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Dear Reader,

This is a set of lecture notes typed for the course Stochastic Calculus with applications to Finance taught
at the University of Cambridge during the academic year 2024-2025. Prerequisites for this document
include the contents of a second course in Probability Theory: Conditional Expectation, Martingales,
Brownian Motion, etc. in addition to a strong will to live.
Yours falsely,
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Notation and how to study these notes

Difficulty notations:
K: denotes a proof or idea that is hard or hard to reproduce.
�: denotes a proof or idea that requires partially unmotivated tools or machinery that is hard to pull out
of thin air, but the rest of the argument is easy.
♩: denotes a proof or idea that is easy to see knowing some other results that help motivate it.
�: denotes a proof or idea that is easy and no particularly clever ideas are needed. For revision purposes
reading it a couple times will suffice.

Other notation:
mF : the set of F -measurable functions.
bF : the set of F -measurable and bounded functions.
R`: the positive real numbers and zero.
"increasing": non-decreasing, we will use "strictly increasing" when we mean that.
tFt ut : a filtration. I am inconsistent with notation so sometimes I refer to pFt qt as a filtration, same
thing for processes or any sequence really.
B px , r q: the open ball of radius r and center x .
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Chapter 1

Motivation: towards the Stochastic Integral

Definition 1.0.1 (Markov Process, Transition Kernels) A Markov Process pX t : t ě 0q is a Real
valued Ft adapted stochastic process that satisfies the Markov Property, i.e: for any f P bF and
any 0 ď s ď t ,

E r f pX t q |Fs s “ E r f pX t q | X s s. (MP)

For a Markov Process pX t q, we define the transition operator Pt as the map given by

pPt f qpx q “ E r f pX t q | X0 “ x s “

ż

f py qpt px , dy q

Where pt px , ¨q “ P rX t P ¨ | X0 “ x s is the transition kernel.

Explanation as to why we want to give a meaning to
ż t

0
f pX s qd Ws

An analogy of this integral would be to consider a "discrete stochastic integral", of the following shape,
let a P R8 be a sequence, and pξi q be a sequence of independent and identically distributed Berp1{2q

random variables when does the stochastic sum

Sn “

n
ÿ

i “1

aiξi

converge? Of course a trivial answer would be if a P ℓ1, then
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i “1

aiξi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

i “1

|aiξi | “

8
ÿ

i “1

|ai | ă 8.

However, we want some slightly more general results to motivate the construction of our stochastic

7
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integral.

Proposition 1.0.2 Let a P ℓ2 be a deterministic sequence, then Sn as defined above converges in L 2

and almost surely.

Proof. First note that pSn q is an Fn Martingale, where tFn u is the filtration generated by ξ1, ¨ ¨ ¨ ,ξn .
Moreover, we claim that pSn q is L 2 bounded. This is not hard to see:

E r|Sn |2s “ E rS 2
n s

p!q
“

n
ÿ

i “1

paiξi q
2 “

n
ÿ

i “1

a 2
i ă

8
ÿ

i “1

ai ă 8

for all n , and so pSn q is L 2 bounded and so by Doob’s L p Convergence Theorem, we have that pSn q

converges in L 2 and almost surely. (In step p!q we used the fact that E rξiξ j s “ 0 for i ‰ j ) ♥

Here’s a Theorem that previews an argument that will be often used: the trick of localisation.

Theorem 1.0.3 Let pan q be an Fn -previsible process with respect to the natural filtration F ξ.
Moreover suppose that

ř

n a 2
n ă 8 almost surely. Then Sn converges almost surely.

Proof. Consider the following random variable:

TN “ inf

#

n ě 1 :
n`1
ÿ

k“1

a 2
k ą N

+

Since the event tTN ď nu can be determined by looking at a1, ¨ ¨ ¨ , an`1 and pan q is a previsible
process, all these a 1

k s are Fn -measurable and so TN is an Fn stopping time. Recall that pSn q is an
Fn -Martingale (Indeed, from previsibility, we have that E ranξn |Fn´1s “ an E rξn |Fn´1s) so by the
first part of the OST, it follows that S TN

n :“ Sn^TN
is also a Martingale. We are going to show that

limnÑ8 Sn^TN
“ S8^TN

exists. For this purpose, we simply show that S TN
n is L 2-bounded.

