn+1, · · · ) = σ(Sn , Xn+1, Xn+2, · · · ). Now we claim that the process {Sn/n}n≥0 is a
backwards Martingale. To show this we need to prove that

E

�

Sn−1

n −1

�

�

�

�

Gn

�

=
Sn

n

Its a simple calculation:

E

�

Sn−1

n −1

�

�

�

�

Gn

�

= E

�

Sn −Xn

n −1

�

�

�

�

Gn

�

=
Sn

n −1
−

1

n −1
E[Xn | Gn ]

and since E[Xn | Gn ] = E[Xn |σ(Sn , Xn+1, · · · )] = E[Xn | Sn ] by the fact that Xn is independent to Xk

for k > n , and by symmetry E[Xn | Sn ] = E[Xk ] for k ∈ {1, · · · , n}, we conclude that

Sn = E[Sn | Sn ] = E[X1 | Sn ] + · · ·+E[Xn | Sn ] = nE[Xn | Sn ]

and so E[Xn | Sn ] =
Sn
n . Plugging this into our previous computation gives that

E

�

Sn−1

n −1

�

�

�

�

Gn

�

=
Sn

n −1
+

Sn

n (n −1)
=

Sn

n

as required. Now we have guaranteed by the backwards Martingale convergence theorem the
convergence, almost surely and in L 1, to a random variable Y . However, by shifting the indices
(!), we see that for all k ≥ 0

Y = lim
n→∞

Sn

n
(!)
= lim

n→∞

Xk+1+ · · ·+Xk+n

n

we see that Y is measurable with respect to Tk = σ(Xk+1, Xk+2, · · · ) for all k , i.e: its measurable
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with respect to the tail sigma algebra T =
⋂

k Tk , and so by Kolmogorov’s 0− 1 law, it Y must
be constant, because T is a trivial sigma algebra. But now that we have determined that Y is
constant, we have of course that Y = E[Y ], but therefore:

Y = E[Y ]

= E
�

lim
n→∞

Sn

n

�

(!)
= lim

n→∞
E
�

Sn

n

�

=µ

Where the key step, (!), comes from the fact that the convergence Sn/n → 1 is not only almost
surely, but in L 1. This finishes the claim. ♥

Example 2.45 Let us see an example related to this proof. We are going to show that if (Xn : n ≥ 1)

is a sequence of i.i.d L p for some p > 1 random variables with mean µ, then

sup
m≥n

�

�

�

�

Sm

m
−µ

�

�

�

�

→ 0 in L p .

Proof. At first glance one needs to apply some sort of Doob’s L p inequality, which tells us
that if (Zn ) is a Martingale, with some integrability conditions, then





sup0≤t≤n |X t |






p
≤ p

p−1 ∥Xn∥p .
However, in this case

�

Sm
m −µ

�

is not a Martingale per-se, but it is indeed a backwards Martingale
with respect to the backwards filtration Gn = σ(Sn ,Sn+1, · · · ), meaning that E[Sm/m −µ | Gm+1] =

Sm+1/m +1−µ. We can however exploit this to turn
�

Sm
m −µ

�

into a usual Martingale by switching
up the order of the filtration. Fix K and n such that K > n , and consider the now increasing
filtration GK ⊆GK −1 ⊆ · · · ⊆ Gn , and it is clear then that

�

S−m

−m
−µ

�

−K ≤m≤−n

is now a usual Martingale with respect to this increasing filtration. Therefore, Doob’sL p inequality
tells us that













sup
−K ≤t≤−n

�

�

�

�

S−m

−m
−µ

�

�

�

�













p

≤
p

p −1













Sn

n
−µ













p

.

Now since the integrand on the LHS is clearly increasing in K , we can take K →∞ and by the
MCT, we see that













sup
t≤−n

�

�

�

�

S−t

−t
−µ

�

�

�

�













p

=













sup
t≥n

�

�

�

�

St

t
−µ

�

�

�

�













p

≤
p

p −1













Sn

n
−µ













p

.
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However, since we are assuming that the X i ’s are all L p , the L 1 convergence of the SLLN gets
upgraded to L p , which means that the right hand side of the above expression indeed converges
to zero as n→∞. ♥

Remark 2.46 The moral of the story here is that if one has a Backwards Martingale, by switching
up the direction of the filtration one recovers a usual Martingale, although with a finite time
horizon, and from that one can employ usual results from Martingale theory.

Theorem 2.47 (Radon-Nikodym) Let P and Q be two probability measures on (Ω,F ). Assume
F is countably generated, i.e: there is a countable collection {Fn : n ∈N} with F =σ(Fn : n ∈N).
Then the following are equivalent

1. P[A] = 0 implies Q[A] = 0. (This is referred to as Q being absolutely continuous with respect
to P, and we write Q≪P)

2. For all ε> 0, there is a δ > 0 so that whenever P[A]≤δ, then Q[A]≤ ε.

3. There exists an almost surely unique non-negative random variable X so that

Q [A] =

∫

Ω

X 1(A)d P :=: EP[X 1(A)]

Remark 2.48 The random variable X is called a version of the Radon-Nikodym derivate of Q

with respect to P, denoted as X = d Q
d P .

Main idea: By contradiction: construct a sequence {An} with P[An ]≤ 1/n 2 yet Q[An ]>ε. Then use
Borel-Cantelli and the definition of infinitely-often.

Proof of 1 =⇒ 2. Assume (2) does not hold, i.e: there exists some ε > 0, such that for all n ≥ 1,
there exists a set An with P[An ] ≤ 1/n 2 and Q [An ] > ε. Then by the Borel-Cantelli lemma, we
have that

P[{An i.o}] = 0

Therefore, since the event {An i.o} as zero P-measure, by hypothesis, it will also have zero Q-
measure, so Q[{An i.o}] = 0. However, by definition:

Q[An i.o] =Q

�

⋂

n

⋃

k≥n

�

= lim
n→∞

Q

�

⋃

k≥n

Ak

�

≥ ε
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Contradicting the fact that Q[{An i.o}] = 0. ♥

Main idea: For 2 =⇒ 3, the idea is to construct a Martingale {Xn} as follows:

1. Use the filtration {Fn} to be Fn =σ(Fk : k ≤ n ). Then define An = {H1∩· · ·∩Hn : Hi = Fi or F c
i }.

Then note that Fn =σ(An ). Now define

Xn (ω) =
∑

B∈An

Q[B ]
P[B ]

1(ω ∈ B )

and show this is an Fn -Martingale using the fact that sets in An are disjoint.

2. Show {Xn} is L 1 bounded, so we have almost sure convergence to some X .

3. Show, using the hypothesis, that {Xn} is actually a UI family, and so we actually have L 1

convergence.

4. Show that Q̃ [A] = E[X 1(A)] agrees with Q [A] for all sets A in the π-system of sets like
⋃

nFn

that generate F .

Proof. The proof is by UI Martingales. The filtration we will use is Fn = σ(Fk : k ≤ n ). Then
define An = {H1 ∩ · · · ∩Hn : Hi = Fi or F c

i } and set

Xn (ω) =
∑

B∈An

Q[B ]
P[B ]

1(ω ∈ B )

We make the following two observations: the first, and easier one, is that sets in An are pairwise
disjoint. The second observation is that Fn = σ(An ). A way to see this is to note that we
can recover the Fk ’s from An by taking unions. As a simple example, if n = 2, then F1 =

(F1∩F2)∪ (F1∩F c
2 ). From this we see that in fact, any set A ∈Fn can be written as a union of sets

in An , say A =
⋃

i Si for some Si ∈An . Therefore, it is now easy to see that by the fact that sets
in An are pairwise disjoint:

E[Xn 1(A)] = E

�

∑

B∈An

∑

i

Q[B ]
P[B ]

1(Si ∩B )

�

= E

�

∑

i

Q[Si ]
P[Si ]

1(Si )

�

=Q[A]

Having constructed {Xn} and having checked this preliminary fact, we now move on to check that
{Xn} is in fact an Fn -Martingale. And it will be quite easy. Indeed: if A ∈Fn , then by filtration
property, A ∈Fn+1 and so

E[Xn+1 1(A)]=Q[A]=E[Xn 1(A)]

Showing the Martingale property. Now we set off to show that this Martingale converges to
something, and we will first extract almost sure convergence by showing {Xn} is L 1-bounded.
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This is easy because for all n :

E[Xn ] = E[Xn 1(Ω)] =Q[Ω] = 1

and so {Xn} is L 1 bounded (we have also implicitly used that Xn is non-negative to skip writing
the absolute value signs). We call the limiting random variable X∞. Recall that our goal is to
show that for any A ∈F , we have that Q[A] = E[X∞1(A)], and to do so, we note that the set of
unions

⋃

nFn is a π-system generating F , so our goal will be to show that for a fixed n , whenever
A ∈Fn , we have that

Q [A] = E[Xn 1(A)] = E[X∞1(A)]

Intuitively we see that we are going to have to pass some limits so we are now motivated to up-
grade almost sure convergence to L 1 convergence. To do so, we will finally employ the hypothesis.

To show that {Xn} is a UI family (and hence we have L 1 convergence), let ε > 0 be given, then
by hypothesis there exists some δ, so that whenever P[A]≤ δ, then Q[A]≤ ε. Set K = 1/δ, then
by Markov’s inequality:

P[Xn ≥ K ]≤
E[Xn ]

K
=

1

K
=δ

and so by hypothesis,
E[Xn 1(Xn ≥ K )] =Q[Xn ≥ K ]≤ ε

thus showing the UI property. Now that we have upgraded almost sure convergence to L 1

convergence, we can finish the proof by noting that for an n fixed and A ∈Fn ,

E[X∞1(A)]= lim
m→∞

E[Xm 1(A)] =Q[A]

Because eventually m ≥ n . ♥

The proof of 3 =⇒ 1 is trivial.
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3 Continuous-time processes

We can generalise all the definitions we made for discrete-time processes, such as the filtration, adapt-
ability, stopping time, etc. The only difference is that whenever we indexed, say (X t ) with t ∈ N, we
now index (X t ) with t ∈ [0,∞). This brings some potential hazards, which we really didn’t have to
worry about before:

• Measurability: In the discrete case, for a fixed t , we obviously had X t : ω 7→ X t (ω) being
measurable with respect to F , (i.e: the process really was a sequence of random variables)
because of the adaptability assumption. This also holds when t is indexed in continuous-time.
However, we could also inspect what happens if we keep ω fixed, and look at the map t 7→ X t (ω),
this map corresponds to what we think of the process when we "draw it on a graph", and since
the index set N of t , has the σ-algebra P (N), in where each subset is measurable, we have that
the map t 7→ X t (ω) is measurable. However, when we change to continuous-time, it need not be
the case that t 7→ X t (ω) is measurable, because now our index set for t is R, which is endowed
with the algebra B (R). We thus have the issue of measurability of the map (ω, t ) 7→ X t (ω) with
respect to the σ-algebra F ⊗B (R). A toy example is even the deterministic map X t = 1A(t )

where A is a Vitali set. This is not measurable with respect to F ⊗B (R). Whereas if we had
been working in discrete time, any subset of N would have been measurable so we would have
not come across this issue.

• Hitting times: We also have something worrying, if A ⊆ R, is an arbitrary subset, it is not
necessarily the case that

TA = inf{t ≥ 0 : X t ∈ A}

is now a stopping time, indeed, since

{TA ≤ t }=
⋃

0≤s≤t

{X s ∈ A}

and this right hand side is an uncountable union (and A could also not be measurable), then it
is not guaranteed that this belongs to Ft .

We will now spend some time fixing these problems. For the first part, we start by introducing some
more regularity on the process X :

Definition 3.1 (Continuous / Càdlàg) A continuous-time stochastic process (X t ) is continuous if
the map t 7→ X t (ω) is continuous for a fixed ω. For a weaker notion, we say that (X t ) is càdlàg if
the map t 7→ X t (ω) is right continuous and has a left limit.

The idea is that in both the continuous and the càdlàg case, the entire process is determined, thanks
to continuity, by its values at a countable set of times.
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Definition 3.2 (Measurable space of continuous/càdlàg functions) Let E be some metric space.
We have the following two sets:

• C (R+, E ) = { f : R+→ E continuous}.

• D (R+, E ) = { f : R+→ E càdlàg}.

We endow these spaces with the σ-algebra generated by the coordinate maps Πt : f 7→ f (t ). Thus
a continuous/càdlàg process is a random variable ω 7→C (R+, E )/D (R+, E ).

If we impose continuous/càdlàg regularity on our random variable, it turns out that the map (ω, t ) 7→
X t (ω) will be measurable with respect to F ⊗B (R). Let us show this for the case of continuity

Proposition 3.3 Let (X t ) be a continuous-time process, then the map (ω, t ) 7→ X t (ω) is be mea-
surable with respect to F ⊗B (R).

Main idea: Write X t (ω) as a pointwise limit approximating t dyadically.

Proof. We show it for [0, 1] as the indexing set for simplicity. The key is to approximate t by a
sequence an constructed as follows: partition the real line into bins of width 2−n :

· · ·< (k −1)2−n < k 2−n < (k +1)2−n < · · ·

then t will fit into one of these boxes, say k 2−n so we set an = k 2−n . It is clear that an → t , so
by continuity of X t (ω) on t , we write

X t (ω)= lim
n→∞

2n−1
∑

k=0

1(t ∈ [k 2−n , (k +1)2−n ])Xk 2−n (ω)
︸ ︷︷ ︸

∈B (R)⊗F

This sum is certainly measurable in F⊗B (R), and since limits preserve measurability we are done.
♥

Now that we have clarified the situation regarding measurability, we turn to look at stopping times.
First, let us present an analogous proposition to 2.19 but for continuous-time stopping times, which
are defined in an essentially equal way to discrete-time stopping times, and similarly the stopped
sigma algebra FT , is defined in an identical manner. In addition, we define the random variable
XT (ω) = XT (ω)(ω) whenever T <∞, and we also have the stopped process (X T )t = XT ∧t .
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Proposition 3.4 (Stopping time properties in continuous-time) Let S and T be two stopping-
times, and X be càdlàg process. Then

• S ∧T is a stopping time.

• If S ≤ T , then FS ⊆FT .

• XT 1(T <∞) is FT -measurable.

• X T is adapted.

Main idea: The only substance is in showing 3, and this follows from the fact that Z is FT measurable
if and only if Z 1 (T ≤ t ) is Ft measurable for all t which is proven by standard machine type arguments.
Then perform a dyadic expansion.

Proof. Parts 1 and 2 are identical in proof to the discrete-time versions due to the definitions being
identical. Now we note that 4 follows easily from 3. Indeed: the constant time t is also a stopping
time, so T ∧ t is a stopping time and is always finite, so by part 3, XT ∧t is FT ∧t measurable. We
now think a bit for 3. The first claim is that Z is FT measurable if and only if Z 1 (T ≤ t ) is Ft

measurable for all t .

• ( =⇒ ). Suppose Z is FT measurable. Then we know that writing Z = Z + − Z − allows
us to express Z + and Z − as a pointwise limit of indicator functions of sets in FT . When
we multiply through by 1 (T ≤ t ), we are effectively intersecting the sets of each of these
indicator functions with the set {T ≤ t }, so by definition of FT , we have that Z 1 (T ≤ t ) is
indeed Ft measurable.

• (⇐= ). We apply the standard machine. First note that if Z = c 1 (A) for some A ∈F , then
Z 1 (T ≤ t ) = c 1 (A ∩{T ≤ t }). The hypothesis that this is Ft measurable means that A ∈FT ,
so Z is FT measurable. Now that we have shown the claim for indicator functions, we pass
this into the standard machine.

With this technicality out of the way, we proceed now to prove that XT 1 (T <∞) isFT measurable.
By our detour, this is equivalent to showing that XT 1 (T ≤ t ) is Ft measurable for all t . We go
about this by expanding

XT 1 (T ≤ t ) = XT 1 (T < t )+X t 1 (T = t )

Clearly the second summand is Ft measurable, so we only need to show that XT 1 (T < t ) is
also Ft measurable. We first construct a stopping time Tn taking values in the dyadic numbers
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Dn = {k 2−n : k ∈N}, given by
Tn = 2−n ⌈2n T ⌉.

This is indeed a stopping time because

{Tn ≤ t }= {⌈2n T ⌉ ≤ 2n t }= {T ≤ 2−n ⌊2n t ⌋} ∈F2−n ⌊2n t ⌋ ⊆Ft

Now using the fact that Tn ↓ T , and the fact that X is càdlàg by assumption, gives that XTn
→ XT ,

but we could also write
XT 1 (T < t ) = lim

n→∞
XTn∧t 1 (T < t )

and using the fact that Tn takes values in the dyadic numbers, we see that

XTn∧t 1 (T < t ) =
∑

q∈Dn ,q<t

Xq 1
�

Tn = q
�

+X t 1 (T < t < Tn )

which in this form is easy to see that it is Ft measurable, thus finishing the claim.
♥

Before we establish regularity conditions that allow us to conclude that hitting times are also stopping
times in the continuous setting, let us give an explicit example of when hitting times may not be
stopping times.

Example 3.5 (A hitting time that is not a stopping time) Let J take values ±1 with equal
probability, and define the process X t to be

X t =







t 0≤ t ≤ 1

1+ J (t −1) t > 1

(Here J is drawn at the very start, i.e: not updated for each t ). Then this process is of course
adapted to the natural filtration, but if we let A = (1, 2), then the event {TA ≤ 1} does not belong
to F1, (recall that TA = inf{t > 0 : X t ∈ A}, so in the case that J = 1, TA = 1, and in the case J =−1,
TA =∞) because just by knowing the history of the process up to time 1, we cannot determine
whether J is one or minus one. Of course here the problem is that A is open, so it is unsurprising
what the first regularity condition that we will inspect is going to be.

Proposition 3.6 (Regularity condition 1 for hitting times to be stopping times) Let A be closed
and let X be an adapted continuous process. Then TA is a stopping time.

Main idea: The events {TA ≤ t } and {infs∈Q:s≤t d (X s , A) = 0} are the same. The right hand event is in
Ft
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Proof. • (⊆). Suppose that TA = s ≤ t . Then there exists a sequence of rationals sn such that
sn ↓ s and X sn

∈ A for all n . Since X is continuous, we have that X sn
→ X s . Since A is closed,

we also have that X s ∈ A. Therefore XTA
∈ A. We can also find a sequence (qn ) of rationals

with qn ↑ TA, and since d (XTA
, A) = 0, by continuity, we have that d (Xqn

, A)→ 0. Hence we
have that infs∈Q:s≤t d (X s , A) = 0.

• (⊇). If infs∈Q:s≤t d (X s , A) = 0, then there is a sequence sn ∈Q with sn ≤ t such that d (X sn
, A)→

0. We can without loss of generality say that sn converges to some s (Otherwise, since sn

takes values in the compact set [0, t ], we can extract a convergent subsequence and just call
that sn), and we have that X sn

→ X s , therefore d (X s , A) = 0, which implies that X s ∈ A, and
as such TA ≤ t .

♥

This was a regularity condition on the kind of sets that we are allowed to take in order for hitting times
to be stopping times. If we want to be able to take open sets as well and still have stopping times,
we can impose another kind of regularity condition. In this case, on the σ-algebra (after all recall that
something is a stopping time with respect to a sigma algebra).

Definition 3.7 (Right-continuous sigma-algebra) Let {Ft : t ≥ 0} be a filtration. Then it is easy to
see that

F +t =
⋂

s>t

Fs

is also a sigma-algebra. We can create a new filtration out of this and call it {F +t }. If Ft =F +t ,
then we say Ft is right-continuous.

We now show how this regularity condition on our sigma-algebra does enable hitting times of open
sets to be stopping times:

Proposition 3.8 Let A be an open set and X a continuous process. Then

TA = inf{t ≥ 0 : X t ∈ A}

is a stopping time with respect to the filtration (F +t ).