E
”

`

S TN
n

˘2
ı

“ E

»

–

˜

n
ÿ

k“1

akξk 1pk ď Tn q

¸2
fi

fl (1.1)

“ E

«

n
ÿ

k“1

a 2
k 1pk ď Tn q

ff

(1.2)

ď N (1.3)

Where step p1q comes from definition, step p2q comes from the fact that ak and ξk are independent
as well as the fact that the pξk q are independent. Step p3q comes from the fact that on the event
1pk ď Tn q, you have that a 2

1 ` ¨¨ ¨ ` a 2
k ď N . (Here is why we needed to define TN as a sum to n ` 1
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and hence require previsibility). Therefore the stopped Martingale is bounded and hence we have that
Sn^TN

Ñ S8^TN
almost surely and in L 2. Now, if we could show that for some N , TN was equal to

infinity, then we would actually have that Sn Ñ S8 almost surely and we would be done. However,
this is actually possible because by assumption:

1 “ P

«

ÿ

n

a 2
n ă 8

ff

But the event
␣
ř

n a 2
n ă 8

(

equals the event
␣
Ť

N

ř

n a 2
n ď N

(

which in turn equals the event
t
Ť

N TN “ 8u. This means that with probability 1, there exists some N for which TN “ 8, thus
finishing our claim. ♥
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Chapter 2

Finite variation and the Lebesgue-Stieltjes
Integral

2.1 The Lebesgue-Stieltjes Integral

Let’s start by recalling an elementary concept:

Definition 2.1.1 (Distribution Function) A function F : R` Ñ R is said to be a distribution function
if it is right continuous and non-decreasing/increasing.

Of course we have the following "obvious correspondence": if µ is a measure on R, then we can build a
distribution function as F px q “µp´8, x s, the converse also holds.

Proposition 2.1.2 (Correspondence between measures and distribution functions) Let F px q be a
distribution function, then there is a unique measure µ with µp0, x s “ F px q ´ F p0q.

Main idea: We can "reverse engineer" the measure µ. Since we have the existence of Lebesgue measure,
we can try to set µp0, x s “ Lebp0, F px q ´ F p0qs, it may not be immediately clear this is a measure, but
since the interval p0, F px q ´ F p0qs can be written as G ´1p0, x s where G py q is the generalised inverse of
F , and G is measurable, we are done.

Proof. The proof goes by considering the generalised inverse of F , i.e:

G py q “ inftt : F pt q ´ F p0q ě y u

Then it is clear that t ě G py q if and only if F pt q ´ F p0q ě y . Then we can construct µ as follows:

µ“ Leb ˝ G ´1

11
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Then
µp0, t s “ Lebty : 0 ă G py q ď t u “ Lebt0 ă y ă F pt q ´ F p0qu “ F pt q ´ F p0q

µ is obviously a measure as it is the composition of the set inverse of a measurable function and a
measure, and it it unique as it is defined a the generating π-system. ♥

Definition 2.1.3 (Local integrability) Let µ be a measure, a function g : R` Ñ R is said to be locally
µ integrable if for any t ě 0, the function g 1r0,t s PL 1pµq.

Definition 2.1.4 (Lebesgue-Stieltjes integral) Let F be a distribution function with corresponding
measure µ, then a function g is said to be (locally) F -integrable if and only if it is (locally) µ-integrable,
and in this case, we define (or rather use the notation)

ż t

0
g ps qdF ps q “

ż t

0
g ps qµpdy q

Proposition 2.1.5 Let F be a distribution function and g a locally F -integrable function, then

I pt q “

ż t

0
g ps qdF ps q

is cadlag. Moreover, if F is continuous, then so is I .

Main idea: Simple application of the DCT.

Proof. Let us show right continuity of I pt q. The goal is to show that limεÓ0 I pt `εq “ I pt q. Since
we are taking ε Ó 0, without loss of generality, we can find some T large enough such that t `εă T .
And since

|I pt `εq| “

ˇ

ˇ

ˇ

ˇ

ż t `ε

0
g ps qdF ps q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R
g ps q1pr0, t `εsqps qdF ps q

ˇ

ˇ

ˇ

ˇ

ď

ż

R
|g ps q1pr0, T sq|ps qdF ps q ă 8,

we have by the Dominated Convergence Theorem that

lim
εÓ0

I pt `εq “

ż

R
g ps q1pr0, t sqps qdF ps q “ I pt q.

Then to show the existence of left-limits, we perform a similar argument: For this, we note that

I pt ´εq “

ż

g 1r0,t s ´g 1pt ´ε,t s dF ps q
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we can brutally bound the integrand say by 2g 1r0,t s, which is integrable by local integrability of g so
we can pass the limit again using the DCT, and we get that

lim
εÑ0

I pt ´εq “

ż t

0
g ps qdF ps q ´ g pt qµtt u

thus the left limit exists, and moreover, if F is continuous, then it has no atoms, and so the measure
of singletons is zero, hence I is continuous. ♥

2.2 Functions of bounded Variation

Definition 2.2.1 (Function of finite variation) For a function f : R` Ñ R, we define its variation
Vf pt q as

Vf pt q “ sup
N

#

8
ÿ

k“1

ˇ

ˇ f
`

x N
k ^ t

˘

´ f
`

x N
k´1 ^ t

˘ˇ

ˇ

+

Where x N
k “ k 2´N . We say that a function f is of finite variation if Vf pt q ă 8 for all t , and we say

that it is of bounded variation if supt Vf pt q ă 8.

The intuition is that Vf pt q measures the total oscillation of the function, by partitioning the range r0, t s

into a mesh of step-size 2´N and then measuring the variation of the function along that step, and then
adding up over all steps, and then maximising over mesh size.

Theorem 2.2.2 (Variation of càdlàg functions of finite variation is a distribution function) Let f :

R` Ñ R be a cadlag function of finite variation, then V “ Vf is a distribution function that satisfies
the bound p‹q:

V pt q ´ V ps q ě | f pt q ´ f ps q|

Main idea: We first show that V N pt q is increasing in N , this allows us to show inequality p‹q by consider
how the sums along the dyadic partition telescope. Inequality p‹q implies the increasing property. To
show right continuity, you use inequality p‹q in the telescoped sum V N pt q ´ V N ps q as well as increasing
property.

Proof. We first prove that V is a distribution function, for this, let V N denote the variation along
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the mesh of size 2´N , then:

V N pt q :“
8
ÿ

k“1

ˇ

ˇ f
`

x N
k ^ t

˘

´ f
`

x N
k´1 ^ t

˘ˇ

ˇ (2.1)

ď

8
ÿ

k“1

ˇ

ˇ f
`

x N
k ^ t

˘

´ f
`

x N `1
2k´1 ^ t

˘ˇ

ˇ`
ˇ

ˇ f
`

x N `1
2k´1 ^ t

˘

´ f
`

x N
k´1 ^ t

˘ˇ

ˇ (2.2)

“

8
ÿ

k“1

ˇ

ˇ f
`

x N `1
2k ^ t

˘

´ f
`

x N `1
2k´1 ^ t

˘ˇ

ˇ`
ˇ

ˇ f
`

x N `1
2k´1 ^ t

˘

´ f
`

x N `1
2k´2 ^ t

˘ˇ

ˇ (2.3)

“ V N `1pt q (2.4)

Where step p2q is the triangle inequality, step p3q is due to the fact that x N
k :“ k 2´N “ 2k 2´N ´1, and

step p4q, which requires a bit more thinking comes from the fact that the sum in p3q is accounting
on the one hand, the variation over the even intervals, whereas the second term accounts for the
variation on the odd intervals. We thus have shown that V N ď V N `1 which as a consequence implies
that V “ limN Ñ8 V N , this will help us in showing the inequality p‹q. The idea is that since

V pt q ´ V ps q “ lim
N Ñ8

V N pt q ´ V N ps q,

and these latter terms are just sums, there will be a good deal of cancelling out of terms, and the few
terms that remain, we will be able to control using the fact that f is cadlag. Observe the diagram
that says it all:

x N
m

x N
n

ts

We consider the dyadic partition of our interval, and without loss of generality suppose that for a
fixed N , we have some m and n , such that x N

m ď s ă x N
m`1 and x N

n ď t ă x N
n`1. The key is that in

V N pt q´ V N ps q, (almost) everything to the left of s will get cancelled out. In fact, by staring at the
diagram for a bit and looking at the definition of V N , we have that