Main idea: Show that {TA < t } ∈ Ft , by using continuity of X and openness of A, and then show
how this implies the end goal using right-continuity of the filtration.
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Proof. We note that if TA < t , then there is some rational q < t with Xq ∈ A. Since X is continuous
and A is open, {Xq ∈ A} is measurable, and so

{TA < t }=
⋃

q∈Q,q<t

{Xq ∈ A} ∈Ft

Now we use right-continuity of our filtration, to deduce that

{TA ≤ t }=
⋂

n∈N

{TA < t +n−1}
︸ ︷︷ ︸

∈F
t+ 1

n

∈F +t

♥

3.1 Martingale regularisation

Recall that we are treating a stochastic process X as a random variable

X :Ω→{ f : R+→ E }

Where the codomain is endowed with the σ-algebra that makes the projections Πt : f 7→ f (t ) measur-
able maps, call this algebra E . The law of the process X is then defined as µ(A) =P(X ∈ A). This law
is a very complicated object, so we would like to simplify our attention to looking at "snapshots" of
the process at specific times, say t1, · · · , tn , and then knowing what the distribution of the process is
at those times. This is the concept of a finite dimensional distribution

Definition 3.9 (Finite dimensional distribution) Let µ be a measure on the space of càdlàg functions
R+→ E . For each J ⊆R+, a finite index set of times, we let µJ be the law of the vector (X t : t ∈ J ).
The family of measures (µJ : J ⊆R+ finite) is called the finite dimensional distributions of µ.

The key idea is that it turns out that to check if the law of two stochastic processes X and Y is the
same, it is sufficient and necessary to check whether the finite dimensional distributions agree. This is
a consequence of the π−λ Lemma.

Proposition 3.10 Let X and Y be two stochastic processes. Their laws coincide if and only if
their finite-dimensional distributions coincide.

Proof. Left to finish later. See [idk, Theorem 23] ♥

We are interested in studying the sample paths of a process, and the problem is that knowing the law
of a process does not give us much information about the sample path properties, indeed:
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Example 3.11 (Same law, different sample paths) Let X = (X t )t ∈[0,1] be the process that is identical
to 0 for all t . Let U be a uniform random variable on [0, 1], and define X ′t = 1(U = t ). Then observe
that the finite dimensional distributions of X are the Dirac measures at zero, and we have the
same for X ′t . As an intuitive explanation, if 0 /∈ A, and say 1 ∈ A, then P(X t1

∈ A) = P(U = t1) = 0,
if 1 /∈ A, then obviously P(X t1

∈ A) = 0. Either way, we have two processes with the same law but
obviously different sample paths: one is always at zero, but the other one jumps to 1 for one value
of time.

Thus we are going to talk about processes which agree almost surely on sample paths.

Definition 3.12 Let X and X ′ be two processes defined on the same probability space. We say
that X ′ is a version of X if X t = X ′t a.s for each t .

We will now talk about how we can regularise Martingales: as we have seen with the previous examples
of hitting times, it is generally useful to have a continuous (or at least càdlàg) Martingale. The following
result will tells us that under some regularity conditions on our sigma-algebra, we can always modify
a Martingale so that it is càdlàg and it agrees almost surely on sample paths.

Definition 3.13 (Usual conditions) Let (Fn ) be a filtration, we say that it satisfies the usual
conditions if it is right-continuous and it contains all P-null sets in F . Alternatively, we define the
filtration

fFt =σ(F +t ,N )

Where N are the P-null sets, thus "regularising" our filtration.

Theorem 3.14 (Martingale Regularisation) Let (X t )t≥0 be a Martingale with respect to the filtra-
tion (Ft ). Then there exists a càdlàg process eX , a Martingale with respect to (ÝFt ) that satisfies

X t = E
�

eX t | Ft

�

Remark 3.15 Thus as an immediate consequence of this, if (Ft ) already satisfies the usual con-
ditions, i.e. Ft =ÝFt , then we have

X t = E
�

fX t | Ft

�

= E
�

fX t |ÝFt

�

=fX t

where this last equality is due to the fact that the Regularisation Theorem shows that fX t is ÝFt
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measurable.

To prove the Regularisation Theorem we are going to need to make use of the following lemma, similar
to the result we saw previously that said that a sequence (xn ) of real numbers converged to a real
number (or ±∞) if and only if the number of upcrossings between every [a , b ] for rationals a < b was
finite.

Lemma 3.16 Let f : Q+→R be a function such that for every bounded I ⊆Q+ we have that

• f (I ) is bounded.

• For any a < b rationals, the upcrossings over [a , b ] of f on I , denoted by N ([a , b ], I , f ) is
finite.

Then for every t ∈R+ we have that the limits

lim
s↓t

f (s ) lim
s↑t

f (s )

exist and are finite.

Proof. Take (sn ) ↓ t be a sequence of rationals. Then f (sn ) is also a sequence of real numbers that
doesn’t oscillate too much (here I mean this of course in light of the Lemma about convergence),
so it converges to some limit limsn↓t f (sn ). Let us show this limit is unique. Suppose (qn ) ↓ t is a
different sequence to (sn ), but limsn↓t f (sn ) ̸= limqn↓t f (qn ). Then we can create another sequence
an = (s1, q1, s2, q2, · · · ) with an ↓ t , but liman↓t f (an ) doesn’t exist, contradicting the first thing we
have shown. By symmetry the second limit also follows. ♥

Let us now give some intuition on the proof of the Regularisation Theorem
Main idea: We use the rational convergence lemma above to show that on a set of probability 1,
fX t = limsn↓t X sn

is a well-defined limit. Then we use the fact that (X sn
) is a backwards Martingale to

show that X t = E
�

fX t | Ft

�

almost surely, and then finally show the Martingale property for fX t

Proof of Theorem 3.14. The goal is to define fX t = lims↓t X s . To do this, we wish to employ the
Lemma above. We need to tick two boxes: let I ⊆Q+ be bounded:

• X (I ) is almost surely bounded: to show this, let J = { j1, · · · , jn} ⊆ I where without loss
of generality j1 < · · ·< jn . Then (X j ) j∈J is a discrete-time Martingale, so by Doob’s Maximal
Inequality, for any λ> 0:

P
�

max
j∈J
|X j |>λ

�

≤
E
�

|X jn
|
�

λ

Then taking a monotone limit over subsets J ⊆ I , using the fact that I is countable, we get
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that

P

�

sup
j∈I
|X t |>λ

�

≤
E
�

|Xsup I |
�

λ

Taking λ→∞ gives that P
�

sup j∈I |X t |<∞
�

= 1.

• For any a < b rationals, N ([a , b ], I , X ) < ∞: to show this, we take a similar ap-
proach. First note that N ([a , b ], I , X ) = supJ⊆I ,J finite N ([a , b ], J , X ). And by writing (in order)
J = {a1, · · · , an}, we deduce that (Xa )a∈J is a discrete-time Martingale and so by Doob’s Up-
crossing Inequality, we see that

E [N ([a , b ], J , X )]≤
E
�

(Xan
−a )−

�

b −a

so from this we see that E [N ([a , b ], I , X )]<∞ a.s which means N ([a , b ], I , X )<∞ a.s. In
particular, for any M > 0

N ([a , b ], [0, M ]∩Q+
︸ ︷︷ ︸

IM

, X )<∞a.s

Then by setting

Ω0 =
⋂

M∈N

⋂

a<b

{N ([a , b ], IM , X )<∞}∩
�

sup
t ∈IM

|X t |<∞
�

We see that P(Ω0) = 1, and moreover, for any ω ∈ Ω0, X (ω) satisfies the two conditions of the
"rational convergence lemma" (indeed any bounded I ⊆Q+ falls into some IM , and if the claims
hold on all of IM then they also hold on all of I ), so we can safely set

fX t = lim
s↓t

X s 1(Ω0)

Then fX t is ÝFt -adapted, because each X s ∈mFs , and so lims↓t X s ∈m
⋂

s>t Fs , and since Ωc ∈N ,
then it follows that fX t ∈ mÝFt . We now show the remaining properties: the expectation and
Martingale properties of fX t . Since (on Ω, hence a.s)

fX t = lim
s↓t

X s = lim
n→∞

X sn
= lim

n→∞
E
�

X t | Fsn

�

for some sn ↓ t , we can spot two backwards Martingales in here:

•
�

E
�

X t | Fsn

��

is a backwards Martingale, so by the Backwards Martingale convergence The-
orem, we have that almost surely:

fX s = E [X t | Fs+] (⋆)

• (X sn
)n≥0 is also a backwards Martingale, so it converges (in particular) in L 1, which means
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we can pass the convergence inside the expectation: E
�

X sn
| Ft

�

→ E
�

fX t | Ft

�

but of course
don’t forget that (X t ) is a continuous time Martingale so E

�

X sn
| Ft

�

= X t , thus showing the
expectation property

X t = E
�

fX t | Ft

�

(⋆⋆)

Now we need to fix Fs+ into ÝFs , but this is an easy job because

E [X |σ(G ,N )] = E [X | G ]

for any σ-algebra G and integrable X . Now we have shown almost everything except the
càdlàg property of fX t

Let us show now the Martingale property of fX t . Fix s < t , then

fX s
⋆= E [X t | Fs+]

⋆⋆= E
�

E
�

fX t | Ft

�

| Fs+
� Tower Law= E

�

fX t | Fs+
�

All left to do now is show càdlàg property and left limits. ♥

Example 3.17 (Of when a filtration doesn’t satisfy the usual conditions) Let ξ,η be independent
random variables taking values in ±1 with equal probability. Define

X t =















0 t < 1

ξ t = 1

ξ+η t > 1

We define Ft to be the natural filtration associated to the process (X t ). Then it is quite easy
to check that (X t ) is a Martingale with respect to (Ft ), as we only have a few cases to check,
and the expectations of ξ and η are all zero. It is also clear by construction that X t is not right-
continuous, but by the Regularisation Theorem, we can find some fX t , Martingale with respect to
the "regularised filtration", that is right continuous. We claim that this is

fX t =







0 t < 1

ξ+η t ≥ 1

It is also quite easy to check that E
�

fX t | Ft

�

= X t for all t , and it is obvious that fX t is right-
continuous. It is also easy to see that fX t is a Martingale with respect to (F +t ), but since X1 ̸=fX1,
it follows that eX is not a version of X , which means that (Ft ) does not satisfy the usual conditions,
which is quite clear to see from the way X t is defined.

From now on, we will always consider the càdlàg version of a Martingale whenever the corresponding
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filtration satisfies the usual conditions. We now revisit the results we saw in discrete-time.

3.2 Doob’s inequalities and convergence in continuous time

Theorem 3.18 (Martingale Convergence Theorem) Let (X t ) be anL 1 bounded càdlàg Martingale.
Then the limit X t → X∞ exists almost surely for some X∞ ∈L 1(F∞), where F∞ =σ(Ft : t ≥ 0)

Theorem 3.19 (Doob’s Maximal Inequality) Let (X t : t ≥ 0) be a càdlàg Martingale, and let
X ∗t = sup0≤s≤t |X s | be the running maximum. Then, for all λ≥ 0, t ≥ 0

λP(X ∗t ≥λ)≤ E
�

|X t |1(X ∗t ≥λ))
�

≤ E [|X t |]

Theorem 3.20 (Doob’s L p inequality) Let (X t : t ≥ 0) be a càdlàg process with p > 1. Then for
X ∗t = sup0≤s≤t |X s |, we get





X ∗t






p
≤

p

p −1
∥X t ∥p

Theorem 3.21 (L p convergence) Let X be a càdlàg Martingale and p > 1, then the following
are equivalent:

• X is bounded in L p .

• X converges almost surely and in L p to some X∞.

• X t = E [Z | Ft ] almost surely for some Z ∈L p .

Theorem 3.22 (UI Martingale convergence) Let X be a càdlàg Martingale. Then X is UI if and
only if X converges almost surely and in L 1 to X∞, and this is if and only if X is closed in L 1

Theorem 3.23 (Optional Stopping Theorem) Let X be a càdlàg UI Martingale. Then for every
stopping time S ≤ T , we have that

E [XT | FS ] = XS

Main idea: We will extract this by discretising the Martingale and then using the discrete OST and
the càdlàg property to return to our original Martingale.
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Proof. Let A ∈FS , the goal is to show that

E [XT 1(A)] = E [XS 1(A)]

Define sequences of stopping times

Tn = 2−n ⌈2n T ⌉ Sn = 2−n ⌈2nS ⌉

Then it is clear that Tn ↓ T and Sn ↓ S , so by the càdlàg property

XSn
→ XS XTn

→ XT

Moreover, since X is càdlàg and UI, by the UI Martingale convergence theorem for càdlàg Mar-
tingales, we have that Xm → X∞ as m →∞ in L 1. Then we have that since Tn is a bounded
stopping time, by the OST and this convergence:

E
�

X∞ | FTn

�

= E
h

lim
m→∞

Xm | FTn

i

= lim
m→∞

E
�

Xm | FTn

�

= XTn

(Since we are taking a limit we can without loss of generality assume that m ≥ Tn). This has
shown that XTn

is UI, and as such it converges to XT in L 1. Moreover, since Sn ≤ Tn , and X is
UI, we have by the Optional Stopping Theorem for UI Martingales, that

E
�

XTn
| FSn

�

= XSn

Of course since Sn ≥ S , we have that any A ∈FS is also in FSn
, so by the property of conditional

expectation we have that
E
�

XTn
1(A)

�

= E
�

XSn
1(A)

�

but now we can pass the limits n→∞ inside the expectations because we argued that XTn
→ XT

(and hence the same for S) in L 1. ♥

3.3 Kolmogorov’s continuity criterion

We have seen in a counterexample how two processes that agree on their finite dimensional distributions
need not have the same sample paths, so if there are some versions of the stochastic process that
satisfy some better regularity conditions, i.e: (càdlàg) continuity as we have seen, it makes sense to
work with them. The following criterion ensures that in fact a continuous version of the process exists
under some regularity conditions on the moments.
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Definition 3.24 (Dyadic rationals) Let Dn = {k 2−n : 0 ≤ k ≤ 2n} be the set of dyadic rationals of
level n , and D =

⋃

nDn .

Theorem 3.25 (Kolmogorov’s continuity criterion) Let (X t )t ∈D be a stochastic process with real
values. Suppose that there exists p > 0, ε> 0 so that

E [|X t −X s |p ]≤ c |t − s |1+ε s , t ∈D

for some c <∞. Then for all α ∈ (0,ε/p ), we have that (X t )t ∈D is α-Hölder continuous, i.e: there
exists some random variable Kα such that

|X t −X s | ≤ Kα|s − t |α s , t ∈D

Proof. We start by using Markov’s inequality alongside the bound on the moment:

P
��

�Xk 2−n −X (k+1)2−n

�

�≥ 2−nα
�

≤ c 2nαp 2−n−nε.

By a union bound, we have that

P
�

max
0≤k<2n

�

�Xk 2−n −X (k+1)2−n

�

�≥ 2−nα
�

≤
2n−1
∑

k=0

c 2nαp 2−n−nε = c 2−n (ε−pα).

Since we have assumed α ∈ (0,ε/p ), the exponent is negative, so the probabilities are summable
in n , so by the Borel-Cantelli Lemma, we have that for sufficiently large n ,

max
0≤k<2n

�

�Xk 2−n −X (k+1)2−n

�

�≤ 2−nα

Which is equivalent to saying that there is some random variable M with

sup
n≥0

max
0≤k<2n

�

�Xk 2−n −X (k+1)2−n

�

�

2−nα
≤M <∞

We now show the existence of some random variable M ′ <∞ almost surely so that for all s , t ∈D,
we have that

|X t −X s | ≤M ′|t − s |α.

Let s , t ∈D. Pick the unique r such that

2−(r+1) < t − s < 2−r
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(This has nothing to do with the fact that s and t are dyadic, its just saying that there is some
r for which the gap between s and t fits in a bin of width 2−r but not in a bin of width 2−(r+1)).
Now there exists a k such that s < k 2−(r+1) < t , and set α to be α= k 2−(r+1), then we have (since
α> s ) that 0< t −α< 2−r . So in the dyadic expansion of t −α, we get that

t −α=
∑

k≥r+1

x j

2 j

where each x j ∈ {0, 1}. Similarly we have that (now because α< t )

α− s =
∑

j≥r+1

yj

2 j

From these two sums, we see that we can partition the interval [s , t ) into disjoint unions of
subintervals of length 2−n for n ≥ r + 1 and where at most two such intervals have the same
length. See diagram:

s tα

So we can write

|X s −X t | ≤
∑

d ,n

|Xd −Xd+2−n |,

where d , d+2−n indicate the endpoints of said subintervals in the decomposition of [s , t ). Recalling
that

sup
n≥0

max
0≤k<2n

�

�Xk 2−n −X (k+1)2−n

�

�

2−nα
≤M <∞

We have that

|X s −X t | ≤ 2
∑

n≥r+1

M 2−nα = 2M
2−(r+1)α

1−2−α

and so from this we see that

|X s −X t | ≤M ′2−(r+1)α ≤M ′|t − s |α

♥
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4 Weak convergence

4.1 Definitions

Definition 4.1 (Weak convergence) Let (µn : n ≥ 0) be a sequence of Borel probability measures on
a metric space (M , d ). We say µn converges weakly to µ, which I write was µn *µ, if µn ( f )→µ( f )
for all bounded continuous functions f on M .

Example 4.2 (Examples of weak convergence) Here are some examples:

• Let (xn : n ≥ 0) be a sequence in a metric space M that converges to x . Then δxn
* δx .

Indeed, for any continuous function,

δxn
( f ) = f (xn )→ f (x ) =δx ( f ).

• Let M = [0, 1] with the Euclidean metric. Let µn = n−1
∑

0≤k≤n−1δk/n . This corresponds to
spreading lighter and lighter masses evenly spaced through the interval [0, 1]. Then µn ( f )

is precisely a Riemann sum, and it converges to
∫ 1

0
f (x )d x , which shows that µn converges

weakly to the Lebesgue measure on [0, 1]. This makes sense from the intuitive picture!

Remark 4.3 Note that if A ∈B (M ), it is not necessary that µn (A)→µ(A) when µn *µ. Indeed,
let xn = 1/n and µn =δxn

. Then for A = (0, 1), we have that δxn
(A)≡ 1 but δ0(A) = 0.

We have the following equivalent characterisation of weak convergence:

Theorem 4.4 (Equivalent characterisation of weak convergence, Portmanteau’s Theorem) Let
(µn ) be a sequence of probability measures. Then the following are equivalent:

1. µn *µ.

2. lim infµn (G )≥µ(G ) for all open G . (Think of G = (0, 1) and µn =δ1/n)

3. lim supµn (A)≤µ(A) for all closed A. (Think of A = {0} and µn =δ1/n)

4. limµn (A) = µ(A) for all A with µ(∂A) = 0, where ∂A = Ā \ A◦. (Think of A = (−ε,ε) and
µn =δ1/n)

Main idea: To show (1) =⇒ (2), you use one of the key tricks of this section, namely that if G is
open:

1∧k d (x ,G c ) ↑ 1(G ) k →∞
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where the left hand side is a continuous and bounded function. To show (2) ⇐⇒ (3) is clear by taking
complements. Then you show that (2)&(3) =⇒ (4)

Proof. Let show that (1) =⇒ (2). Let G be open with non-empty complement (otherwise there’s
not much to prove). For every positive k , define

fk (x ) = 1∧ [k d (x ,G c )]

Then it is easy to see that fk ↑ 1(G ), this is because G c is closed, indeed: the only scenario where
fk (x ) is zero is if d (x ,G c ) is zero, which means that x ∈G c . If it were open, you could still have
for some x that fk (x ) = 0 yet 1(G )(x ) = 1. Since fk is continuous and bounded, we have that

µn ( fk )→µ( fk )

Now since fk (x )≤ 1(G ), you have that lim infµn (G )≥ lim infµn ( fk ) =µ( fk ) where this last equality
comes from weak convergence. Now taking k ↑∞ we finish the claim.