V N pt q ´ V N ps q “
ˇ

ˇ f pt q ´ f
`

x N
n

˘ˇ

ˇ`

n
ÿ

k“m`2

ˇ

ˇ f
`

x N
k

˘

´ f
`

x N
k´1

˘ˇ

ˇ`
ˇ

ˇ f
`

x N
m`1

˘

´ f
`

x N
m

˘ˇ

ˇ´
ˇ

ˇ f ps q ´ f
`

x N
m

˘ˇ

ˇ

However, note that in the limit,

lim
N Ñ8

ˇ

ˇ f
`

x N
m`1

˘

´ f
`

x N
m

˘ˇ

ˇ´
ˇ

ˇ f ps q ´ f
`

x N
m

˘ˇ

ˇ“ 0

because limN Ñ8 f
`

x N
m`1

˘

“ f ps q due to right continuity, and limN Ñ8 f
`

x N
m

˘

is some finite number
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due to left limits existing. This gives that

lim
N Ñ8

V N pt q ´ V N ps q “ lim
N Ñ8

ˇ

ˇ f pt q ´ f
`

x N
n

˘ˇ

ˇ`

n
ÿ

k“m`2

ˇ

ˇ f
`

x N
k

˘

´ f
`

x N
k´1

˘ˇ

ˇ (2.5)

ě lim
N Ñ8

ˇ

ˇ f pt q ´ f
`

x N
m`1

˘ˇ

ˇ“ | f pt q ´ f ps q| (2.6)

Where step (6) comes from the triangle inequality, that allows us to bash all the terms into a single
absolute value sign, and then telescoping occurs in there. The final equality comes again due to right
continuity of f . We have established the inequality p‹q, and incidently, we have shown how V is
increasing.

All there is left is to show that V is right continuous. To do this, we employ p‹q, and so by looking
at equation (2.5) and plugging in p‹q, we have a telescoping that reads

V pt q ´ V ps q “ lim
N Ñ8

ˇ

ˇ f pt q ´ f
`

x N
n

˘ˇ

ˇ`

n
ÿ

k“m`2

ˇ

ˇ f
`

x N
k

˘

´ f
`

x N
k´1

˘ˇ

ˇď V pt q ´ lim
N Ñ8

V px N
m`1q

Rearranging we have that
lim

N Ñ8
V px N

m`1q ď V ps q

but since V is increasing, we also have that V ps q ď limN Ñ8 V px N
m`1q, because by assumption x N

m`1

is chosen to be strictly greater than s . Thus

lim
N Ñ8

V px N
m`1q “ V ps q

and as such we have right continuity. (I mean, if you want full details now you should pick an ε and
use the limit above to find a dyadic that’s close enough to s so that the difference is at most ε and
then use that distance from the dyadic to s as your δ) ♥

Remark 2.2.3 (Total Variation) Let f : R` Ñ R, we define its total variation as

} f }TV “ sup
0ďx0ăx1ă¨¨¨ăxk “t

#

k
ÿ

n“1

| f pxn q ´ f pxn´1q|

+

i.e: its highest variation over all partitions of the interval r0, t s. Naturally, since in Vf pt q we only
consider one partition, we have that Vf pt q ď } f }TV pt q. However, from the inequality that we derived
before:

V pt q ´ V ps q ě | f pt q ´ f ps q|

We see by combining it into the definition of total variation, that in fact we will get a telescoping sum
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and get
} f }TV pt q ď Vf pt q ´ Vf p0q “ Vf pt q

Therefore we have that in fact the total variation is equal to the variation we used above, which is
a powerful observation as it tells us that it is in fact enough to consider the variation along dyadic
intervals. This will have major measurability benefits later on.

Recall that our goal here is to make sense of integrals with respect to some random process. For this
we have first defined an integral with respect to a distribution function, but in general, the stochastic
processes we want to integrate against are not distribution functions. However, as we will see now, we
can make sense of some distribution function out of càdlàg functions with finite variation, and hence
meaningfully define the integral against a càdlàg function

Proposition 2.2.4 (Càdlàg functions and distribution functions) If a function f is càdlàg and of finite
variation then it can be written as

f “ f Ò ´ f Ó

Where f Ò and f Ó are both distribution functions.