It is easy to see that (2) ⇐⇒ (3) by taking complements. Now we show how (2) and (3) in
conjunction imply (4). Let A ∈B (M ) be a Borel set with µ(∂A) = µ(Ā \A◦) = 0. This implies that
µ(A◦) =µ(Ā) =µ(A). Now we have that

lim sup
n

µn (A)≤ lim sup
n

µn (Ā) (Since A ⊆ Ā)

≤µ(Ā) =µ(A) =µ(A◦) (3) and µ(∂A) = 0

≤ lim inf
n

µ(A◦) (2)

≤ lim inf
n

µn (A) (Since A◦ ⊆ A)

The only way that lim supn µn (A) ≤ µ(A) ≤ lim infn µn (A) can hold is if limn µn (A) = µ(A). Thus
showing (4). Now we show that (4) implies weak convergence. For simplicity consider f ≥ 0

continuous and bounded (then we can consider positive and negative parts). By considering the
rectangle of base f (x ) and height 1, it is easy to see that

f (x ) =

∫ ∞

0

1(t ≤ f (x ))d t

67



So we have that

µn ( f ) =

∫

M

�∫ ∞

0

1(t ≤ f (x ))d t

�

dµn (x )

=

∫ ∞

0

∫

M

1(t ≤ f (x ))dµn (x )d t (Fubini)

=

∫ ∞

0

µn ({ f (x )≥ t }d t

=

∫ ∥ f ∥∞

0

µn ({ f (x )≥ t })d t

Our goal is to now take the limit n →∞ and to pass it inside an integral, which we can do by
the Dominated Convergence Theorem, i.e:

lim
n
µn ( f ) =

∫ ∥ f ∥∞

0

lim
n
µn ({ f (x )≥ t })d t

To conclude (1), we now will use (4), but first we need to ensure that ∂{ f (x )≥ t } has µ-measure
zero (almost surely in the Lebesgue measure, since that’s what we are integrating against), and
then the claim will follow because limn µn ( f (x )≥ t ) =µ( f (x )≥ t ) almost everywhere in t , and then
we can undo the argument we did above, and reach the final conclusion. To show that ∂{ f (x )≥ t }
has µ-measure zero, note that { f ≥ t } is closed by continuity of f , and since { f > t } is open by
continuity of f , we have that { f > t } ⊆ { f ≥ t }◦, which means that

∂{ f ≥ t }= { f ≥ t } \ { f ≥ t }◦ = { f ≥ t } \ { f ≥ t }◦ ⊆ { f ≥ t } \ { f > t }= { f = t }

Now we show that { f = t } has µ-measure zero for Lebesgue almost all t . The argument goes like
this:

{t :µ{ f = t }> 0}=
⋃

n≥1

{t :µ{ f = t } ≥ 1/n}

But since µ is a probability measure, it must be that the n th set on the right hand side contains
at most n such values of t (otherwise the total mass would exceed 1), and so {t : µ{ f = t } > 0}
is countable, and any countable set has 0 Lebesgue measure. This finishes the claim, because
we have shown that µ({ f = t }) = 0 Lebesgue almost-everywhere in t , and since we showed that
∂{ f ≥ t } ⊆ { f = t }, it follows that µ{∂{ f ≥ t }} = 0 Lebesgue almost everywhere in t , and so the
argument is done. ♥
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We now talk about the relationship between weak convergence and convergence in distribution.

Definition 4.5 (Distribution function) For µ a finite measure on R, the distribution function of µ,
Fµ is given by

Fµ(x ) =µ(−∞, x ]

Proposition 4.6 (Relation between weak convergence and convergence in distribution) Let {µn}
be a sequence of probability measures on R. Then we have that µn → µ weakly (1) if and only if
Fµn
(x )→ Fµ(x ) for all x that are points of continuity of Fµ (2).

Main idea: To show (1) =⇒ (2), you just show that µ{x }= 0 by expressing this quantity as a differ-
ence of Fµ’s and using its continuity at x .

To prove that (2) =⇒ (1) we want to use Portmanteau’s Theorem with the case of open sets, i.e: we
want to show that for any open set U , lim infn µn (U )≥µ(U ). To do this, we express U as a countable
union of intervals and use the distribution functions to deal with those, as well as the fact that the
points of continuity will be dense in R.

Proof. (1) =⇒ (2): fix a continuity point x of Fµ. Our goal is to show that µn (−∞, x ]→µ(∞, x ].
To do so we wish to use Portmanteau’s Theorem, and to apply the Theorem we need to show
that ∂(−∞, x ] = {x } has µ measure zero. This is easy to see because

µ({x }) =µ(−∞, x ]− lim
n
µ(−∞, x −1/n ] = lim

n
(Fµ(x )− Fµ(x −1/n )) = 0

Where this last equality follows from continuity of Fµ at x .

To show that (2) =⇒ (1), we will consider open sets of the real line and use Portmanteau’s
Theorem. First note that for any open set U ⊆R, we can write

U =
⋃

k

(ak , bk )

for some disjoint collection of intervals (ak , bk ), so that µn (U ) =
∑

k µn (ak , bk ). Since Fµn
is always

increasing, it can have at most countably many discontinuities, which means that the set of points
of contuinity is dense (since the complement of a countable set is dense), so for any interval (a , b )

we may choose continuity points a ′ and b ′ such that a < a ′ < b ′ < b .
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Now note that
µn (a , b ) = lim

β↑b
Fµn
(β )− Fµn

(a )≥ Fµn
(b ′)− Fµn

(a ′)

So taking limits, we get that
lim inf

n
µn (a , b )≥ Fµ(a

′, b ′)

Now we can take a ′ ↓ a and b ′ ↑ b along continuity points of Fµ, and this means that

lim inf
n

µn (a , b )≥µ(a , b )

Now back in the case of a generic open set U =
⋃

k (ak , bk ) we have that

lim inf
n

µn (U )≥
∑

k

lim inf
n

µn (ak , bk )≥
∑

k

µ(ak , bk ) =µ(U )

Where in the first inequality we used Fatou’s Lemma (interpreting
∑

k µn (ak , bk ) as an integral
against the counting measure). ♥

This proposition motivates the following definition, that generalises the concept of convergence of
distribution for general random variables taking values in a metric space (M , d ).

Definition 4.7 (Convergence in distribution) Let (Xn ) be a collection of random variables taking val-
ues in a metric space (M , d ), with the random variables possibly being defined on different probability
spaces. Then we say that Xn → X in distribution, if the laws L (Xn ) have L (Xn )*L (X ).

Remark 4.8 If say Xn is defined on (Ω,Fn , Pn ) and X is defined on (Ω,F , P), then it is clear that
convergence in distribution occurs if and only if

EPn
[ f (Xn )]→EP[ f (X )]

for all continuous and bounded f : M →R

We have also the following fact (which we already saw in usual case of R in a first course in Probability
Theory)

Proposition 4.9 Let (Xn ) be a sequence of random variables taking values in (M , d ) with Xn → X

in probability. Then Xn → X in distribution. Moreover, there is the partial converse that if Xn → c

for some constant c in distribution, then the convergence Xn → c also occurs in probability.
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Example 4.10 A classic example of convergence in distribution is that of the Central Limit
Theorem: if Xn are all iid L 2 integrable random variables with mean µ and variance σ2, then

∑

i X i −nµ

σ
p

n
→N (0, 1)

in distribution.

We now present a tool that allows us to check for weak convergence of measures, Proharov’s Theo-
rem.

Definition 4.11 (Tightness) A sequence {µn} of probability measures on a metric space (M , d ) is
said to be tight if given any ε> 0, there exists a compact set K ⊆M such that

sup
n
µn (M \K )<ε

In other words, the sequence is tight if there is a large enough compact set, such that the mass of all
measures is mostly concentrated around that set.

Example 4.12 (Example and non-example) The following is an example of a tight family of prob-
ability measures: on R, µn =δ1/n , then if we set K = (−2, 2), µn (R\K ) = 0 for all n , so the sequence
is tight.

The following is an example of a family of measures that is not tight: on R, set µn = δn , then
any compact set K , must in particular be bounded, and so eventually some µn will have its mass
"escape" K , i.e: for some n large enough, we will have µn (R \K ) = 1.
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Theorem 4.13 (Prohorov’s Theorem) If {µn} is a tight sequence, then there exists a subsequence
{µnk
} and a probability measure µ such that

µnk
*µ

Main idea: Enumerate the rationals by {x j }. Since Fn (x1) ∈ [0, 1] is abounded subsequence (Fn :=

µn (−∞, n ]), we have that Fn (x1) has a convergent subsequence. Iterating this diagonal argument, we
get a sequence nk , such that Fnk

(x j ) converges for all j , and we set F (q ) = limk→∞ Fnk
(q ) for q ∈Q.

This convergence holds along the rationals, so we extend along the real numbers by taking monotone
limits along rationals, i.e: F (x ) := limq↓x :q∈Q F (q ). Now construct a measure µ out of this distribution
function and by Relation between weak convergence and convergence in distribution, we are done.

Proof. We begin by letting Fn := Fµn
be the distribution functions of the measures µn . The goal

is to construct the "alleged limiting measure" µ, and show there exists a subsequence of {µn} on
which the corresponding subsequence of {Fn} converges to some Fµ on the rationals, then we will
extend to the reals, and construct µ from there. Then Proposition 4.6 will finish off the proof.

Start by fixing an enumeration {x j } of the rationals. Note that Fn (x1) ∈ [0, 1] for all n so the
sequence {Fn (x1)} has a convergent subsequence, {Fn (1)k

(x1)}, note that now {Fn (1)k
(x2)} is a bounded

sequence, hence is has a convergent subsequence {Fn (2)k
(x2)}. Naturally this subsequence still con-

verges when we replace x2 by x1 because its a subsequence of the original subsequence which con-
verged. Iterating this argument, we find a subsequence {Fn

j
k
(xi )} that converges for all 1 ≤ i ≤ j .

In light of this, call (n (m+1)
k ) a sequence of rationals such that {Fn (m+1)

k
(xm+1)} converges. Then the

sequence nk = n (k )k has that Fnk
(x j ) converges for all j (eventually k will "catch up" with j , and

then convergence will be guaranteed). We now set

F (x ) = lim
k→∞

Fnk
(x ) x ∈Q

Now note that since each Fn is a distribution function, it is non-decreasing, so we still have that
F is non-decreasing, so it has right-hand limits. Therefore we can safely construct

F (x ) := lim
q↓x ,q∈Q

F (q ) x ∈R

This is our candidate function. Now by construction, this function is right continuous, indeed:

lim
t ↓x

F (t ) = lim
t ↓x

lim
q↓t

F (q ) = lim
q↓x

F (q ) = F (x )

And this limit business held because F (q ) is right continuous along rationals. Since it is also
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monotone, it implies it has left limits as well, so F is càdlàg. We now go on to show convergence
of Fn to F on continuity points of F along the convergent subsequence, i.e, we want to show that

lim
k→∞

Fnk
(t ) = F (t )

whenever t is a point of continuity of F . By assumption of continuity at t , for any ε > 0 we can
find sufficiently close points s1 < t < s2 where s1, s2 ∈Q such that

max
i
|F (t )− F (si )|<

ε

2

In other words, for k large enough, we have that

F (t )−ε
(1)
< F (s1)−

ε

2

(2)
< Fnk

(s1)
(3)
< Fnk

(t )< Fnk
(s2)< F (s2) +

ε

2
< F (t ) +ε

Where inequality (1) comes from the construction of s1, inequality (2) comes from the fact that
at rational points, like s1, we have that F (s1)≡ limk→∞ Fnk

(s1), in inequality (3) we use the mono-
tonicity of Fnk

and the rest of the inequalities follow in a symmetric manner. This shows that
Fnk
(t )→ F (t ) for continuity points of F . We still haven’t really shown that F is a distribution

function, i.e: that limx→−∞ F (x ) = 0 and limx→∞ F (x ) = 1. This will be shown using tightness.
Recall that tightness guarantees that for any ε > 0 there is some N ∈ N large enough such that
for all n >N , we have that

sup
k
µk ([−n , n ]c )<ε

So with the ε above, choose continuity points of F , a <−N and b >N , then

F (a )<ε F (b )> 1−ε

as needed (here we used the fact that a is a continuity point as well as the fact that we have
established convergence of Fnk

(a )→ F (a )). We are now ready to construct the measure µ. First
we set

µ(a , b ] = F (b )− F (a )

and now having established that F is a càdlàg distribution function, it follows that µ is a well
defined measure. Then we extend by Carethedory’s Extension Theorem to a probability measure
on B (R). ♥
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4.2 Characteristic functions

Definition 4.14 (Characteristic function) Let X be a random variable taking values in Rd , with law
µ=L (X ). Then the characteristic function, ϕX is defined as

ϕ(u ) = E[exp(i 〈u , X 〉)] =
∫

Rd

exp[i 〈u , x 〉]dµ(x )

Example 4.15 Let us compute the characteristic function of a Poisson law. Let X ∼Poi(λ), then

ϕX (u ) = E[exp(i u X )]

=
∞
∑

n=0

exp(i un )
e −λλn

n !

=
∞
∑

n=0

�

λe i u
�n

n !
e −λ

= exp
�

λ
�

e i u −1
�	

Remark 4.16 (Properties of characteristic functions) We have the following

• ϕ(0) = 1. (Duh)

• ϕ is continuous, indeed:

lim
h→0
ϕ(u+h) = lim

h→0
E [exp{i 〈u+h, X 〉}]

= E
h

lim
h→0

exp{i 〈u+h, X 〉}
i

(DCT)

=ϕ(u)

• ϕ determines the law of X (Fourier Inversion).

Now we have a Theorem by Lévy that relates convergence of characteristic functions to weak conver-
gence. This Theorem can be used to prove the Central Limit Theorem among other things.

Theorem 4.17 (Lévy’s Continuity Theorem) Let (Xn ) be a sequence of random variables with
values in Rd .

• If L (Xn )→L (X ) weakly for some random variable X , then ϕXn
(ξ)→ϕX (ξ) for all ξ ∈Rd .
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• If there exists some ψ : Rd →C with ψ(0) = 1, ψ is continuous at zero, and for all ξ ∈Rd

ϕXn
(ξ)→ψ(ξ)

then ψ is the characteristic function for some random variable X and L (Xn )→L (X ) weakly.

To prove this we first need a technical Lemma:

Lemma 4.18 Let X be a random variable with values in Rd , then

P (∥X ∥∞ ≥ k )≤C ·
�

k

2

�d ∫

[−k−1,k−1]d
(1−ϕX (ξ))dξ

Main idea: The proof is not hard, but just tedious: We first show that

�

k

2

�d ∫

[−k−1,k−1]d
(1−ϕX (ξ))dξ= E



1−
d
∏

j=1

sin(k−1X j )

k−1X j





This is just done via slightly unpleasant integration. Once this is done, we note that whenever
x ≥ 1, |sin(x )| ≤ x sin(1). From this we extend and see that whenever ∥u∥∞ ≥ 1, we have that
for f (u ) =

∏d
j=1

sin(u j )
u j

: | f (u )| ≤ sin(1). Rearranging this gives that for C = (1− sin(1))−1,

1

�











X

k













∞
≥ 1

�

≤C



1−
d
∏

j=1

sin(k−1X j )

k−1X j




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Proof. Let us show the first part of the intuition section:

∫

[−λ,λ]d
ϕX (u )d u :=

∫

[−λ,λ]d

∫

Rd

exp(i 〈u , x 〉)dµ(x )d u

=

∫

[−λ,λ]d

∫

Rd

d
∏

j=1

exp(i u j x j )dµ(x )d u1d u2 · · ·d ud

(!)
=

∫

Rd

d
∏

j=1

∫

[−λ,λ]

exp(i u j x j )d u j dµ(x )

=

∫

Rd

d
∏

j=1

�

1

i x j

�

e iλx j − e −iλx j
�

�

dµ(x )

=

∫

Rd

d
∏

j=1

�

2 sin(λx j )

x j

�

dµ(x )

= E





d
∏

j=1

sin(λX j )

λX j





And step (!) is just Fubini’s Theorem, and hence the first part of the intuition section is proven.
Now we prove the remaining: Note that when |x | ≥ 1, we have that

�

�

sin(x )
x

�

�≤ sin(1). Hence, if we
call f (u ) =

∏d
j=1

sin(u j )
u j

, we observe the following: whenever ∥u∥∞ ≥ 1, we must have that for some

index j ∈ [d ], |u j | ≥ 1. This means that
�

�

�

sin(u j )
u j

�

�

�≤ sin(1). Generally, we always have that
�

�

sin(x )
x

�

�≤ 1,
and so whenever ∥u∥∞ ≥ 1, we conclude that

f (u )≤ | f (u )|=

�

�

�

�

�

d
∏

j=1

sin(u j )

u j

�

�

�

�

�

≤ sin(1)

Rearranging, we have that whenever ∥u∥∞ ≥ 1,

1− f (u )
1− sin(1)

≥ 1

and so from this we conclude that

1

�











X

k













∞
≥ 1

�

≤C



1−
d
∏

j=1

sin(k−1X j )

k−1X j




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Where C + (1− sin(1))−1. Now the proof follows immediately:

P[∥X ∥∞ ≥ k ] =P

�











X

k













∞
≥ 1

�

= E

�

1

�











X

k













∞
≥ 1

��

≤C E



1−
d
∏

j=1

sin(k−1X j )

k−1X j





=C ·
�

k

2

�d ∫

[−k−1,k−1]d
(1−ϕX (ξ))dξ

as required. ♥

Now we are ready to prove Levy’s Theorem:
Main idea: The direct part is trivial, by simply noting that f (x ) = exp(i 〈ξ, x 〉) is a bounded and
continuous function, now use weak convergence. For the converse we have a few steps:

• Show that that {µn} is a tight family, for this we will use the Lemma and the hypothesis.

• Extract a subsequence {nk} such that µnk
*µ. I.e: L (Xnk

)*L (X ) (every probability measure
arises as the law of a random variable).

• By the direct part, ϕXnk
→ϕX pointwise, and so ϕX =ψ.

• Extend the weak convergence along the subsequence to convergence along the whole sequence.
To do this, assume L (Xn ) does not converge weakly to L (X ), then for any ε> 0, there is some
bounded continuous function f , and some subsequence nk so that |E[ f (Xnk

)]− E[ f (X )]| > ε.
Now use tightness to extract a further subsequence of {nk} where we do have convergence in
distribution and contradict the above statement.

Proof of Lévy’s Theorem. The first part is easy: If L (Xn )
︸ ︷︷ ︸

µn

→L (X )
︸ ︷︷ ︸

µ

weakly, then for any contin-

uous and bounded function, we have that µn ( f )→ µ( f ), but applying this to f (x ) = exp(i 〈ξ, x 〉)
gives the result. The converse will be more technical. Step 1: show that µn are a tight family of
measures. For this we will use the previous lemma.

We first note that |1−R(ϕXn
(u ))| ≤ 2 for all n , we can apply the DCT and see that

lim
n→∞

∫

[−K −1,K −1]

1−ϕXn
(ξ)dξ=

∫

[−K −1,K −1]

1−ψ(ξ)dξ

And since ψ is continuous at zero and 1 at zero, we have that for large enough k , this right hand
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side is ≲ ε/2 by the Lemma, for n large enough,

P(∥Xn∥∞ ≥ k )≤ ε

We can make k even larger to take care of the finite amount of n ’s that came before the "for n

large enough", and then this expression will holds for all n , so we get tightness. From Proharov’s
Theorem, we now get a subsequence Xnk

such that its laws converge in distribution to the lawL (X )
of some random variable X . (This is because every distribution function gives rise to a random
variable). Then by the previous part we have that ϕXnk

→ϕX pointwise, therefore ϕX =φ and so
φ is the characteristic function of a random variable as we claimed. To show that Xn converges
in distribution to X , we suppose that L (Xn ) did not converge weakly to L (X ), then there would
exists a subsequence (nk ) and a continuous bounded function f , for which E[ f (Xnk

)] ̸→E[ f (X )] In
particular, for some ε> 0

|E[ f (Xnk
)]−E[ f (X )]|>ε

for all k . However, by tightness of the L (Xnk
) there exists a further subsequence (Xn ′k

) with

L (Xn ′k
)→L (Y )

weakly for some random variable Y . By the direct part of this theorem, we have that for all ξ ∈Rd ,

lim
k ′→∞

ϕXnk ′
(ξ)→ϕY (ξ)

which means that ϕY = ϕX , because we had that ϕXnk
→ ϕX pointwise. Since characteristic

functions determine distributions, we have that Y
(d )
= X , and in particular, E[ f (X )] = E[ f (Y )].