Proof. First suppose that f is càdlàg and of finite variation, then, from the inequality obtained in
Theorem 2.2.2, we have that for 0 ď s ď t :

Vf pt q ´ Vf ps q ě | f pt q ´ f ps q| “ maxt f pt q ´ f ps q, f ps q ´ f pt qu

That is to say, one the one hand:

Vf pt q ´ Vf ps q ě f pt q ´ f ps q

showing that Vf pt q ´ f pt q is increasing in t , and similarly, by choosing the other item in the max,
we have that Vf pt q ` f pt q is increasing in t . Since Vf pt q is right continuous and f pt q is càdlàg, it
follows that both Vf pt q ` f pt q and Vf pt q ´ f pt q are right continuous. We may then define

f Ò “
1

2

`

Vf pt q ` f pt q
˘

f Ó “
1

2

`

Vf pt q ´ f pt q
˘

We have just argued that f Ò and f Ó are increasing and right continuous, i.e: distribution functions,
and moreover f is clearly equal to their difference. ♥

We now show a Proposition which will make our integral against a càdlàg function well-defined:
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Proposition 2.2.5 (Integral with respect to f Ò ´ f Ó) Let f be a càdlàg function of finite variation
with decomposition f “ f Ò ´ f Ó. Then if a function g : R` Ñ R is locally Vf integrable, then it is
both locally f Ò and f Ó integrable.

Proof. This is just a one-line proof that follows after noting that Vf “ f Ò ` f Ó:

max

"
ż

|g |df Ò,

ż

|g |df Ó

*

ď

ż

|g |df Ò `

ż

|g |df Ó “

ż

|g |dVf

♥

Now we can finally define the following:

Definition 2.2.6 (Integral with respect to càdlàg function of finite variation) Let f be càdlàg function
of finite variation, then we say that a function g is locally f integrable if it is locally Vf integrable. In
this case, we write

ż

g df “

ż

g df Ò ´

ż

g df Ó

and also
ż

g |df | “

ż

g df Ò `

ż

g df Ó “

ż

g dVf

We now need one last ingredient before we can finish this deterministic part of the theory and move to
the random part

Theorem 2.2.7 Let f be a càdlàg function of total variation, and g a locally f integrable function,
then we have that the function I pt q defined as

I pt q “

ż t

0
g df

is itself càdlàg of finite variation.

Proof. Since we can expand

I pt q “

ż t

0
g df Ò ´

ż t

0
g df Ó

and both f Ò and f Ó are distribution functions, one readily verifies from Proposition 2.1.5 that I pt q is
càdlàg. We now just need to show that it is of finite variation. We can now do the following cheeky
trick:

I pt q “

ˆ
ż t

0
g ` df Ò `

ż t

0
g ´ df Ó

˙

´

ˆ
ż t

0
g ´ df Ò `

ż t

0
g ` df Ó

˙
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since all g ` and g ´ are positive, it is clear that I pt q is a difference of distribution functions (Indeed
the things inside the parenthesis are both càdlàg and non-decreasing by positivity of g ` and g ´). It is
now easy to check that if a function I pt q can be written as a difference of two distribution functions
F1pt q ´ F2pt q, then I pt q is of finite variation. This is because by the triangle inequality

VI pt q ď VF1
pt q ` VF2

pt q

and since both F1 and F2 are non-decreasing, it will follow that VF1
pt q “ F1pt q ´ F1p0q as all but two

of the terms in the sum that defines variation will telescope. ♥

2.3 Finite Variation Processes and Previsible Processes

We are ready to make sense of a sort of proto-stochastic integral. After all, a stochastic process is nothing
but a random function R` Ñ R, and we have seen that if we want to integrate against functions, the right
class of functions to integrate against are càdlàg functions of finite variation. It is of no surprise then that
the stochastic processes we will use as integrators will have sample paths that satisfy these two properties.
From now on fix a background filtered probability space pΩ,F ,tFt ut , P q.

Definition 2.3.1 (Finite variation process) A stochastic process pZt q is called a finite variation process
if each trajectory is càdlàg and of finite variation. That is to say, for all outcomes ω in our sample
space Ω, we have that the map t ÞÑ Zt pωq is càdlàg and of finite variation.

For reasons that will become clear in due course, the right class of integrands to consider are previsible
processes.

Definition 2.3.2 (Previsible σ-algebra, previsible process) The previsible σ-algebra P is the σ-
algebra generated by sets of the form

ps , t s ˆ A

For some value of s ă t and A PFs . A process pHt qt is called previsible if the map pt ,ωq ÞÑ Ht pωq

is P -measurable.
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Remark 2.3.3 (Huh?) It is probably very unclear from this definition why this σ-algebra should bear
the adjective "previsible", or why processes that are adapted to this σ-algebra should also be called
previsible. The best way to understand this is by looking at the kind of processes that live in this
sigma-algebra. Let us illustrate this via an example. Let pht q be an Ft -adapted process, and let
0 ă t0 ă t1 ă ¨¨ ¨ be a sequence of deterministic times. The claim is that the process

Ht pωq “

8
ÿ

k“0

htk
pωq1pt P ptk , tk`1sq

is previsible. This should not be too hard to see, for pht q being Ft adapted means that we can
express htk

as a pointwise limit of indicator functions of Ftk
-measurable events, and and so when

multiplying out we will write Ht pωq as a pointwise limit of a weighted sum indicator functions of the
form 1pA X ptk , tk`1s for A PFtk

. Each of these sets is in P . Now that we have established that Ht

is previsible, we see that actually the behavior of Ht coincides with our intuition of what previsible
should mean, because say by looking at how the graph of Ht pωq could look like, we see that the value
of Ht can be determined by looking at times just slightly to the left of t .

tk tk`1

htk
pωq

tk`2 tk`3

Moreover, it is easy to convince yourself that any left-continuous function can be realised as a pointwise
limit of such things, and since measurability is preserved under pointwise limits, it follows that adapted
processes with left continuous sample paths are in fact previsible, and this agrees with our intuition,
because if the sample path is left continuous, then I can determine the value of the process at time t

by knowing what happens slightly just before! It turns out, although we will not prove this, that P
can be equivalently defined by the sigma algebra generated by all left-continuous adapted processes.
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Theorem 2.3.4 (Integral of previsible process against process of finite variation) Let Z be a finite
variation process and let H be a previsible process such that H pωq is locally integrable against Zs pωq

for all ω. Then the process

X t pωq “

ż t

0
Hs pωqdZs pωq (2.7)

is a process of finite variation.

Remark 2.3.5 Of course, by the deterministic theory we developed earlier, we already know that
for a fixed ω, X t pωq is càdlàg and has finite variation, this was what Theorem 2.2.7 told us, the
only thing that is left for us to prove is that this process is actually adapted! And this is where the
previsibility of H will come into play. The proof relies on the Monotone Class Theorem, which we add
in a Measure-Theoretic Appendix

Proof. We will start by showing that if H is previsible and bounded, then the integral in (3.1) is
mF t . Then we will extend to the general case. As hinted in the remark, the key is the use of the
Monotone Class Theorem, for this we define the class of functions

H “

"

H : R` ˆΩÑ R bounded with
ż t

0
Hs dZs P mF t

*

The Monotone Class Theorem will allow us to concludet that actually bP ĎH , thus concluding the
first part of the proof. For this, we now tick the boxes of the Montone Class Theorem:

• The fact that H is a vector-space is obvious.

• Let A P G , where G is the generating π-system of P . then we can write A “ pt0, t1s ˆ B for
some B PFt0

, then:

ż t

0
1pt0,t1sˆB dZs “ 1B

ż t1^t

t0^t
dZs

“ 1B

ˆ
ż t1^t

t0^t
dZ Ò

s ´

ż t1^t

t0^t
dZ Ó

s

˙

1B

2
pVf pt1 ^ t q ` Zt1^t ´ Vf pt0 ^ t q ´ Z pt0 ^ t q

´ Vf pt1 ^ t q ` Z pt1 ^ t q ` Vf pt0 ^ t q ´ Z pt0 ^ t qq

“ 1B

`

Zt1^t ´ Zt0^t

˘

Now we observe that the resulting 1B

`

Zt1^t ´ Zt0^t

˘

is mFt , because B P F , and pZs qs is
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pFs qs -adapted.