However, since we also have that L (Xn ′k
)→L (Y ), it means that for k ′ large enough,

|E[ f (Xnk ′
)−E[ f (X )]|= |E[ f (Xnk ′

)−E[ f (Y )]|<ε

contradicting our assumption that L (Xn ) did not convrege weakly to L (X ).
♥
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4.3 Large Deviation Theory

We now present a self-contained section where we talk about Large Deviation Theory. Recall from
the Central Limit Theorem, that if (X i ) is a sequence of iid random variables with finite mean and
variance, say µ and σ2 respectively, then

P(Sn ≥ nµ+aσ
p

n )→P(Z ≥ a )

where Z ∼N (0, 1). In this section we want to nail these asymptotics precisely. There are some cases
where we can explicitly compute these:

Example 4.19 (Gaussian case) Let (Xn )
i i d∼ N (0, 1). Then Sn ∼ N (0, n ), and as such n−1Sn ∼

N (0, n−1), and since 1p
n X1 ∼N (0, n−1), we have that

P
�

1

n
Sn ≥ a

�

=P(X1 ≥ a
p

n )

And using the fact that the asymptotic behavior of the tail probability of a standard normal is
given by

P(X1 ≥ x )∼
1

x
p

2π
exp

�

−
x 2

2

�

We have that

P
�

1

n
Sn ≥ a

�

∼
1

2
p

2πn
exp

�

−a 2n

2

�

In other words,

−
1

n
log P(Sn ≥ a n )→

a 2

2
=: I (a )

The function I (a ), sometimes called the rate function, captures (as implied by the name) the rate
at which the exponential decay of the probability occurs.

We now have a Theorem by Cramer that generalises this last observation we made in the Gaussian
example.

4.4 Cramer’s Theorem

Let’s recall some definitions:

Definition 4.20 (Moment Generating Function) Let X1 be a random variable. For λ ≥ 0, the
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moment generating function of X , M (λ) is defined as

M (λ) = E[e λX1]

which could be infinite. The log moment generating function ψ(λ) is simply defined to be ψ(λ) =
log M (λ).

Remark 4.21 (Motivation to Cramer’s Theorem) Note that by a Chernoff bound:

P(Sn ≥ na )≤ inf
λ≥0

e −λna E [exp(λSn )]

= inf
λ≥0
(exp(−λa )M (λ))n

= inf
λ≥0

exp
�

−n (λa −ψ(λ)
�

= exp









−n sup
λ≥0
(λa −ψ(λ))

︸ ︷︷ ︸

ψ∗(a )









Where ψ∗(a ) is called the Legendre transform of ψ, and since ψ(0) = 0, we have that ψ∗(a ) ≥
−ψ(0) = 0. Rearranging the above expression gives that

lim inf
n→∞

−
1

n
log P(Sn ≥ a n )≥ψ∗(a )

Cramer’s Theorem tells us that the limit actually exists, and is equal to ψ∗(a ). In other words,
ψ∗(a ) captures the rate of exponential decay.

Theorem 4.22 (Cramer’s Theorem) Let (X i ) be iid random variables with finite mean x̄ . Then

lim
n→∞

log P(Sn ≥ na ) =ψ∗(a ) a ≥ x̄

We need the following technical Lemma:

Lemma 4.23 (Continuity and differentiability of M (λ),ψ(λ)) The functions M (λ) and ψ(λ) are
continuous in D = {λ : M (λ)<∞} and differentiable in D ◦ with

M ′(λ) = E[X1e λX1] ψ′(λ) =
M ′(λ)
M (λ)
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Proof. For continuity, we take a sequence λn → λ in D . Since λ ∈D , we have that supn λn ∈D

(convergent sequence is bounded, which means that either the supremum is attained by some λn ,
or the supremum is λ, in each case the supremum is in D ). Therefore we have that

• |exp(λn X1)| → |exp(λX1)|.

• |exp(λn X1)| ≤ |exp(supn λn X1)|, and since supn λn ∈ D , we have that the integral of the
latter function is bounded

We may therefore apply the DCT, and see that

lim
n→∞

M (λn ) =M (λ)

Thus establishing continuity of M (λ), and hence continuity of log M (λ). To check differentiability,
choosing η ∈D ◦, we will also use the DCT to swap limit and expectations in

lim
ε→0

M (η+ε)−M (η)
ε

= lim
ε→0

E
�

exp((η+ε)X1)−exp(ηX1)
ε

�

[Justify why we have that]
�

�

�

�

e (η+ε)X1 − e ηX1

ε

�

�

�

�

≤ e ηX1

�

e δ|X1|−1

δ

�

And since η ∈D ◦, for a sufficiently small δ, we have that η+δ ∈D

Makes no sense. Come back later ♥

Proof of Cramer’s Theorem. Recall from our initial discussion that we have already shown that

lim inf
n
−

1

n
log P(Sn ≥ na )≥ψ∗(a )

Replacing X i by fX i = X i −a , we get that

P(Sn ≥ na ) =P( eSn ≥ 0)

and that
fM (λ) = e −λa M (λ)

so that
eψ(λ) =ψ(λ)−λa

Thus we need to show that, dropping tildes,

lim inf
n

1

n
P(Sn ≥ 0)≥ inf

λ≥0
ψ(λ)
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whenever x̄ < 0. We distinguish two cases:

• P(X1 ≤ 0) = 1, in which case

inf
λ≥0
ψ(λ)≤ lim

λ→∞
ψ(λ)

= log E
h

lim
λ→∞

e λX1(1(X1 = 0) +1(X1 < 0))
i

= log P[X1 = 0]

And This somehow shows that

lim inf
1

n
log P(Sm ≥ 0)≥ inf

λ≥0
ψ(λ)

(Yes, look at Chua’s notes)

• P(X1 > 0)> 0 :

Assume however that M (λ) exists for all λ. The idea is to modify X1 so that it has mean zero.
We do so by introducing a distribution µθ with density relative to µ=µX1

given by

dµθ

dµ
(x ) =

e θ x

M (θ )

And now we define the function

g (θ ) = Eθ [X1] =

∫

x dµθ (x )

The claim is that g (θ ) is continuous. Indeed:

g (θ ) =

∫

x e θ x dµ(x )

M (θ )

We showed that M (θ ) was continuous in θ and One can also show that the numerator is continuous
in θ using DCT. Of course g (0) = E[X1] = x̄ < 0. Now note that

lim
θ ↑∞

g (θ )> 0

Because the denominator is always non-negative, and for the integrand of the numerator, we can
split the integral into the integral over the set where x takes negative values, and in this case
the limit θ →∞ kills this part, and then the other part which will be strictly greater than zero.
Therefore by the intermediate value theorem, there exists some θ such that g (θ ) = Eθ [X1] = 0.
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Now we have that

P(Sn ≥ 0)≥P(Sn ∈ [0,εn ])≥ E
�

e θ (Sn−nε)1(Sn ∈ [0,εn ])
�

Now since we defined
dµθ

dµ
(x ) =

e θ x

M (θ )

we have that
E
�

e θX1 1(A)
�

=M (θ )Pθ (A)

so
E
�

e θ (Sn−nε)1(Sn ∈ [0,εn ])
�

=M (θ )n Pθ (Sn ∈ [0,εn ])e −θεn

Under θ , each X i has mean zero (this is the way we have constructed θ ), and as such Pθ (Sn ∈
[0,εn ])→ 1/2 by the CLT. Therefore

lim inf
n

1

n
log P(Sn ≥ 0)≥φ(θ )−θε

and so taking ε ↓ 0 finishes the claim for the case when M (λ) exists for all λ.

Let µn =L (Sn ) and let ν be the law of X1 conditioned on the event {|X1| ≤ K }, i.e:

ν(A) =P(A | {|X1| ≤ K })

Define also νn to be the law of Sn conditioned on the event
⋂

i {|X i | ≤ K }. Then we have that

µn [0,∞)≥ νn [0,∞)µ[−K , K ]n

Indeed: P(Sn ∈ [0,∞))≥P(Sn ∈ [0,∞) and |X i | ≤ K ∀i ) =R H S . We can now write

ψK (λ) = log

∫ K

−K

e λx dµ(x )

Now note that

log

∫ ∞

−∞
e λx dν(x ) = log

�∫∞
−∞ e λx 1(|x | ≤ K )dµ(x )

P({|X1| ≤ K })

�

=ψK (λ)− logµ[−K , K ]

Then we have that

lim inf
n

1

n
logµn ([0,∞))≥ lim inf

1

n
logνn [0,∞) + logµ[−K , K ] (⋆)
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But we note that 1
n logνn [0,∞)≥ infλ≥0 log

∫∞
−∞ e λx dν(x ). Therefore

lim inf
n

1

n
logµn [0,∞)≥ inf

λ≥0
ψK (λ) =: JK

Taking K →∞, we have that ψK (λ) → ψ(λ), and so JK → J for some J . Since each ψK is
continuous, then {λ :ψK ≤ J } are non-empty, compact and nested in K , so by Cantor’s Theorem
there is some

λ0 ∈
⋂

K

{λ :ψK ≤ J }

So
J ≥ sup

K
ψK (λ0) =ψ(λ0)≥ inf

λ≥0
ψ(λ)

as required. ♥
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5 Brownian motion

I should write something nice here one day

Definition 5.1 (Brownian motion) Let B = (Bt : t ≥ 0) be a continuous process in Rd . We say that
B is Brownian Motion started from x ∈Rd if:

• B0 = x a.s,

• Bt −Bs ∼N (0, (t − s )I ) for all t > s .

• B has independent increments, independent of B0. I.e: for all t1 < t2 < · · · < tn , the random
variables

Bt1
−B0, Bt2

−Bt1
, · · · , Btn

−Btn−1

are all independent.

5.1 Wiener’s Theorem

Theorem 5.2 (Wiener’s Theorem) Brownian motion exists on some probability space.

Main idea: There are three steps, the first one is to construct inductively Brownian motion on the
dyadics as follows: once B is defined on Dn , define B (d ) for d ∈ Dn+1 by grabbing the halfway value
between B (d −) and B (d +) and adding a Gaussian fluctuation of the corresponding width.

Once this is done, one can check without too much trouble that this satisfies the properties of Brownian
Motion on D =

⋃

nDn . Then one employs Kolmogorov’s Criterion to show that Brownian Motion on
the dyadics is indeed continuous, and so we use this to extend it to the whole interval [0, 1]. After this,
we must check, via characteristic functions that this extension is indeed Brownian Motion too.
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Proof. We first construct Brownian motion on the interval [0, 1]. Then we extend to the whole
real line and then to higher dimensions.

Let D0 = {0, 1}, and Dn = {k 2−n : 0≤ k ≤ 2n} for n ≥ 1. Finally let D =
⋃

nDn be the set of dyadic
rational numbers in [0, 1]. Now consider a sequence of independent N (0, 1) random variables
indexed in the dyadics: (Zd : d ∈ D) on some probability space. We will first construct Brownian
motion on the dyadics by induction, and then extend to the Real line.

Set B0 = 0, and let B1 = Z1. Now suppose by induction that we have constructed (Bd : d ∈ Dn−1).
Let us construct (Bd : d ∈Dn ) as follows. Take d ∈Dn \Dn−1 and let d − = d −2−n and d + = d +2−n .
Therefore d − and d + are consecutive dyadics in Dn−1. We construct now:

Bd =
Bd− +Bd+

2
+

Zd

2(n+1)/2

And show that this satisfies the Brownian properties:

• Independence of increments: We first note that Bd −Bd− and Bd+−Bd are independent.
Indeed, letting Nd =

B (d+)−B (d−)
2 and Nd ′ =

Zd

2(n+1)/2 :

Cov (Bd −Bd− , Bd+ −Bd ) =: Cov
�

Nd +N ′d , Nd −N ′d
�

(1)
= Var (Nd )−Var

�

N ′d
�

(2)
= 0

Indeed: By using the induction hypothesis on Bd+ − Bd−, we can easily check that Nd ∼
N (0, 2−n−1) and similarly, by construction of Zd , N ′d ∼N (0, 2−n−1) and moreover, these are
independent, so from this comes (1) and then (2) comes from the calculations on the vari-
ances we have just done. (Recall that for Gaussians, zero covariance implies independence).
Then, once we have established this, we have that all increments (Bd −Bd−2−n : d ∈ Dn ) are
independent. If they are consecutive, we have just proven it. Otherwise, we simply consider
the consecutive increments in between and then note that since they are all pairwise inde-
pendent, and these random variables are Gaussian, the whole collection is independent. his
now easily extends to increments that are not just of 2−n width.

• Gaussian distribution of increments: This is also quite easy, consider t1, t2 ∈ Dn , then
Bt1
−Bt2

can be written as a big telescoping sum of increments of width 2−n , and since each
has variance 2−n−1 and there are (t2− t1)2n of them we get the result.

Thus (Bt : t ∈D) satisfies the Brownian properties. Let s ≤ t ∈D, and notice that for each p > 0,
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since Bt −Bs ∼N (0, t − s ) = (t − s )1/2N (0, 1):

E[|Bt −Bs |p ] = |t − s |p/2E[|N |p ]

where N ∼N (0, 1). Since N has moments of all orders, by Kolmogorov’s continuity criterion, it
follows that (Bd : d ∈D) is α-Hölder continuous for all α< 1/2 almost surely. Hence to extend to
the interval [0, 1], we set

Bt = lim
i→∞

Bdi

where di → t is a sequence of dyadics. From this definition, (Bt , t ∈ [0, 1]) is also α-Hölder
continuous for all α < 1/2. Now one needs to check that (Bt : t ∈ [0, 1]) is Brownian motion. For
this, we let 0 = t0 < t1 < · · · < tk and let 0 = t n

0 ≤ t n
1 ≤ · · · ≤ t n

k be dyadic rationals converging to
their respective ti . Let B= (Bt1

−Bt0
, · · · , Btk

−Btk−1) and similarly define Bn . Then by considering
the characteristic functions, we have that

E[exp(i 〈u, B〉] (1)= E[ lim
n→∞

exp(i 〈u, Bn 〉]
(2)
= lim

n→∞
E[exp(i 〈u, Bn 〉]

= lim
n→∞

k
∏

j=1

exp(−(t n
j − t n

j−1)u
2
j /2)

=
k
∏

j=1

exp(−(t j − t j−1)u
2
j /2)

Where (1) comes from the continuity Brownian motion, 2 comes from the DCT, and so we get
that the Characteristic function of the vector of differences is that of a vector of independent
Gaussian random variables with respective variances t j − t j−1, which means that the distributions
are in fact equal. This shows the Brownian properties in [0, 1]. Now to extend to R+ and higher
dimensions, you glue a lot of BM together but I have spent already enough on this proof so that’s
that. ♥

Remark 5.3 (α-Hölder continuity) Wiener’s Theorem also gives that Brownian paths are a.s α-
Hölder continuous for all α< 1/2. However, a.s there exists no interval [a , b ] for which Brownian
motion if Hölder continuous with α≥ 1/2.
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5.2 Invariance Properties

We have the following invariance properties of Brownian motion which follow straight from the defi-
nition using very simple properties:

Proposition 5.4 Let B be standard Brownian motion in Rd .

• Rotation: If U T U = I , i.e: U is an orthonormal matrix, then U B = (U Bt , t ≥ 0) is again
Brownian motion. In particular, −B is also standard Brownian motion.

• Rescaling If λ> 0, then
�

1p
λ

Bλt : t ≥ 0
�

is standard Brownian motion.

• Simple Markov Property For every s ≥ 0, the shifted process (Bt+s −Bs : t ≥ 0) is standard
Brownian motion independent of F B

s =σ(Bu : u ≤ s ).

Main idea: The rotation property is a simple fact of Gaussian processes: that if W ∼N (0,Σ), then
U W ∼ N (0,UΣU T ) In particular, when Σ = I, we get the claim. Rescaling property follows form
the way variance scales. The simple Markov Property follows by the property of independence of
increments, Bt+h −Bt is independent of all Bs for s ≤ t .

A slightly more tricky property is the following:

Theorem 5.5 (Time inversion) Let (Bt : t ≥ 0) be standard Brownian motion, then the process
defined by (X t : t ≥ 0) defined by

X t =







0 t = 0

t B1/t t > 0

is standard Brownian motion.

Let us first note a useful fact:

Lemma 5.6 Brownian motion is a Gaussian process, i.e: the vector (Bt1
, · · · , Btn

) is a Gaussian
vector for all t1 < · · ·< tn , with covariances:

Cov (Bt , Bs ) = t ∧ s

Proof. We know that
(Bt1

, Bt2
−Bt1

, · · · , Btn
−Btn−1

)

is a Gaussian vector, and moreover, it is the image under a linear isomorphism of the vector
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(Bt1
, · · · , Btn

). Therefore it is Gaussian. To show the covariances:

Cov (Bt , Bs ) =Cov (Bt −Bs +Bs , Bs ) =Cov (Bt −Bs , Bs )
︸ ︷︷ ︸

0 (⊥)

+Cov (Bs , Bs ) = s

♥

Main idea: The key idea here is that if you want to show that some process (X t ) is Brownian motion,
all you have to do is show that the collections (X t1

, · · · , X tn
) are Gaussian random vectors with the

same mean and covariance structure as that of the corresponding random vector of Brownian motion
(Bt1

, · · · , Btn
). This is because from ES2 Q2.1 We know that the law of a Gaussian random vector is

uniquely characterised by its mean and covariance structure, and if two processes have the same finite
dimensional distributions, then they have the same law.

Proof of time inversion. A useful property to remember is that the law of a process is uniquely
determined by its finite dimensional distributions. In our case, the finite dimensional distributions

(Bt1
, · · · , Btn

)

of Brownian motion are Gaussian random vectors, and therefore characterized by their means
E[Bti

] = 0 and covariances Cov
�

Bti
, Bt j

�

= ti ∧ t j . Thus if we can show that (X t1
, · · · , X tn

) is a
Gaussian random vector with the same means and covariances we are done. To show that it is a
random vector, we simply note that

(t1B1/t1
, · · · , tn B1/tn

)

is the image under a linear isomorphism of the random vector

(B1/t1
, · · · , B1/tn

)

which is Gaussian. It is clear that E[ti B1/ti
] = ti E[B1/ti

] = 0 so all we need to understand now is the
covariances. Say s ≤ t

Cov
�

s B1/s , t B1/t

�

= s t Cov
�

B1/s , B1/t

�

= s t ·
1

t
= s

as required. All left to show is continuity. For t > 0 there is no question, so it remains to show
that (X t ) is continuous at t = 0. We have just determined that (X t ) and (Bt ) have the same laws
as processes, so let (qn ) be a sequence of rationals with qn ↓ 0. Since the laws agree, we have that
Xqn

d= Bqn
. By continuity of (Bt ), we have that Bqn

↓ 0 a.s. Now we use a fact that says that if two
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sequences of random variables (Xn ) and (Yn ) are equal in distribution for each n and Yn → c a.s,
then Xn → c a.s as well. ♥

Corollary 5.7 (Law of Large numbers) Almost surely, limt→∞
Bt
t = 0

Main idea: Immediate application of time inversion along with the fact that by continuity of Brownian
motion limt ↓0 Bt = 0 almost surely.

Proof. From time inversion, we know that t B1/t
(d )
= Bt , which means that

P
�

lim
t→∞

Bt

t
= 0

�

=P
�

lim
t ↓0

t B1/t = 0
�

=P
�

lim
t ↓0

Bt = 0
�

= 1

♥

Remark 5.8 An alternative proof to this, which gives more intuition as to why this is called "Law
of Large numbers", is that we can also phrase:

lim
n→∞

Bn

n
= lim

n→∞

1

n

n
∑

i=1

Bi −Bi−1
︸ ︷︷ ︸

iid∼N (0,1)

We now consider the following σ-algebra, which lets you look slightly into the future.

Definition 5.9 (Slightly augmented σ-algebra) Let (F B
t : t ≥ 0) be the natural filtration of (Bt : t ≥ 0)

and F +s be the σ-algebra given by
F +s =

⋂

t>s

F B
t

Remark 5.10 The simple Markov property of Brownian motion tells us that Bt+s − Bs is inde-
pendent of F B

s . Clearly F B
s ⊆F

+
s for all s , since in F +s we allow an infinitesimal glance into the

future. The next theorem says that (Bt+s −Bs ) is still independent of F +s

Theorem 5.11 For every s ≥ 0, the process (Bt+s −Bs : t ≥ 0) is independent of F +s .
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Main idea: Recall the characterisation of a process being independent of a sigma-algebra that is
discussed in the Appendix. Then, let (sn ) ↓ s . It follows that for any A ∈F +s , A will also be in Fsn

for
all n , and since (Bt+sn

−Bsn
) is a process independent of Fsn

(this is the Simple MP), we will be able
to separate expectations. Then some fiddling with DCT gives it.