• Let pH n qn be a sequence of bounded processes with H n PH for all n , such that they increase
to a bounded process H , let us show that H PH . For this we very simply note that

ż t

0
Hs dZs “ lim

nÑ8

ż t

0
H n

s dZs

Where we pulled the limit out because the sequence pHs q is uniformly bounded by H which is
itself a bounded process. Therefore we applied the DCT. Now finally, each of these integrals
on the right hand side are an Ft measurable object by hypothesis on pH n q. Therefore we see
that H PH .

Thus we have ticket all the boxes of the Monotone Convergence Theorem and it follows that whenever
H is a bounded previsible process, we have that the integral in (3.1) is an Ft measurable object.
Now we extend this to unbounded previsible processes H . The idea here is simply to define H n “

pH ^ nq _ p´nq, this makes H n a bounded processes, and so for each n , we have that
ż t

0
H n

s dZs P mF t .

Moreover, since |H n
s | ď |Hs | for all s , and pHs pωqq is pZ s pωqqs integrable by hypothesis, we can

apply the Dominated Convergence Theorem, and we have that
ż t

0
Hs dZs “ lim

nÑ8

ż t

0
H n

s dZs

and since the integral of the right hand side is mF t , and measurability is preserved by pointwise
limits, we are done. ♥
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Chapter 3

The Stochastic Integral

We have so far constructed a primitive proto-stochastic integral:

I pt q “

ż t

0
Hs dZs

where pZs q is a process of finite variation and Hs is a previsible process, and we saw that I pt q satisfies
some desirable properties, i.e: being itself a process of finite variation. As it will turn out, most Martingales
actually have infinite variation, so we will have a bit of a hard time defining the stochastic integral this
way. As we are going to see in the next chapter, the right integrators will be local continuous Martingales
M , and the right integrands will be previsible process K . In particular, we will see that if K and M satisfy
some particular compatibility conditions, the stochastic integral

ż t

0
Ks dMs

can be defined as itself a continuous local Martingale. In this chapter we will also see that every continuous
local Martingale M has associated to it an adapted continuous increasing process rM s, called the quadratic
variation, which captures the "roughness accumulated through time" by the Martingale. It turns out that
the compatibility condition we will seek is that

ż t

0
K 2

s drM ss ă 8

and this integral can be interpreted using the Lebesgue-Stieltjes Theory we developed earlier. That’s the
outline of the chapter, we will start by making sense of local Martingales, but we first need to make a
slight measurability detour.

3.1 The Usual Conditions

Local Martingales are all about stopping times, so let us talk about them for a bit.

23
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Definition 3.1.1 (Stopping times) A random variable T : ΩÑ r0,8s is called a stopping time with
respect to the filtration tFs us if tT ď t u PFt .

i.e: informally, a random clock for which we can know if it has rung by time t by looking at all the
information available to us at that time contained in the filtration. From a course in Probability we know
how insanely useful stopping times are to gain information about all kinds of characteristics of our stopping
process. The problem is however, is that when we deal with continuous time, unless we make some slight
readjustments to our sigma algebra, we lose a lot of stopping times. Let us see an example which the
reader may have seen already:

Example 3.1.2 (A lost stopping time) Let pX s qs be a right continuous process and let A Ď R be an
open set. Define the random variable

T “ inftt ě 0 : X t P Au

Look at the following diagram :

A

T pωq

X pωq

Then it is clear that T equals to the value pointed out in the diagram, because it is defined as an
infimum. However, since A is open, the process pX s q actually doesn’t know it has hit A by that time!
But rather, pX s q is just standing right in front of it. Therefore T is in fact not a stopping time!

What could be an easy fix to make sure that in this example T is in fact a stopping time? Well we have
two options, one - forcing A to be closed - which might seem like cheating because we are going to rid
ourselves to plenty of scenarios where we could need an open set! The other solution, which will surely
not leave the reader unfazed, is actually to allow the process to look just very slightly into the future!
Now I bet this feels like cheating, but as it turns out, we will be able to prove that if X is a Martingale
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with respect to some filtration tF u, then it will also still be a Martingale with respect to our "cheater’s"
sigma-algebra, thus in fact, we will not have broken the rules! Let us formalise this notion of the "cheater’s
sigma algebra".