Proof. We start by choosing any A ∈ F +s , and in light of the discussion in the Appendix about
independence, we want to show that for any f ∈Cb

��

Rd
�m �

and any t1, t2, · · · , tm > 0,

E[ f (Bt1+s −Bs , Bt2+s −Bs , · · · , Btm+s −Bs )1(A)] =P[A]E[ f (Bt1+s −Bs , Bt2+s −Bs , · · · , Btm+s −Bs )1(A)]

To do this, we will choose a sequence (sn ) ↓ s , then by continuity of Brownian motion we have
that

lim
n→∞

Bt+sn
−Bsn

= Bt+s −Bs

Now everything follows nicely.

E[ f (Bt1+s −Bs , Bt2+s −Bs , · · · , Btm+s −Bs )1(A)]
(1)
= lim

n→∞
E[ f (Bt1+sn

−Bsn
, Bt2+sn

−Bsn
, · · · , Btm+sn

−Bsn
)1(A)]

(2)
= lim

n→∞
P[A]E[ f (Bt1+sn

−Bsn
, Bt2+sn

−Bsn
, · · · , Btm+sn

−Bsn
)]

(3)
= P[A]E[ f (Bt1+s −Bs , Bt2+s −Bs , · · · , Btm+s −Bs )1(A)]

Where in (1) we have used the DCT to pull the limit outside of the expectation, in (2) we have
noted that since F +s ⊆Fsn

(this is because we assumed sn ↓ s ), it follows that A ∈Fsn
and so by

the Markov property, (Bt+sn
−Bsn

: t ≥ 0) is a process independent of Fsn
which means that we can

pull 1(A) out of the expectation. Step (3) follows by using DCT. ♥

Theorem 5.12 (Blumenthal’s 0 − 1 Law) The σ-algebra F +0 is trivial, i.e: if A ∈ F +0 , then
P(A) ∈ {0, 1}

Main idea: Any set A ∈F +0 is σ(Bt : t ≥ 0) measurable. However, by a previous result (Bt : t ≥ 0) is
independent of F +0 . Therefore A is independent of itself.

Proof. Let A ∈F +0 . Then A ∈σ(Bt : t ≥ 0) (Yes: if A ∈F +0 , then A ∈σ(Bs : 0≤ s ≤ t for all t > 0,
of course, these sigma algebras are contained in σ(Bs : 0 ≤ s )) . But by the previous theorem
we know that the process (Bt : t ≥ 0) is independent of F +0 , i.e: A is independent of F +0 and in
particular A is independent of itself. ♥

Now we have some remarkable property of Brownian motion in one dimension, it showcases how
erratically it oscillates immediately after it starts running:
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Theorem 5.13 Let (Bt ) be standard Brownian motion in 1-d. Let τ = inf{t > 0 : Bt > 0} and
σ= inf{t > 0 : Bt = 0}. Then

P(τ= 0) =P(σ= 0) = 1.

Main idea: The key idea is that the event {τ= 0} is something that depends on the immediate future
of Brownian Motion after it starts, it will be an F +0 -measurable event and so it will have probability
zero or one. Then by using the fact that Bt ∼ N (0, t ) you can show that P[τ = 0] > 0. To show
P[σ= 0] = 1, use the intermediate value Theorem.

Proof. The strategy to show these type of claims is to show that the event {τ= 0} is in F +0 , and
then show that it has positive probability. We start by noting that

{τ= 0}=
⋂

n≥1

§

for some 0<ε<
1

n
, Bε > 0

ª

︸ ︷︷ ︸

∈F B
1
n

Therefore {τ= 0} ∈F B
1/n for all n , and as such {τ= 0} ∈F +0 . Now we show that its probability is

not zero. To do this, we note that

P(τ= 0) =P

�

⋂

n

{τ≤ 1/n}
�

= lim
n→∞

P(τ≤ 1/n )

≥ lim
n→∞

P(B1/n > 0) = 1/2

Where the inequality comes from the fact that if B1/n > 0, then the first time that Brownian motion
goes above zero must be ≤ 1/n . The final equality comes from the fact that B1/n ∼ N (0, 1/n ),
which is symmetric about zero. The one for σ goes as follows. By a symmetric argument, we
have that inf{t > 0 : Bt < 0} = 0 almost surely. Therefore, by the intermediate value theorem and
the fact that B is continuous, we get that P[σ= 0] = 1. ♥

Proposition 5.14 (Brownian motion oscillates wildly near the origin) Let (Bt ) be Standard Brow-
nian Motion in one-dimension. Define St and It to be the running supremum and infimum up to
time t . Then for any ε> 0 one has that almost surely:

Sε > 0 and Iε < 0

In particular, due to continuity of Brownian motion, there exists a zero in any interval (0,ε).

92



Main idea: The key is to let (tn ) ↓ 0 be a sequence, and then show that P[Btn
> 0 i.o ] = 1. To do

this use the fact that {Btn
> 0 i.o } = {lim supn→∞Btn

> 0} and by the Reverse Fatou Lemma bound
this latter quantity by 1/2. Then show that {Btn

> 0 i.o } is F +0 measurable, which makes sense at it
depends only on the immediate future after the start of BM.

Proof. Let ε > 0 be given, we will show that with probability one, there will be some tn < ε for
which Btn

> 0, thus establishing the first claim. Indeed: let (tn ) be a sequence with tn ↓ 0. Then

P(Btn
> 0 infinitely often) =P

�

lim sup
n→∞

Btn
> 0

�

≥ lim sup
n→∞

P(Btn
> 0) =

1

2

Moreover, since
{Btn

> 0 infinitely often}=
⋂

n≥0

⋃

m≥n

{Btm
> 0}

︸ ︷︷ ︸

∈F B
tn

(⋆)

Where (⋆) follows because the event "for some m ≥ n , Btm
> 0" can be determined by knowing

the process up to time tn (since (tn ) is a decreasing sequence). Therefore it follows that {Btn
>

0 infinitely often} ∈ F +0 and so by Blumenthal’s Law, we have that Sε > 0 with probability one.
The second claim follows similarly by plugging in minus signs, which will change a sup into an inf,
but then using that −Bt

(d )
= Bt finishes the claim. ♥

Now we have one last property of the behavior of Brownian motion near the origin, which has to do
with Brownian motion hitting cones

C

Proposition 5.15 (Brownian motion hits cones immediately) Let (Bt ) be Standard Brownian
motion in Rd and let C be a cone in Rd , i.e: C = {u t : t > 0, u ∈ A} where A is any non-empty
open subset of the unit sphere in d -dimensions, then letting TC = inf{t ≥ 0 : Bt ∈C }, we have that
TC = 0 almost surely.
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Proof. First we note that since the cone expands to infinity, it is scaling invariant in the sense
that for any λ> 0, λC =C , so for any t > 0,

P(Bt ∈C ) =P
�

Btp
t
∈C

�

=P(B1 ∈C )

But since C has non-empty interior, this last probability is just µ(C ) where µ is the standard
Gaussian measure on Rd , and hence µ(C ) > 0. Therefore for any t , P(Bt ∈ C ) > 0. We will not
show this again explicitly, but since the event {TC = 0} depends on the immediate behavior of the
Brownian motion after t = 0, it is in F +0 (Indeed the argument is verbatim the same we used to
show that the event {τ0 = 0} ∈F +0 , where τ0 is the return time of zero). To show that P(TC = 0) = 1

it suffices to show (once again by Blumenthal) that P(TC = 0) > 0, this is once again a standard
argument:

P(TC = 0) =P

�

⋂

n≥0

§

TC ≤
1

n

ª

�

= lim
n→∞

P
§

TC ≤
1

n

ª

≥ lim
n→∞

P
�

B 1
n
∈C

�

> 0

♥

The moral of the property above is that when you start Brownian motion in Rd it must hit all of its
neighbouring regions, rather than move away from the origin immediately in a particular direction,
hence avoiding a particular cone. Now we have explored some properties of Brownian motion near the
origin, let us give one property of Brownian motion as t →∞.

Proposition 5.16 (Brownian motion oscillates between ±∞ for t →∞) Let (Bt ) be Standard
Brownian motion in one dimension. Then almost surely

sup
t≥0

Bt =∞ and inf
t≥0

Bt =−∞

Proof. For this we will utilise the scaling invariance of Brownian motion. In particular, we note
that for any λ> 0

sup
t≥0

Bt = sup
t≥0

Bλt
(d )
=
p

λsup
t≥0

Bt

Therefore, for any x > 0,

P
�

sup
t≥0

Bt > x
�

=P
�

sup
t≥0

Bt >
1
p
λ

x
�
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which means that for any x > 0, the probability that supt≥0 Bt > x is a constant. We can now use
this as follows:

P
�

sup
t

Bt =∞
�

= lim
n→∞

P
�

sup
t

Bt > n
�

(!)
= lim

n→∞
P
�

sup
t

Bt >
1

n

�

=P
�

sup
t

Bt > 0
�

= 1.

Where the step (!) came from the fact that for any x > 0, P
�

supt Bt > x
�

is constant. The second
claim follows immediately now. ♥

5.3 Strong Markov Property

Definition 5.17 ((Ft )-adapted Brownian motion) Let B = (Bt ) be Brownian motion on some prob-
ability space. We say that B is (Ft )-adapted if Bt is Ft -measurable and if for all s ≥ 0, the process:

(Bt+s −Bs : t ≥ 0)

is independent of Fs . (In some textbooks this is referred to as {Ft } being admissible)

Theorem 5.18 (Strong Markov Property K) Let (Bt ) be Brownian motion and T an almost surely
finite stopping time. Then

(BT+t −BT : t ≥ 0)

is standard Brownian motion independent of F +T .

Main idea: Discretize T into the usual Tn = 2−n ⌈2n T ⌉, and so Tn takes values of the form k 2−n . It is
easy to see that B (k )t = Bt+k 2−n − Bk 2−n is Brownian motion (Simple Markov Property) and so one can
show that Bt+Tn

−BTn
is Brownian motion independent of F +Tn

. One then passes limits.

Proof. We proceed as usual by approximating the stopping time from above by a stopping time
that takes on discrete values. We shall show the Strong Markov Property holds for these stopping
times and then use continuity to finish the claim.

We start by defining the Brownian motion B (k )t = Bt+k 2−n −Bk 2−n (this is indeed Brownian motion
by the Simple Markov Property). Now we discretize the stopping time T into the sequence
Tn = 2−n ⌈2n T ⌉ which has the property Tn ↓ T (Since T <∞ almost surely). Now define the object
B ∗t = Bt+Tn

−BTn
(it is not yet clear whether this is Brownian motion, the only thing that is clear
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is that it is continuous). First we show that this process, whatever it may be, is independent of
F +Tn

, and then we show it is Brownian motion. Consider any event of the form {B ∗ ∈ A} where A

is in the sigma algebra given to C
�

R+, Rd
�

and let E ∈F +Tn
. We can write the following:

P({B ∗ ∈ A}∩E )
(1)
=
∞
∑

k=0

P
�

{B ∗ ∈ A}∩E ∩{Tn = k 2−n}
�

(2)
=
∞
∑

k=0

P({B (k ) ∈ A}∩E ∩{Tn = k 2−n})

(3)
=
∞
∑

k=0

P(B (k ) ∈ A)P(E ∩{Tn = k 2−n})

(4)
=
∞
∑

k=0

P(B ∈ A)P(E ∩{Tn = k 2−n})

(5)
= P(B ∈ A)P(E )

Where (1) comes from the law of Total Probability, (2) comes from the fact that when working on
the event {Tn = k 2−n}, B ∗ = B (k ), (3) is slightly non-trivial: if E ∈F +Tn

, then E ∈FTn+s for all s > 0,
which means that by definition of the stopped σ-algebra,

E ∩{Tn = k 2−n}= E ∩{Tn + s = k 2−n + s } ∈Fk 2−n+s for all s

and so E ∩{Tn = k 2−n} ∈F +k 2−n , then you use the simple Markov Property to establish that B (k ) is
independent to F +k 2−n (see definition of B (k ) to convince yourself), and hence since we have just
established E ∩{Tn = k 2−n} ∈F +k 2−n we can split the probability as a product. (4) comes from the
fact that B (k ) is Standard Brownian Motion hence has the same distribution as B , and (5) comes
again from the law of Total Probability. We have just established that

P({B ∗ ∈ A}∩E ) =P({B ∈ A})P(E )

so we may take E =Ω i.e: the whole probability space, and we get that the processes B ∗ and B

have the same law. Therefore since B ∗ is continuous, we get that B ∗ is Brownian motion, and in
particular, we get that

P({B ∗ ∈ A}∩E ) =P(B ∗ ∈ A)P(E )

which establishes that B ∗ is Standard Brownian Motion independent of F +Tn
, now we just need to

establish that we can pass limits and thus finish the result.
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First we note that due to continuity of Brownian motion, we have that almost surely,

Bt+T −BT
︸ ︷︷ ︸

B̃ (t )

= lim
n→∞

(Bt+Tn
−BTn

︸ ︷︷ ︸

B ∗n (t )

)

and so the marginal distributions of the process (B̃ ) are described by

P(B̃ (t1) ∈ A1, · · · , B̃ (tk ) ∈ Ak ) =P
�

lim
n→∞

B ∗n (t1) ∈ A, · · · , lim
n→∞

B ∗n (tk ) ∈ Ak )
�

But since for all n we have shown that each B ∗n (ti ) is equal in distribution to Brownian motion
B (ti ), we have that B̃ has the same marginal laws as Brownian motion and hence its law is also
the same as of Brownian motion. All left to determine now is whether B̃ is independent of F +T .
This is not too bad, let A ∈F +T , t1, · · · , tk be given, and f ∈ Cb

�

(Rd )k
�

be given as well. Then by
the DCT we have that

E[1(A) f (B̃t1
, · · · , B̃tk

)] = lim
n→∞

E[1(A) f ([Bt1+Tn
−BTn

], · · · , [Btk+Tn
−BTn

])]

And since Tn > T for all n and A ∈ F +T , we have that for all s > 0, A ∈ FT+s ⊆ FTn+s (indeed
T + s < Tn + s after all) so A ∈ F +Tn

, so using what we have proven earlier in this proof, we have
that

E[1(A) f (B̃t1
, · · · , B̃tk

)] =P(A) lim
n→∞

E[ f ([Bt1+Tn
−BTn

], · · · , [Btk+Tn
−BTn

])]

and now passing the limit inside with the DCT finishes the proof. ♥

t

B (t )

T

t ′

B (T + t ′)−B (T )

Figure 6: The Strong Markov Property: if you stop Brownian Motion at a random time, and put on
a new set of axes, the picture you see has the same distribution as usual Brownian Motion.
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5.4 The Reflection Principle

Here we have an amazing property of Brownian Motion that is a very straightforward corollary to
the Strong Markov Property: the Reflection Principle. This is not only beautiful but also useful in
calculations.

Theorem 5.19 (The Reflection Principle) Let (Bt ) be Standard Brownian motion in R, and T an
almost surely finite stopping time. Then the process defined by (B̃t ) defined by

B̃ (t ) = B (t )1(t ≤ T ) + [2B (T )−B (t )]1(t > T )

is also Standard Brownian Motion, called Standard Brownian Motion reflected at T .

Remark 5.20 (Proof by waffle) You run your Brownian motion until time T , then if you put on
a new set of axes, the picture you get after time T is Standard Brownian Motion, which means
that if you reflect it, by invariance property, its also Standard Brownian Motion. Now you can
concatenate the processes and see that the laws stay the same.

Proof. We start by noting that the process

B (T ) = (Bt+T −BT : t ≥ 0)

is by the Strong Markov Property, a Standard Brownian Motion independent of (Bt : 0 ≤ t ≤ T ),
and similarly, the process −B (T ) is also SBM independent of the history of B up to the random
time T . Therefore, given that −B (T )

(d )
= B (T ), we have that the processes, on C (R+, R)×C (R+, R)

given by:
((Bt : 0≤ t ≤ T ), B (T )) and ((Bt : 0≤ t ≤ T ),−B (T ))

Have the same laws. Now we just need to somehow concatenate these maps and preserve the
equality of laws. Let us define the concatenation map that takes two processes X , Y ∈C (R+, R)

ΨT (X , Y ) := X t 1(t ≤ T ) + (XT +Yt−T )1(t > T )

if Y is started at zero, then it is easy to see that ΨT : C (R+, R)×C (R+, R)→C (R+, R), and moreover,
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it is also easy to see, by approximating T by discrete stopping times, that it is A ×A −A
measurable, where A is the sigma algebra of C (R+, R). This finishes the proof, because

P(B ∈ A) =P
�

ψT [((Bt : 0≤ t ≤ T ), B (T ))] ∈ A
�

=P
�

((Bt : 0≤ t ≤ T ), B (T )) ∈ (ψ−1
T (A))

�

!=P
�

((Bt : 0≤ t ≤ T ),−B (T )) ∈ (ψ−1
T (A))

�

=P(B̃ ∈ A)

Where the only tricky step, marked by an exclamation mark is due to the fact that we showed
that the two processes ((Bt : 0 ≤ t ≤ T ), B (T )) and ((Bt : 0 ≤ t ≤ T ),−B (T )) had the same law. This
shows that B and B̃ have the same law, and since B̃ is continuous, then it is also SBM.

♥

The reflection principle sometimes takes on a different fashion, given by the following result, which
tells us that the joint law of the running supremum of Brownian motion and the Brownian motion
itself can be understood simply in terms of the law of Brownian motion itself.

Corollary 5.21 (Reflection Principle, ♩) Let (Bt ) be Standard Brownian Motion in one dimension,
and let (St ) be the running supremum up to time t , then P(St ≥ b , Bt ≤ a ) =P(Bt ≥ 2b −a )

Main idea: The proof by English here is that on the event that St ≥ b , it means we have hit it the
level b at some stopping time Tb . Then we can reflect the motion at that point, and the event Bt ≤ a ,
means that the original BM travelled a distance of b −a downwards, so the reflected Brownian motion
travelled a distance of b −a upwards, so that the reflected BM, B̃ ended up at B̃t ≥ 2b −a . Then the
reflection principle ensures that all these probabilities match up.

Proof. The idea is to reflect B at the hitting time Tb . Note that {St ≥ b }= {Tb ≤ t }, so we have
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the following

P(St ≥ b , Bt ≤ a ) =P(Tb ≤ t , 2b −Bt ≥ 2b −a )
(1)
= P(Tb ≤ t , B̃t ≥ 2b −a )
(2)
= P(B̃t ≥ 2b −a )
(3)
= P(Bt ≥ 2b −a )

Where (1) comes from the fact that since B is continuous, BTb
= b , so by definition of B̃ and the

fact that we are working on the event that t ≥ Tb , we get that 2b −Bt = B̃t . (The reason why we
need the fact that B (Tb ) = b is that eB (t ) = B (t )1(t < T )+(2B (Tb )−B (t ))1(t ≥ T )) Then (2) comes
from the fact that since a ≤ b , then if B̃t ≥ 2b −a ≥ b , it must be that t ≥ Tb , indeed, the only
way B̃t can go above b is if Bt has gone above b , therefore {B̃t ≥ 2b −a } ⊆ {Tb ≤ t }. Finally (3)
comes from the Reflection Principle, which tells us that B̃ has the same law as B . ♥

Finally we have the following connection between the running maximum and the Brownian motion:

Corollary 5.22 For each t , St
(d )
= |Bt |.

Proof. We have the following simple calculation

P(St ≥ a )
(1)
= P(St ≥ a , Bt ≤ a ) +P(St ≥ a , Bt ≥ a )
(2)
= P(St ≥ a , Bt ≤ a ) +P(Bt ≥ a )
(3)
= 2P(Bt ≥ a )
(4)
= P(|Bt | ≥ a )

Where (1) comes from the Law of Total Probability and the fact that since Bt is a Normal random
variable, the probability that it is equal to a is zero, (2) comes from the fact that if Bt ≥ a , then
of course St ≥ a , and as such {Bt ≥ a } ⊆ {St ≥ a }, (3) comes from the Reflection Principle, and (4)
comes from the fact that Bt is normally distributed and hence symmetrically distributed. ♥

Remark 5.23 (Proof by waffle) A nice intuitive way to see what this has to do with the reflection
principle at a moral level, consider the following. If a Brownian path went above level a by time t ,
then by continuity it touched a at some stopping time Ta . Then you have to possibilities, either by
time t the path finished above a , which happens with probability P[Bt ≥ a ], or it finished below a .
If it finished below a , we can consider the reflection eB (t ) at time Ta , and now the probability that
our original path finished below a has become the probability that the reflection finishes above
a , but by the reflection principle this probability is simply the probability that the original path
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finished above a .
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5.5 Martingales and Brownian Motion

Proposition 5.24 Let (Bt : t ≥ 0) be Standard Brownian Motion on R. Then the processes (Bt )

and (B 2
t − t ) are both (F +t ) martingales.

Proof. To show that Brownian motion itself is a Martingale, we simply note that by the Markov
Property, the increment Bt −Bs , where t > s , is independent of the sigma algebra F +s (SMP with
the constant stopping time s ). Then by the independence property of conditional expectation:

E[Bt −Bs | F +s ] = E[Bt −Bs ] = 0

To show that the second process is a Martingale, we write

E[B 2
t − t | F +s ] = E[(Bt −Bs +Bs )

2− t | F +s ]

= E[(Bt −Bs )
2 | F +s ] +2E[Bt Bs | F +s ]−B 2

s − t
!= (t − s ) +B 2

s − t = B 2
s − s .

Where in the only tricky step, denoted by (!), we used the fact that Bt − Bs ∼N (0, t − s ) and is
independent of F +S , which means that E[(Bt −Bs )2 | F +s ] = E[(Bt −Bs )2] =Var (Bt −Bs ) = t − s . We
also used the fact that Bs ∈mF +s and that (Bt ) is anF +t Martingale to show that E[Bt Bs | F +s ] = B 2

s .
♥

Remark 5.25 In the above proposition, we saw that if we consider the function f (x ) = x 2, the
correct thing to subtract from f (Bt ) to turn this into a Martingale was t . Let’s observe in a discrete
setting, say on a random walk on the integers, whether we can see a more general behavior. Let
(Sn ) be simple symmetric random walk on Z and consider a function f : Z→R. Then

E[ f (Sn+1) | Fn ] = f (Sn ) +
1

2

�

f (Sn +1)−2 f (Sn ) + f (Sn −1)
�

:= f (Sn ) +
1

2
∆̃ f (Sn )

Therefore we see that

f (Sn )−
1

2

n−1
∑

t=0

∆̃ f (St )
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is a Martingale, indeed:

E

�

f (Sn )−
1

2

n−1
∑

t=0

∆̃ f (St )

�

�

�

�

Fn−1

�

= f (Sn−1) +
1

2
∆̃ f (Sn−1)−

1

2

n−1
∑

t=0

∆̃ f (St )

= f (Sn−1)−
1

2

n−2
∑

t=0

∆̃ f (St )

This gives some motivation, and in the continuous case, instead of having ∆̃, we will have the
Laplacian:

∆ f =
d
∑

i=1

∂2 f

∂x 2
i

Note that the discrete-Laplacian we wrote before does indeed give rise to this new when going
from the discrete case to the continuous. Because in a very brutal approximation, we may say

f ′′(x )≈ f (x +1)−2 f (x ) + f (x −1)

We now see how this generalises to Brownian motion:

Theorem 5.26 Let B be Brownian Motion in Rd and let f (t ; x ) ∈C 1,2
b

�

R+×Rd
�

. Then the process
defined by

Mt = f (t , Bt )− f (0, B0)−
∫ t

0

�

∂

∂t
+

1

2
∆

�

f (s , Bs )d s

is an F +t -Martingale.

Proof. Integrability is clear due to the boundedness of f and its derivatives. The meaty substance
will be to show the Martingale property. For this we must show that E[Mt+s −Ms | F +s ] = 0. First
note that

Mt+s −Ms = f (t + s , Bt+s )− f (s , Bs )−
∫ t+s

s

�

∂

∂r
+

1

2
∆

�

f (r, Br )d r

= f (t + s , Bt+s )− f (s , Bs )−
∫ t

0

�

∂

∂r
+

1

2
∆

�

f (r + s , Br+s )d r

Let’s first take a look at f (t + s , Bt+s ). We have the following:

E[ f (t + s , Bt+s ) | F +s ] = E[ f (t + s , Bt+s −Bs +Bs ) | F +s ]

(K)
=

∫

Rd

f (t + s , x +Bs )pt (0, x )d x

Where pt (0, x ) is the standard d -dimensional Gaussian distribution, which we refer to as the tran-
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sition density. The important step, K, is intuitively due to the following facts: since Bt+s −Bs ∼
N (0, t I), we can condition f on the value of Bt −Bs and then integrate against the density. More-
over, once we have conditioned on the value of Bt − Bs , f becomes F +s measurable, so we can
forget about the expectation. The actual result being used here can be found in the appendix 8.10.

Now we look at the big integral term in the definition of Mt+s −Ms , and compute its conditional
expectation. We quickly refer the reader to the Fubini Trick on the Appendix. Using this trick
and the boundedness of f , we have that

E

�∫ t

0

�

∂

∂r
+

1

2
∆

�

f (r + s , Br+s )d r

�

�

�

�

F +s

�

=

∫ t

0

E

�

�

∂

∂r
+

1

2
∆

�

f (r + s , Br+s )

�

�

�

�

F +s

�

d r

Now we can compute the expectation inside the integral on the right hand side using an analogous
trick to what we did before. We note that writing Br+s = Br+s − Bs + Bs , and that Br+s − Bs is
independent of F +s and that once we condition on its value, f and its derivatives will be F +s -
measurable, we get that

E

�∫ t

0

�

∂

∂r
+

1

2
∆

�

f (r + s , Br+s )d r

�

�

�

�

F +s

�

=

∫ t

0

∫

Rd

�

∂

∂r
+

1

2
∆

�

f (r + s , x +Bs )pr (0, x )d x d r

= lim
ε↓0

∫ t

ε

∫

Rd

�

∂

∂r
+

1

2
∆

�

f (r + s , x +Bs )pr (0, x )d x d r

= lim
ε↓0

∫

Rd

∫ t

ε

�

∂

∂r
+

1

2
∆

�

f (r + s , x +Bs )pr (0, x )d r d x

= lim
ε↓0

∫

Rd







�

pt (0, x ) f (t + s , x +Bs )−pε(0, x ) f (ε+ s , x +Bs )
	

−
∫ t

ε

f (r + s , x +Bs )
�

∂

∂r
+

1

2
∆

�

pr (0, x )
︸ ︷︷ ︸

=0






d x

= lim
ε↓0

∫

Rd

�

pt (0, x ) f (t + s , x +Bs )−pε(0, x ) f (ε+ s , x +Bs )
	

d x

= E
�

f (t + s , Bt+s ) | F +s
�

+ lim
ε↓0

∫

Rd

pε(0, x ) f (ε+ s , x +Bs ) = E
�

f (t + s , Bt+s ) | F +s
�

+ f (s , Bs )

Thus showing the Martingale property. ♥

Let us see one more example of a Martingale arising from Brownian motion:

Proposition 5.27 Let B be Standard Brownian Motion in d dimensions, and let u ∈ Rd . Then
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the process

M u
t = exp

�

〈u , Bt 〉−
|u |2t

2

�

is a (F +t )-Martingale.

Proof. We first recall from elementary probability, that if X ∼N (a, v) is a multidimensional normal
distribution, then the MGF

MX (t) = exp
�

t ·a+
1

2
tT vt

�

From this we get that

• M u
t is integrable, because:

E[M u
t ] = exp

�

t

2

d
∑

i=1

u 2
i −
|u |2t

2

�

<∞

• M u
t satisfies the Martingale property, because

E[M u
t | F

+
s ] = exp

�

−
|u |2t

2

�

E
�

〈u , Bt −Bs +Bs 〉 | F +s
�

= exp

�

−
|u |2t

2

�

exp (〈u , Bs 〉)E
�

exp 〈u , Bt −Bs 〉 | F +s
�

(1)
= exp

�

−
|u |2t

2

�

exp (〈u , Bs 〉)E[exp 〈u , Bt −Bs 〉]

(2)
= exp (〈u , Bs 〉)exp

�

−
|u |2t

2

�

exp

�

|u |2(t − s )
2

�

=M t
s

Where (1) is due to the fact that 〈u , Bt −Bs 〉 is independent of F +s as shown by the Markov
property, and (2) is due to the fact that Bt −Bs ∼N (0, (t −s )I), so the expectation is nothing
but the MGF and so we can use the formula at the start of the proof.

♥
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5.6 Recurrence and Transience

Armed with these Martingale results, we are ready to explore some more properties of Brownian
motion. In particular, we will see how the dependence on the dimension of Brownian motion can tell
us information about how often (if at all) it revisits certain points.

Definition 5.28 We denote with Px the probability measure P conditioned to Brownian motion
starting at x , i.e:

Px [Bt ∈ A] =P[Bt ∈ A | B0 = x ]

For example, under Px , the process (Bt − x : t ≥ 0) is Standard Brownian Motion

Theorem 5.29 (Recurrence and Transience of Brownian Motion) Let B be Brownian motion in
d dimensions:

• If d = 1, then for any x ∈R, we have that P0-almost surely:

{t ≥ 0 : Bt = x }

is unbounded. Meaning that Brownian motion is point recurrent.

• If d = 2, then B is neighbourhood recurrent, meaning that for any x , z ∈ R2 and any fixed
ε> 0, we have that Px -almost surely:

{t ≥ 0 : |Bt − z | ≤ ε}

is unbounded. However, Bt does not hit points, i.e for any x ∈ R2: P0(∃t > 0 : Bt = x ) = 0.
(This is wild)

• If d = 3, then Brownian motion is transient, i.e: P0-almost surely,

|Bt | →∞

Proof. The proof for d = 1 follows from the previous result where we showed that

P0

�

lim sup
t→∞

Bt =∞
�

=P0

�

lim inf
t→∞

Bt =−∞
�

= 1

and so by continuity of Brownian motion, it must be that each point x ∈R is visited by Brownian
motion infinitely many times with probability 1.

For d = 2, we show the claim for z = 0 and BM started from any x ∈ R2. We first show that for
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any ε > 0, almost surely B will hit the ε-neighbourhood of zero. To do so, we fix ε < |x |< R and
select a function ϕ ∈ C 2

b (R
2) that agrees with log |y | on ε < |y | < R (Although we haven’t shown

this function exists, intuitively, we know it should). Then one can verify that on ε≤ |y | ≤ R , one
has that ∆ϕ = 0, this just amounts to computing a bunch of derivatives. Therefore, using the
Theorem we showed about Martingales for Brownian motion, we know that

Mt =ϕ(Bt )−
1

2

∫ t

0

∆ϕ(Bs )d s

is a F +t -martingale. (Notice that we have dropped the ϕ(B0) that would be missing if we wrote
everything according to the Theorem, but if Mt is a Martingale, then so is Mt+C for any constant).
Notice that to write this integral we noted that ϕ is only spatially dependent, not time dependent.
Now we can construct two stopping times, S = inf{t > 0 : |Bt | = ε} and TR = inf{t > 0 : |Bt | = R }.
Then H = S ∧TR is an almost surely finite stopping time (to see why its a.s finite, just think of 2d
BM as two 1d BM that run together, each of these BM will oscillate in their axis between ±∞).
And since R was chosen large enough (and x can be assumed to not start in the epsilon ball),
we know not only that the Martingale Mt∧H is bounded, but also that it will take values in the
annulus of radii ε and R , which means that on this range, ∆ϕ = 0, and so

Mt∧H = log |Bt∧H | is a bounded Martingale.

We may therefore apply the Optional Stopping Theorem, and see that

Ex [log |BH |] = log |x |

But on the other hand:

Ex [log |BH |] = logεPx (S < TR ) + log R Px (S > TR )

Solving these equations yields that

Px (S < TR ) =
log R − log |x |
log R − logε

→ 1 (R →∞)

Therefore

Px (S <∞) =Px

�

⋃

R>0

{S < TR }
�

= lim
R→∞

Px (S < TR ) = 1

since the events {S < TR } form an increasing sequence. In conclusion, we have that Px almost
surely, there is some finite time t > 0 for which Bt reaches the ε-neighbourhood around zero. To
extend this result to show that actually Bt visits this neighbourhood infinitely often, we will first
let Bt reach the neighbourhood, then let it run for a bit, and use the Markov property to restart
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the motion at this new point, then we can reuse the result, and keep going forever.

Now we finally have that for any n > 0, we have that

Px

�

|Bt |= ε for some t ≥ n
	

=Px

�

|Bn+t −Bt +Bt |= ε for some t ≥ 0
	

(1)
=

∫

R2

P0

�

|Bt + y |= ε for some t ≥ 0
	

pn (x , y )d y

(2)
=

∫

R2

Py

�

|Bt |= ε for some t ≥ 0
	

pn (x , y )d y

(3)
= 1

Where (1) comes from the fact that Bn+t − Bn has the same distribution as a Brownian Motion
started at zero, and in this same step, Bn is the position at time n of Brownian motion started
at x , hence why we condition on its position being y and then integrate against pn (x , y ). Step
(2) comes from the fact that if we add a constant to standard Brownian Motion, then the result
is Brownian Motion started at said constant. Step (3) is due to the fact that we have shown that
for all y ∈R2, Py

�

|Bt |= ε for some t ≥ 0
	

= 1, and then pn (x , y ) is a probability distribution so it
integrates to one (the x is just a fixed constant, don’t get confused). Finally:

Px (#{t > 0 : |Bt |= ε}=∞) =Px

�

⋂

n≥0

�

|Bt |= ε for some t ≥ n
	

�

= lim
n→∞

Px

�

|Bt |= ε for some t ≥ n
	

= 1

Where the limit was extracted as
�

|Bt |= ε for some t ≥ n
	

is a decreasing sequence of events.

To now show that the probability of hitting any actual point is zero, we will show that the
probability to hit zero from any starting point is zero, and then by translational invariance of
Brownian motion, the general claim will follow. Recall that S was defined as the least time for
which Brownian motion reached a distance of ε away from the origin, and we saw that

Px (S < TR ) =
log R − log |x |
log R − logε

→ 0 (ε→ 0)

And if we also send R →∞, we have that the probability of reaching 0 from x ̸= 0 in any finite
time is of zero. To show the case for x = 0, i.e: to show that

P0(Bt = 0 for some t > 0) = 0
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We use once again a similar technique to what we have for a > 0:

P0(Bt = 0 : t ≥ a ) =P0(Bt+a −Ba +Ba = 0 : t ≥ 0)

=

∫

R2

P0(Bt+a −Ba + y = 0 : t ≥ 0)pa (0, y )d y

=

∫

R2

Py (Bt = 0 : t ≥ 0)
︸ ︷︷ ︸

=0

pa (0, y )y = 0

Now sending a → 0 finishes the claim.

For d ≥ 3: since the first three components of BM in d dimensions form a Brownian Motion in 3

dimensions, it suffices to treat the case for d = 3. The strategy is very similar to the case d = 2,
with the difference that we will get a different result. Let B0 = x , and choose ε and R small and
large enough so that ε ≤ |x | ≤ R . If we define S (ε) to be the first hitting time of the ε-ball, and
T (R ) to be the first exit time of the R -ball, we can now choose a function f ∈C 2

b (R
3) such that

f (y ) =
1

|y |

for ε ≤ |y | ≤ R . Then one can compute that ∆ f = 0 on the annulus ε ≤ |y | ≤ R . Therefore, we
have that { f (Bt )}t is a F +t Martingale. Moreover, if we let H = S (ε)∧T (R ), we have that { f (Bt∧H )}
is a bounded Martingale, so by the OST:

Ex

�

1

|BH |

�

=
1

|x |

but likewise:
Ex

�

1

|BH |

�

=Px [S (ε)< T (R )] ·
1

ε
+Px [S (ε)> T (R )] ·

1

R

and using the fact that Px [S (ε)< T (R )]+Px [S (ε)> T (R )] = 1, we can solve and see that

Px [S (ε)< T (R )] =
|x |−1−R−1

ε−1−R−1

And so if we take R →∞, we have that the probability of ever visiting the ball centred at 0 with
radius ε when starting from |x | ≥ ε is ε/|x |. We now use this to show that

P0[|Bt | →∞ as →∞] = 1.

Let τ(R ) be the return time to distance R : inf{t > 0 : |Bt |= R } (Observe the strictly greater than
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sign). Then we define the events

An = {|Bt |> n for all t ≥τ(n 3)}

i.e: the events that once distance n 3 from the origin is reached, the distance to the origin is always
above n . Of course, we also have by unboundedness that P0[τ(n 3)<∞] = 1. We will show that
An occurs for all n large enough, and so the claim will follow. First note that

P0[A
c
n ] =P0

��

�Bt+τ(n 3)−Bτ(n 3)+Bτ(n 3)

�

�≤ n for some t ≥ 0
�

= E0

�

P0

�

|Wt +Bτ(n 3)| ≤ n for some t ≥ 0 | Bτ(n 3)

��

= E0[PB (τn3 ) (τ(n )<∞)]

Where Wt = Bt+τ(n 3)−Bτ(n 3) is Standard Brownian Motion by the Strong Markov Property, and we
have conditioned on the value of B (τn 3). Now we can use the result we obtained above, namely
that if you start at some |x | ≥ ε, the probability of ever hitting the ε ball is ε/|x |, and so we
conclude that

PB (τn3 ) (τ(n )<∞) =
n

n 3
=

1

n 2

Where we have of course used the continuity of Brownian Motion to use that |B (τn 3)|= n 3. There
we have that P0[Ac

n ] is summable and so it can only occur for a finite amount of times by Borel-
Cantelli. This implies that eventually, An holds, and so |Bt | gets further and further away from
the origin. ♥
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C ∩Br (x ) ∈D c x

D ′

Figure 7: On the left an example that satisfies the cone condition at x , on the right, we have the
plane R2 with the x -axis cut, i.e: R2 \{(x , 0) : x ∈R}. The boundary of this set is the x -axis but it does
not satisfy the cone condition at any point in the boundary.

5.7 Dirichlet Problem

Definition 5.30 (Domain) An open connected subset D ⊆Rd is called a domain.

Let’s recall the Dirichlet Problem:

Dirichlet Problem: Let D be a domain and f : ∂D →R be a continuous function on the boundary.
Find a function u : D̄ →R that satisfies:

• u is harmonic in D , i.e: ∆u = 0 in D .

• u has the boundary condition u = f on ∂D .

It turns out that one can solve the Dirichlet problem on certain "good" subsets of Rd by using Brownian
motion. This regularity condition is given by the Poincaré cone condition:

Definition 5.31 (Poincaré cone condition) A domain D is said to satisfy the Poincaré Cone Con-
dition at a point x ∈ ∂D if there exists a nonempty open cone C with origin at x such that
C ∩B(x , r )⊆D c for some r > 0.
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Theorem 5.32 (Dirichlet Problem) Let D be a bounded domain in Rd such that each point on
the boundary satisfies the cone condition. Suppose ϕ is a continuous function on ∂D . Let T∂D be
the hitting time of the Brownian motion of the boundary of the domain, which is an almost surely
finite stopping time when starting in D . Then the function

u (x ) = Ex [ϕ(BT∂D
)] x ∈ D̄

is the unique continuous function that satisfies

• ∆u = 0 on D , i.e: u is harmonic.

• u (x ) =ϕ(x ) on ∂D

We first provide a useful characterisation of harmonic functions, which in plain English tell you that
harmonic functions are those whose value at a point x is the average of the values of the function in
its neighbouring regions.

Theorem 5.33 (Characterisation of Harmonic functions) Let D ⊆Rd be a domain and u : D →R

be measurable and locally bounded. Then the following are equivalent:

• u ∈C 2(Rd ) and ∆u = 0.

• For any ball B(x , r )⊆D we have that

u (x ) =
1

L (B(x , r ))

∫

B(x ,r )

u (y )d y .

• For any ball B(x , r )⊆D we have that

u (x ) =
1

σx y (∂B(x , r ))

∫

∂B(x ,r )

u (y )dσx y (y )

Where σx y is the surface area measure on B(x , r ).

We now need some further tools that will aid in the proof of the Dirichlet Problem. If you stare at the
statement of the Maximum Principle, the result will not seem surprising. Indeed, if we have established
that harmonic functions are those whose values at a point are determined by the average around the
point, if the function attains a maximum at a point in the domain where it is harmonic, then the
average of the function around that point must also be the maximal, but since the other points can’t
be any "hotter", it must be that all the neighbouring points have the same temperature.
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Theorem 5.34 (Maximum principle) Suppose that u : Rd →R is a harmonic function on D ⊆Rd .
Then

• If u attains its maximum in D , then u is a constant in D .

• If u is continuous on D̄ and D is bounded, then

max
x∈∂D

u (x ) =max
x∈D̄

u (x )

Main idea: The proof is just a formalisation of the discussion above. The idea is to show that the set
of points that attain the maximum inside D is clopen. Since D is connected then the proof follows.
Showing its closed follows from continuity of u , openness follows from formalising the argument above.

Proof. For the first part, let M be its maximum and let V = {x ∈D : u (x ) =M }. Then notice two
things:

• If (xn ) is a converging sequence in V , with limit x ∈ D , we have that by continuity of u ,
u (x ) = lim u (xn ) =M so V is closed in D .

• Since D is open, for any x ∈V , there is some radius r such that B(x , r )⊆D , which means,
by the characterisation of harmonic functions, that

M = u (x ) =
1

L (B(x , r ))

∫

B(x ,r )

u (y )d y ≤M

Which can only be true if for almost all y ∈B(x , r ) we have that u (y ) =M , but by continuity
of u it must actually be that u (y ) =M for all y ∈B(x , r ) which means that B(x , r )⊆V and
so V is open.

It follows V is clopen, but by assumption V is not empty, and since D is connected, it only admits
trivial clopen sets, which means that V =D .

For the second part, since u is continuous on D̄ , it must attain its maximum on D̄ . If u is
constant then the claim follows trivially. If u is not constant, then by part one, it can’t attain its
maximum on D , so it must attain its maximum on ∂D .

♥

The following corollary of the Maximum Principle will be crucial for proving unicity of the solution to
the Dirichlet Problem.
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Figure 8: Proof by picture, cone hitting Lemma

Corollary 5.35 Suppose that two functions u1, u2 : Rd → R are harmonic on a bounded domain
D and continuous on D̄ . If they agree on ∂D , then they are the same function.

Main idea: This follows immediately from the fact that harmonic functions form a linear space, so
in particular u1 − u2 is harmonic, and the fact that harmonic functions attain their maximum in the
boundary of the domains.

Proof. It is clear that harmonic functions form a linear space, so u1− u2 is also harmonic on D .
Since u1− u2 is also continuous on D̄ and D is bounded by assumption, the maximum principle
says that

max
D̄
(u1−u2) =max

∂D
(u1−u2) = 0,

where the last equality follows by hypothesis of agreement on the boundary. Therefore u1 ≤ u2.
Repeating the argument switching u1 and u2 gives the desired equality. ♥

We are now ready to solve the Dirichlet problem. Just kidding, we have one more Lemma:

Lemma 5.36 (Cone hitting Lemma) Let x ∈Rd be at a distance at most 2−k from the origin, and
let C be a cone centered at the origin. Let T∂B(0,1) and TC denote the hitting times of the radius
one ball about the origin and the cone respectively of Brownian Motion started at x . Then there
is some a < 1 such that

Px [T∂B(0,1) < TC ]≤ a k

Proof. The proof is by the Strong Markov Property and scale invariance. First of all, let’s define

a = sup
|x |< 1

2

Px [T∂B(0,1)<TC
]< 1
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Now, if we have Brownian Motion started at x where x ∈ B(0, 2−k ). Then we note that the
probability of reaching ∂B(0, 2−k+1) before hitting the cone is at most some constant a , this is by
scale invariance. If we hit the boundary of the ball of radius 2−k+1 before the cone, we can restart
Brownian Motion here, and since this is at half the distance to the boundary of the next ball, i.e:
the ball of radius 2−k+2, once again by scale invariance we have that the probability of reaching
the boundary of the ball before the cone is a . Iterating this until we reach the ball of radius 1,
we get the desired conclusion. (Where the fact that we multiply the a ’s comes from the fact that
SMP guarantees that all these Brownian motions are independent) ♥

Now we are finally ready.

Proof of Dirichlet Problem, Theorem 5.32. By hypothesis of D being bounded, we automatically
get that u is bounded (and hence locally bounded). We now show that u as defined, i.e:

u (x ) = Ex [ϕ(BT (∂D ))]

is a harmonic function, we do so by checking the third equivalent condition found in Theorem
Characterisation of Harmonic Functions (Theorem 5.33). Let B(x , r )⊆D be any ball centered at
x that is contained in D . We will run the motion until we reach the boundary of the ball, almost
surely in finite time, and then restart the motion. It will be clear how the averaging is done. Let
H be the hitting time of the boundary of the ball B(x , r ), then:

u (x ) = Ex [ϕ ◦B (T∂D )]

= Ex [Ex [ϕ ◦B (T∂D ) | FH ]] (Tower Law)

= Ex [EB (H )[ϕ ◦B (T∂D )]] (Strong Markov Property)

= Ex [u (BH )]

=
1

σx ,r (B(x , r ))

∫

∂B(x ,r )

u (y )σx ,r (d y )

Where the last equality simply comes from the fact that B (H ) lives on the boundary of the ball
B(x , r ), and since Brownian Motion was started at the centre of the ball, intuitively, it will hit the
boundary of the ball uniformly at random. Here of course σx ,r simply denotes the area measure of
the ball centered at x of radius r . Since the value of u at a point x ∈D is simply the average of
the value of its neighbours, its intuitively clear that it is continuous at x . The only thing we have
to show is that u is continuous in ∂D . For this we are going to need the Cone hitting Lemma.
Note the following facts:

• If y ∈ ∂D , then u (y ) =ϕ(y ), which is assumed to be continuous on the boundary, meaning
that if z and y are both points in ∂D , if ε> 0 is given, then for some tolerance |z − y |<δ,
we have that |ϕ(z )−ϕ(y )|<ε.
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• If z ∈ ∂D and C is the cone centered at z that is guaranteed to exist by the cone condi-
tion, by the Cone hitting Lemma, we have that if x ∈ D̄ is such that x ∈ B(z , 2−kδ), then
P[T∂B(z ,δ) ≤ TC ]< a k for some a < 1.

Finally we are armed to show continuity of u at ∂D and finish the proof. If z ∈ ∂D and x ∈ D̄

with |z − x | ≤ 2−kδ, then:

|u (x )−u (z )|=
�

�Ex [ϕ ◦B (T∂D )−ϕ(z )]
�

�

=
�

�Ex

��

ϕ ◦B (T∂D )−ϕ(z )
� �

1(TC ≤ T∂B(z ,δ)) +1(TC > T∂B(z ,δ))
���

�

≤ εPx [TC ≤ T∂B (z ,δ)] +2




ϕ






∞Px [1(TC > T∂B(z ,δ)]

≤ ε+a k

Now by taking k large enough, i.e: imposing the original x to be just closer to z if needed, this
can be made as small as you want. ♥
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5.8 Donsker’s Invariance Principle

We know very well that if {Xn} is an i.i.d sequence of finite mean and variance, then

p
n

�

1

n

n
∑

i=1

X i −µ

�

converges in distribution to a N (0,σ2) random variable. Thus in some sense, the Normal random
variable is the universal object for random variables. It would not seem a surprise if a similar result
held for Brownian Motion, as we would expect in some sense Brownian Motion to be the universal
object for random walks.

Definition 5.37 (Norm of a function) For a function f ∈ C ([0, 1], R), we define uniform its norm




 f




 as supx∈[0,1] | f (x )|.

Theorem 5.38 (Donsker’s Invariance) Let {Xn} be a sequence of IID random variables with
common law µ, such that E(Xn ) = 0 for all n and 0 < E(X 2

n ) = σ <∞. Let S0 = 0 and Sn =

X1+ · · ·+Xn . Define the linear interpolation

St = (1−{t })S⌊t ⌋+ {t }S⌊t ⌋+1

Where {t }= t −⌈t ⌉. Then we can speed up time by a factor of N and rescale space by a factor of
p

Nσ2, and we will obtain that

S [N ] :=
�

SN tp
Nσ2

: 0≤ t ≤ 1
�

=⇒ (Bt )t ∈[0,1]

We will first show another result which we will use in proving Donsker’s Invariance Principle.

Theorem 5.39 (Skorokhod Embedding) Let µ be a measure on R of mean zero and finite variance
σ2. There exists a Probability Space (Ω,F , P) equipped with a filtration {Ft }, an adapted Brownian
Motion B and a sequence of stopping times {Tn}, so that

• The process (Tn ) is a random walk (has independent increments) of mean σ2.

• The process Sn defined by B (Tn ) is a random walk with step distributed according to µ.

Remark 5.40 What this Theorem is telling us is that if we have any random walk Sn , we can
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construct a sequence of stopping times such that when we look at the Brownian Motion at those
times we see exactly Sn .

Proof of Skorokhod’s Theorem. The idea is to choose our stopping times {Tn} to be the exit times
of our Brownian Motion out of a sequence of randomly chosen intervals. The structure of µ will
determine how we choose these intervals. Let us first define the following two objects:

µ+/−(A) =µ(+/−A)

For a Borel set A ∈B ([0,∞)). These objects are measures, but not probability measures. Construct
a probability space with a Brownian Motion (Bt ) and a sequence (Xn , Yn ) of Random Variables that
are independent of the Brownian Motion, that are IID and chosen from the probability measure
ν(d x , d y ) where

ν(d x , d y ) =C (x + y )µ−(d x )µ+(d y )

As for the filtration on which we are going to define our stopping times, we set F0 =σ((Xn , Yn ) :

n ∈N) and Ft =σ(F0,F B
t ). Then define T0 = 0 and inductively:

Tn = inf{t > Tn−1 : Bt+Tn−1
−BTn−1

∈ {−Xn , Yn}}

It is clear that Tn is an Fn stopping time. Now we just need to show that this choice of stopping
times satisfies the claim.

• Calculation: Since µ was assumed to have zero mean, we conclude that

0=

∫ 0

−∞
xµ(d x ) +

∫ ∞

0

yµ(d y ) (⋆)

Moreover, since ν was normalised by C to be a probability measure, we have that

1=

∫

ν(d x , d y ) =C

∫ ∫

(x + y )µ−(d x )µ+(d y )

=C

∫ ∞

0

�∫ ∞

0

xµ−(d x ) + yµ−(R
+)

�

µ+(d y )

=C

�∫ ∞

0

xµ−(d x )µ+(R
+) +

∫ ∞

0

yµ+(d y )µ−(R
+)

�

Now we note from (⋆) that

∫ ∞

0

yµ(d y ) =−
∫ 0

−∞
xµ(d x ) =

∫ ∞

0

xµ−(d x )
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And so combining we have that

1=C (µ+(R
+) +µ−(R

+))

∫ ∞

0

xµ−(d x )

But since µ−(R+) =µ(R−) we have that

1=C

∫ ∞

0

xµ−(d x )

Which once again, rearranging and whatnot gives that

C

∫ 0

−∞
(−x )µ(d x ) =C

∫ ∞

0

yµ(d y ) = 1

We’re ready to roll. First note that our objective number one is to show that the steps Tn+1−Tn

are independent and have mean σ2. However, to simplify our calculations, we make the following
observation. Recall how

Tn = inf{t > Tn−1 : Bt+Tn−1
−BTn
∈ {−Xn , Yn}}

This is of course equivalent to saying that Tn − Tn−1 = inf{t > 0 : Bt+Tn−1
− BTn−1

∈ {−Xn , Yn}}.
Of course by the Strong Markov Property, {B (t +Tn−1)− B (Tn−1)} is Standard Brownian Motion
independent of F +Tn−1

. Since the pair (Xn , Yn ) is independent of everything, it follows that Tn−Tn−1

is independent of F +Tn−1
and as such the increments are independent. Since the pairs (Xn , Yn ) are

identically distributed, it also follows that the increments Tn −Tn−1 are identically distributed, so
we only need to really show that E[T1−T0] which by definition is just E[T1] equals σ2. Now recall
how T1 is just the hitting time of the set {X1, Y1}, so by conditioning on the value of (X1, Y1) we
can just employ Gambler’s Ruin:

E[T1] = E[E[T1 | X1, Y1]]

(!)
=

∫ ∞

0

∫ ∞

0

x y ν(d x , d y )

=C

∫ ∞

0

∫ ∞

0

x y (x + y )µ−(d x )µ+(d y )

=

∫ ∞

0

x 2

�

C

∫ ∞

0

yµ+(d y )

�

µ−(d x ) +

∫ ∞

0

y 2

�

C

∫ ∞

0

xµ−(d x )

�

µ+(d y )

(!!)
=

∫ 0

−∞
x 2µ(d x ) +

∫ ∞

0

y 2µ(d y ) =σ2

Where step (!) is our beloved Independence Lemma, and step (!!) comes from the computations we
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did in the "Calculation" step above. A similar argument, which I’m too tired to reproduce, shows
the claim for Sn . ♥

Remark 5.41 A much much easier version of this Theorem is for the case when X takes only
two values a and b . In this case, we define T as the first exit time of the interval (a , b ), and by
some easy Martingale computations using the Martingale B and the Martingale B 2− t , we see that
B (T )∼ X and that E[T ] = E[X 2].

With this Theorem we can now prove finally Donsker’s Theorem.

Proof of Donsker’s Theorem. I will reproduce the proof of Donsker’s Invariance from the “simpler"
assumption that for a random variable X with mean zero and variance 1 (this is without loss of
generality since we can just rescale the random walk later on), we have a stopping time T such
that B (T )∼ X .

• Let us first construct the sequence of stopping times that embed the random walk into the
Brownian Motion: By our assumption, we have a T1 such that B (T1)∼ X . Then by starting
the Brownian Motion afresh at T1, we can repeat the use of the assumption, and for this
restarted Brownian Motion, find a stopping time T ′2 such that at T ′2 , the restarted walk has
law of X . Hence if w let T2 = T1+T2, we see that for our original Brownian Motion, B (T2)∼ X .
Inductively we find all the stopping times T1 < T2 < · · · .

Now we start proving the Invariance principle.

• Recall that if (Sn )n is the random walk with step distribution given by X , we may extend
linearly, and then rescale, so that we have

S ∗n (t ) :=
1
p

n
Sn (t ).

• Define Wn (t ) =
B (n t )p

n and let ε> 0 be given. We are going to prove that

P
�

sup
t≤1

�

�Wn (t )−S ∗n (t )
�

�>ε

�

→ 0. (1)

Suppose momentarily that we have shown this to be true. Let us quickly show how this
actually finishes the claim. Let K ⊆C ([0, 1]) be a closed subset of the space of continuous
functions on the interval [0, 1] (closed with respect to the supremum norm). By Portman-
teau’s Theorem condition 2, it suffices to show that lim supn→∞P

�

S ∗n ∈ K
�

≤ P(B ∈ K ), but
observe that if we define K [ε] to be the ε-fattening of K with respect to the supremum

120



norm,
P
�

S ∗n ∈ K [ε]
�

≤P (Wn ∈ K [ε]) +P
�

sup
t≤1

�

�Wn (t )−S ∗n (t )
�

�>ε

�

.

(To verify this inequality, notice that if Wn /∈ K [ε] and S ∗n is ε-close to Wn , then S ∗n cannot
be in K [ε] either). Now we notice that since Wn has the distribution of a Brownian Motion
by scaling invariance, P (Wn ∈ K [ε]) = P(B ∈ K [ε]), and the second summand vanishes as
n→∞ by our assumption that 1 holds. Therefore sending ε ↓ 0 gives the claim.

Now all left to do is show that 1 holds.

• Define k = k (t ) to be the unique integer such that k−1
n ≤ t < k

n . Then notice that on this
interval, S ∗n (t ) is linear, so by looking at the diagram that says it all:

We see that if the event An =
�

supt≤1 |Wn (t )−S ∗n (t )|>ε
	

holds, then

A∗n =

��

�

�

�

Wn (t )−
Sk−1p

n

�

�

�

�

>ε for some t ∈ [0, 1)

�

∪
��

�

�

�

Wn (t )−
Skp

n

�

�

�

�

>ε for some t ∈ [0, 1)

�

holds. But since Sk = B (Tk ), this event can be rewritten as

A∗n =
�

|Wn (t )−Wn (Tk−1/n )|>ε for some t ∈ [0, 1)
	

∪
�

|Wn (t )−Wn (Tk/n )|>ε for some t ∈ [0, 1)
	

.

Now we notice that if A∗n holds, then for a fixed δ ∈ (0, 1),

�

there are t , s ∈ [0, 2] with |Wn (t )−Wn (s )|>ε
	

∪{|Tk/n − t | ∧ |Tk−1/n − t |>δ for some t ∈ [0, 1)}.
(2)

Indeed, if both of this don’t hold, meaning that |Tk−1/n − t |<δ and |Tk/n − t | ≤δ for all t ∈ [0, 1)

and whenever two values t , s ∈ [0, 2] are closer than δ, |Wn (t )−Wn (s )| < ε, it can’t be that A∗n
holds. (The reason for the [0, 2] interval is that since δ could be almost 1 and we are allowing the
distance to be δ, then since t ∈ [0, 1) it could be that Tk/n is almost 2). However, the first term
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of 2 vanishes as n→∞ by uniform continuity of Brownian Motion on the interval [0, 2], and the
second term vanishes because since the family {Tk −Tk−1} are i.i.d with mean one (this is from the
construction of the stopping time having expectation equal to the variance of X ), we have that
limn→∞Tn/n = 1. Then we have the deterministic fact that if (an )n is a sequence with an/n→ 1,
then supk≤n |ak −k |/n→ 0. Finally use the fact that t ≤ k/n ♥
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5.9 Zeroes of Brownian Motion

Let us recall a topological definition

Definition 5.42 (Isolated Point) Let X be a topological space and S be a subset. An element x ∈ S

is called an isolated point if there exists some neighbourhood U of x such that U ∩S = {x }, i.e: U

contains no other points of S . For example, the set S = {1}∪ (2, 3) has 1 as an isolated point, as the
neighbourhood (1−ε, 1+ε) contains no other points of S other than {1}.

Theorem 5.43 (Zeros of Brownian Motion) Let B be Standard Brownian Motion and let Z be
the zero set, i.e:

Z = {t ; B (t ) = 0}

Then Z is closed and contains no isolated points.

Proof. To show that Z is almost surely closed, we make the following observation:

• Brownian motion is almost surely continuous. The singleton {0} is closed in the topology
we are working with, and since the preimage of a closet set under a continuous function is
closed, we get that Z = B−1{0} is almost surely closed. In other words:

1=P(B is continuous)≤P(Z is a closed set).

To show that it contains no isolated points, we make the following definition: for a rational number
q ∈Q, we define

τq = inf{t ≥ q : Bt = 0}.

Then

• If t ∈Z is a zero of the form τq for some q ∈Q, we can apply the Strong Markov Property
at τq , which is an almost surely finite stopping time, and since the Brownian Motion starts
afresh, we can apply the fact that for a Standard Brownian Motion, for any interval [0,ε),
there will be a zero different from t = 0. Therefore these kind of zeroes are not isolated from
the right, so not isolated.

• If t ∈Z is not of the form τq for some q ∈Q, we can take a sequence of rational numbers
qn ↑ t , and note that by definition of τqn

, qn ≤τqn
. Moreover, since t is a zero of Brownian

motion and qn ≤ t , it follows by definition of τqn
that τqn

≤ t . Therefore, qn ≤ τqn
↑ t , and

so τqn
↑ t . This means in particular that for any ε> 0, there is some τqn

(a zero of Brownian
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Motion) with |τqn
− t | < ε, and since τqn

≤ t , it follows that t is not isolated form the left,
and so t is not isolated either.

♥

6 Poisson Random Measures

We begin by recalling a basic definition

Definition 6.1 (Poisson Random Variable) A random variable X that takes values in Z+ is said to
have a Poisson distribution with parameter λ if

P[X = k ] =
λk

k !
e −λ

An elementary property of the Poisson distribution is the following:

Proposition 6.2 (Addition Property) Let Ni ∼Poi(λi ) for i ∈ {1, · · · , k} be independent. Then

k
∑

i=1

Ni ∼Poi

�

k
∑

i=1

λi

�

Proof. We do the argument by characteristic functions.

ϕ

�

k
∑

i=1

Ni

�

(u ) = E

�

exp

�

i u
k
∑

i=1

Ni

��

(1)
=

k
∏

i=1

E[i uNi ]

(2)
=

k
∏

j=1

exp
�

λ j

�

e i u −1
	�

(3)
= exp

  

k
∑

j=1

λ j

!

�

e i u −1
	

!

Where (1) comes from the fact that the Ni are assumed to be independent, step (2) comes from
direct computation of the characteristic function of the Poisson Law (See example 4.15. Step (3)
is obvious and this finishes the proof since the last result is the characteristic function of a Poisson
random variable with the desired parameter. The proof is finished because characteristic functions
uniquely determine the law of a random variable. ♥
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Proposition 6.3 (Splitting property) Let N and {Yn} be independent random variables, with
N ∼ Poi(λ) and P[Yn = j ] = pj for j ∈ {1, · · · , k} for some j . Then the random variables N1, · · · , Nk

defined by

Ni =
N
∑

t=1

1({Yt = i })

have that Ni ∼Poi(λpi )

Proof. We have the following

E
�

exp(i uNj )
�

=
∞
∑

t=0

E[exp(i uNj ) |N = t ]
λt e −λ

t !

Now we compute

E[exp(i uNj ) |N = t ] = E

�

exp

�

i u
t
∑

n=1

1({Yt = j })
��

=
t
∏

n=1

E[exp(i u 1({Yt = j })]

=
�

pj

�

e i u −1
�

+1
�t

So putting it all together we have that

E
�

exp(i uNj )
�

=
∞
∑

t=0

�

pj

�

e i u −1
�

+1
�t λt

t !
e −λ

= exp
�

λpj

�

e i u −1
	�

as required. ♥

Definition 6.4 (Poisson random measure) Let (Ω,F , P) be our underlying probability space, and let
(E ,E ,µ) be a σ-finite measure space. A Poisson random measure M with intensity µ is a map

M :Ω×E → Z+ ∪{∞}

satisfying the following properties: if {Ak} is a disjoint sequence of E -measurable sets:

1. M
�⋃∞

k=1 Ak

�

=
∑∞

k=1 M (Ak ).

2. {M (Ak )}k is a collection of independent random variables.
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A3

M (ω1)
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A1

A2

A3

M (ω2)

E

Figure 9: Illustration of point (3) of the definition of Poisson Random Measure.

3. M (Ak )∼Poi(µ(Ak ))

It is not clear from the definition whether such objects exist. We now give a positive answer with the
following Theorem:

Theorem 6.5 (Poisson Random Measures exist) Let (E ,E ) be a measurable space, and denote
by E ∗ the set of all Z+ ∪{∞}-valued measures on (E ,E ). For a set A ∈ E define the maps

X : E ∗×E → Z+ ∪{∞} XA : E ∗→ Z+ ∪{∞}

by
X (m , A) = XA(m ) =m (A).

Let E ∗ be the σ-algebra on E ∗ given by E ∗ =σ(XA : A ∈ E ). Then there exists a unique probability
measure µ∗ on (E ∗,E ∗), such that using (E ∗,E ∗,µ∗) as our underlying probability space, we have
that X is a Poisson Random Measure with intensity µ (where µ is a measure on (E ,E )).

Proof. We first show uniqueness. We will do this through a π-system argument. Let A1, · · · , Ak

be disjoint sets of E . Then define

A∗ = {m ∈ E ∗ : m (A1) = n1, · · · , m (Ak ) = nk}

=:
�

m ∈ E ∗ : XA1
(m ) = n1, · · · , XAk

(m ) = nk

	

≡
�

XA1
= n1, · · · , XAk

= nk

	

But by definition of µ∗ making X a Poisson Random measure with intensity µ, we have, noting
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that {X (Ai )} ≡ {XAi
} are independent random variables, that

µ∗(A∗) =µ∗
�

XA1
= n1, · · · , XAk

= nk

	

=
n
∏

i=1

µ∗
�

XAi
= ni

�

(!)
=

n
∏

i=1

µ(Ai )ni

ni !
e −µ(Ai )

Where step (!) comes from the fact that under µ∗, the random variable XAi
is Poisson distributed

with parameter µ(Ai ). We have shown that any measure µ∗ that turns X into a Poisson Random
Measure with intensity µ, must have the same value on any A∗ as defined above. Now we claim
that the set S of all such A∗ is a π-system. Indeed:

• ∅ ∈ S . Indeed: such a set A∗ could be formed by taking only one set A1 ∈ E , namely the
empty set, then by setting

A∗ = {m ∈ E ∗ : m (∅) = 3}

we see that A∗ ∈ S and A∗ =∅ because any measure must assign 0 to the empty set.

• S is closed under finite intersections. Indeed: if A∗, B ∗ are two sets in S , then writing

A∗ = {m : m (A1) = n1, · · · , m (Ak ) = nk} B ∗ = {m : m (B1) =m1, · · · , m (Bl ) =ml }

Where {Ai } are disjoint and {B j } are disjoint. We now distinguish between the following
cases:

1. If all sets A1, · · · , Ak , B1, · · · , Bl are disjoint then,

A∗ ∩B ∗ = {m : m (A1) = n1, · · · , m (Ak ) = nk , m (B1) =m1, · · · , m (Bl ) =ml }

which is obviously an element of S .

2. If not all of them are disjoint, then without loss of generality we have that for some i

and j , Ai ⊆ B j . We now further distinguish the following cases:

– If in A∗ Ai is prescribed to have measure ni , and B j is prescribed to have measure
m j , then if ni >m j , then A∗ ∩ B ∗ = ∅ which we have already established to be a
set in S .

– if ni ≤m j , then we may express:

A∗ ∩B ∗ = {m : m (A1) = n1, · · · , m (Ai ) = ni , · · · , m (B j \Ai ) =m j −n1, · · · }

and so A∗ ∩B ∗ can be written as a valid set in S .
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Therefore we have established that S is a π-system. It is easy to see that S generates E ∗. There-
fore by the uniqueness Lemma, we have that µ∗ is unique. We now show existence:

We first suppose that λ :=µ(E )<∞. We now invoke N ∼Poi(λ) and Yn ∼µ/λ to be independent
random variables. We now set

M (A) =
N
∑

n=1

1(Yn ∈ A)

and we check that this is indeed a Poisson Random measure. We first note that if {Ak} is a
collection of disjoint sets,

M

�∞
⋃

k=1

Ak

�

=
N
∑

n=1

1

�

Yn ∈
∞
⋃

k=1

Ak

�

(!)
=
∞
∑

k=1

N
∑

n=1

1(Yn ∈ Ak ) =
N
∑

k=1

M (Ak )

Where step (!) comes from the fact that {Ak} are disjoint. ♥
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7 Homework Problems

Question 7.1 (1, ES1) Let X and Y be integrable random variables and suppose that

E [X | Y ] = Y E [Y | X ] = X

almost surely. Show then that X = Y almost surely.

Proof. Fix a c ∈ R. Then we note that since {X > c } ∈σ(X ), we have E[(X − Y )1{X>c }] = 0. But
we can write this set as the union of two disjoint sets, namely

{X > c }= {X > c , Y ≥ c }∪ {X > c , Y < c }

and plugging in and using the fact that the indicator function will split as a sum,

E
�

(X −Y )1{X>c ,Y ≥c }
�

+E
�

(X −Y )1{X>c ,Y <c }
�

= 0

Since the right hand summand is greater than or equal to zero, we must have that the left summand
is less than or equal to zero, i.e:

E
�

(X −Y )1{X>c ,Y ≥c }
�

≤ 0

We can repeat this argument switching X and Y and using the second assumption to obtain

E
�

(X −Y )1{X>c ,Y ≥c }
�

≥ 0

i.e: E
�

(X −Y )1{X>c ,Y ≥c }
�

= 0. Recall the equation

E
�

(X −Y )1{X>c ,Y ≥c }
�

+E
�

(X −Y )1{X>c ,Y <c }
�

= 0

Using what we have just shown, we must have that

E
�

(X −Y )1{X>c ,Y <c }
�

= 0

But the integrand is strictly positive, so it must be that the set {X > c > Y } has zero probability.
Since the event

{X > Y }=
⋃

q∈Q

{X > q > Y }

we have that P{X > Y } = 0. Which means that X ≤ Y almost surely. By symmetry, we obtain
that X ≥ Y almost surely and as such the claim follows.
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♥

Question 7.2 (2, ES1) Let X , Y be iid Bernoulli p RVs. Let Z = 1{X+Y =0}. Compute E [X | Z ]
and E [Y | Z ].

Proof. We start by noting that σ(1A) = {∅, A, Ac ,Ω}. Therefore σ(Z ) = {∅,{Z = 0},{Z = 1},Ω}.
Which means we are in the case of a countable sigma-algebra, and as such we know that

E [X | Z ] = E[X | Z = 0]1{Z=0}+E [X | Z = 1]1{Z=1}

We now only need to compute E [X | Z = 0], which is just

P(X = 1 | X +Y = 0) = 0

and also E [X | Z = 1], which is just

P(X = 1 | X +Y = 1) =P(Y = 0) = p

which gives
E [X | Z ] = p 1{Z=1}

By symmetry that’s the same for Y . ♥

Question 7.3 (3, ES1) Let X and Y be two independent Exp(θ ) RVs and let Z = X + Y . Show
that Z is Γ (2,θ ), i.e: its density is θ 2 x exp(−θ x )1(x ≥ 0). Show that for any non-negative Borel
h :

E [h (X ) | Z ] =
1

Z

∫ Z

0

h (u )d u

Proof. We first begin by determining the density of Z = X + Y . But it is a standard result that
this is given by a convolution:

fZ (z ) = ( fX ∗ fY )(z ) =

∫ ∞

−∞
fX (x ) fY (z − x )d x = θ 2

∫ ∞

−∞
e −θ x e −θ (z−x )1(0< x < z )d x = θ 2z e −θ z .

Now that we have a density for Z , we can compute the elementary conditional density

fX |Z (x | z ) =
fX ,Z (x , z )

fZ (z )
.
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To find fX ,Z (x , z ) given that we know fX ,Y we are going to have to use transformation of random
variables (the dreaded Jacobean), and we see that

fX ,Z (x , z ) = fX (x ) fY (z − x )

So combining we have that

fX |Z (x | z ) =
fX (x ) fY (z − x )

fZ (z )
1(0≤ x ≤ z )

and as such we have that E[X | Z = z ] = 1
z

∫ z

0
h (x )d x so our desired result is that

E [h (X ) | Z ] =
1

Z

∫ Z

0

h (x )d x

♥

Question 7.4 Conversely, let Z be a random variable with a Γ (2,θ ) distribution and suppose X

is a random variable whose conditional distribution given Z is uniform on [0, Z ]. Namely that

E [h (X ) | Z ] =
1

Z

∫ Z

0

h (x )d x

Show that X and X −Z are independent exponentials.

Proof. We have that by simple transformations of random variables and assumption of conditional
density being uniform:

fX ,X−Z (x , z ) = fX ,Z (x , z − x ) =
fZ (z )

z
= θ 2e −θ z = θ 2e −θ (x+z−x ) = θ e −θ xθ e −θ (z−x )

as required. ♥

Question 7.5 (4, ES1) Let X ≥ 0 be a random variable on (Ω,F , P) and G ⊆F be a sub-sigma
algebra. Show that X > 0 implies E [X | G ]> 0 almost surely. Furthermore, show that {E [X | G ]> 0}
is the smallest G -measurable event that contains {X > 0} up to zero probability events.

Proof. For convenience let X ′ = E [X | G ]. It is clear that the event A = {X ′ ≤ 0} is G -measurable.
Therefore

E [X 1A] = E
�

X ′1A

�

≤ 0
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But since X > 0 by assumption, then the only way it can be the case that E [X 1A] is if P(A) = 0.
That is, X ′ > 0 almost surely. To show the second part, we suppose that there exists an A ∈ G
with

{X ′ > 0} ⊇ A ⊇ {X > 0}

such that A is not just {X > 0} union a collection of events of zero probability. That is to say,
there is some S ∈ A \ {X > 0} of non-zero probability. Then

E [X | G ]1S > 0

because S ⊆ {X ′ > 0}, but also, X 1S ≤ 0, which by monotonicity of expectation implies E [X 1S ]≤ 0.
Since 0≥ E [X 1S ] = E [X ′1S ]> 0 we reach a contradiction. ♥

Question 7.6 (2.1, ES1) Let (Xn ) be an integrable process with values in a countable subset
E ⊆R. Show that (Xn ) is a Martingale with respect to the natural filtration if and only if for every
n , every i0, · · · , in−1 ∈ E , we have that

E [Xn | X0 = i0, · · · , Xn−1 = in−1] = in−1.

Proof. Suppose (Xn ) is a Martingale, then we know that for every A ∈ Fn−1, we have that
E [Xn 1A] = E [Xn−1 1A]. Taking A = {X0 = i0, · · · , Xn−1 = in−1} ∈Fn−1, we determine that

E [Xn | X0 = i0, · · · , Xn−1 = in−1] =
E [Xn 1A]

P(A)
=

E [Xn−1 1A]
P(A)

=
E [in−1 1A]

P(A)
=

in−1E [1 A]
P(A)

= in−1

For the converse, we simply note that since (Xn ) takes values in a countable set, then Fn−1

is generated by sets of the form {X0 = i0, · · · , Xn−1 = in−1}, which establishes the property that
E[Xn 1A] = E[Xn−1 1A]. ♥

8 Appendix

Here are all the proofs, Lemmas, or technicalities that for the sake of clarity were skipped from the
main manuscript, but I still deemed them worthy of a discussion.

8.1 Measure Theory

8.1.1 π-systems, extensions and uniqueness

In general, σ-algebras are not "nice-enough" to obtain an explicit description of its typical element,
hence defining a measure directly by specifying its values on every set of the σ-algebra is impossible.
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The way around it is to find a more manageable set that generates the σ-algebra, and define the
measure on that set. Of course, two questions arise naturally: can this function be extended to a
measure on the whole σ-algebra, and is this extension unique? These two questions are dealt by
Carethedory’s Theorem and Dynkin’s π-system lemma.

Definition 8.1 (π-system, d -system) A collection of sets E that is closed under finite intersections
is called a π-system.

A collection of sets E that contains the entire space and has the property that for each B ⊆ A ∈ E ,
one has that

A \B ∈ E

and for each increasing sequence of sets (An ), one has

⋃

n

An ∈ E

is called a d -system.

Lemma 8.2 (Dynkin’s π-system Lemma) Let A be a π-system. Then if B is a d -system with
A ⊆B , then σ(A )⊆B .

Theorem 8.3 (Carethedory’s Extension Theorem) Let R be a ring, i.e: a collection of sets that
contains ∅, and for all A, B ∈R:

A \B ∈R A ∪B ∈R

If f :R→ [0,∞] is a countably additive set function, then f extends to a measure on σ(R).

Theorem 8.4 (Uniqueness of extension) Let µ1,µ2 be two finite measures on a measurable space
(Ω,F ) that agree on a π-system that generates F . Then µ1 =µ2.

Theorem 8.5 (Monotone Class Theorem) Suppose that (Ω,F ) is a measurable space, and F is
generated by some π-system A . Suppose V is a linear function space such that

1. 1Ω ∈V .

2. For any A ∈A , 1A ∈V .
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3. If ( fn ) is a bounded, non-negative sequence in V such that fn ↑ f where f is also bounded
and non-negative, then f ∈V .

Then V = bF

Theorem 8.6 (Characterisation of measurability) Let X and Y be two random variables. If X is
σ(Y )-measurable, then X = f (Y ) for some Borel f .

8.2 Conditional Expectation

Lemma 8.7 Given a sequence of events (Fn ), then

lim sup 1Fn
= 1lim sup Fn

Proof. Recall the definition

lim sup Fn = {ω ∈ Fn infinitely often}=
∞
⋂

n=1

∞
⋃

m=n

Fn

Thus suppose ω ∈ lim sup Fn , then 1Fn
(ω) = 1 for infinitely many n , and as such, lim sup 1Fn

(ω) = 1.
On the contrary, suppose that ω /∈ lim sup Fn , then ω ceases to be in Fn eventually, that is to say,
1Fn
(ω) = 0 for all n large enough, and as such, lim sup 1Fn

(ω) = 0. ♥

Lemma 8.8 (Fubini-Trick) Let X t be a process and G a sub-sigma algebra, for which we have
∫ b

a
E[|Xu |]d u = E

∫ b

a
|X u |d u are equal and finite. Then

E

�

∫ b

a

Xu d u

�

�

�

�

G

�

=

∫ b

a

E[Xu | G ]d u

Proof. Let A ∈G be any G -measurable set. For convenience label Yr = E[X r | G ] Then by definition
of conditional expectation, E[Yr 1 A] = E[X r 1 A], and so we have that

∫ b

a

E[Yr 1 A]d r =

∫ b

a

E[X r 1 A]d r

Then using the regularity conditions (the integrals of the absolute value are finite) and Fubini’s
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Theorem:

E

�

∫ b

a

Yr 1 Ad r

�

= E

�

∫ b

a

X r 1 Ad r

�

Taking 1 A out of the integrals, for the function 1 A does not depend on r finishes the claim. ♥

8.3 Independence

Definition 8.9 (Independence of a process and a σ-algebra) Let (X t ) be a stochastic process on a
filtered space (Ω,F ,{Ft }, P) and let G ⊆F be a sub-sigma algebra. Recall that a process (X t ) is a
random variable Ω→D := {functions f : R+→ E } where (E ,E ) is some other measurable space. The
space D is endowed with the sigma algebra D that makes the projection maps measurable, and so
we say that (X t ) is independent of G if for any A ∈D, and any B ∈G ,

P({(X t ) ∈ A}, B ) =P({X t ∈ A})P(B )

Since the law of the process (X t ) is determined by its finite dimensional distributions, it is enough to
check that for all t1, t2, · · · , tk ∈ R, one has that the random vector (X t1

, X t2
, · · · , X tk

) is independent of
G . This is equivalent to checking that for all B ∈G , and all A ∈ E k ,

P[(X t1
, · · · , X tk

) ∈ A, B ] =P[(X t1
, · · · , X tk

) ∈ A]P[B ]

Of course we can express this by checking that

E[1({(X t1
, · · · , X tk

) ∈ A})1(B )] =P[B ]E[1({(X t1
, · · · , X tk

) ∈ A})]

and the reason we’ve written it like this is that if we can show that for any bounded and measurable
f : E k →R we can show that

E[ f (X t1
, · · · , X tk

)1(B )] =P[B ]E[ f (X t1
, · · · , X tk

)] (⋆)

we can just take f (·) = 1(· ∈ A) and we are done. Even better, if we can show that (⋆) holds for bounded
and continuous functions, then by using DCT we can pass a limit and approximate any measurable
function by the continuous functions. This is the heart of the argument of say the Simple Markov
Property and similar results.
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Lemma 8.10 (Independence Lemma) Let X and Y be two random variables, and let G be a
sigma algebra for which Y is G -measurable and σ(X ) is independent of G . Then for all bounded
and measurable Φ:

E[Φ(X , Y ) | G ] = E[Φ(X , Y ) | X ]

Which means that if X has a density f with respect to the Lebesgue measure:

E[Φ(X , Y ) | G ] =
∫

f (x )Φ(x , Y )d x

The proof of this goes by the standard machine and it can be found in [SP12, Lemma A.3]
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