Definition 3.1.3 (Usual conditions) A filtration pFt qt satisfies the usual conditions if:

• F0 contains all P ´null sets. That is to say:

tA PF : P rAs “ 0u ĎF0.

• It is right continuous:
Ft “

č

εą0

Ft `ε.

Remark 3.1.4 Of course notice that the part that incorporates our cheater’s behavior is the inclusion

Ft Ě
č

εą0

Ft `ε,

as the reverse inclusion is trivially satisfied by definition of a filtration. Once again, this means that if
an event depends on what happens just immediately after time t , then this event can also be decided
with the information available up to time t . For a very neat and simple example of a filtration that
is not right-continuous consult ??Example 3.17]ap-notes.

We now see the Theorem that formalises the intuition we had, namely that if we actually had allowed our
process in example 3.1.2 to look slightly into the future, we could have in fact decided whether T had
occurred.

Theorem 3.1.5 (Stopping times in usual conditions) Let tFt u be a filtration the satisfies the usual
conditions. Then a random time T is a stopping time if and only if tT ă t u PFt for all t ě 0.

Proof. The sufficient condition is trivial, just note that:

tT ă t u “
č

ně0

"

T ď t ´
1

n

*

.
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In fact the necessary condition is also quite easy, just let εą 0, then it is clear that

tT ď t u “
č

ně1{ε

"

T ă t `
1

n

*

l jh n

PF
t ` 1

n
ĎFt `ε

PFt `ε

Therefore it readily follows that
tT ď t u P

č

εą0

Ft `ε “Ft

where this last step holds by assumption of right-continuity. ♥

Remark 3.1.6 Note that this proof only really required right-continuity.

Let us now do a thorough job and show that this modification to our sigma-algebra actually does fix the
problem we had in Example 3.1.2.

Theorem 3.1.7 (Hitting times of open sets in usual conditions are stopping times) Let X be a right-
continuous process taking values in Rd adapted to a filtration that satisfies the usual conditions. It
follows that for an open set A Ď Rd , we have that

T “ inftt ą 0 : X t P Au

is in fact a stopping time.

Proof. In light of Theorem 3.1.5, it suffices to show that tT ă t u PFt for all t ě 0. This follows
after the following two steps, the last of which we will justify in a moment:

tT ă t u “ tX s P A for some s P r0, t qu (3.1)

“
ď

q Pr0,t qXQ

tXq P Au (3.2)

To justify (3.3) we note the following: If X s P A for some 0 ď s ă t , since A is open, there is some
δ ą 0 small enough so that B pX s ,δq Ď A. Moreover, by left continuity of our process, we can find
some 0 ă ε0 ă t ´ s small enough such that for any ε ă ε0, one has that }X s `ε´ X s } ă δ. In
particular, for all rationals q P rs , s `ε0q X Q , we have that Xq P A. In conclusion, if X s P A for some
s , then we can find some rational q for which Xq P A. Now the claim follows because looking at (3.3)
we see that since q ă t , then tXq P Au PFq ĎFt . ♥

Right, recall that we are trying to move towards an integration theory in which our integrators can be
Martingales. Our motivation for this detour on usual conditions stems from the fact that we want to have
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a good amount of stopping times, but notice how in the proof of Theorem 3.1.7 we also required X to
be right-continuous. As the reader may already know from a course in probability, it turns out this is not
a stringent prerequisite at all, due to the fact that if we have usual conditions, we can "regularise" our
Martingale and make it right-continuous. Actually something better holds:

Theorem 3.1.8 (Martingale Regularisation Theorem) Let X be a Martingale with respect to a fil-
tration tFt u which satisfies the usual conditions. Then X has a cadlag modification. That is to say:
there exists a cadlag process X ˚ with the property that for any t ě 0,

P rX t “ X ˚
t s “ 1.

Now we are in much better shape. But there may be one more thing that is bugging the reader: we still
haven’t explained why it is in fact justified to perform the "cheap trick" of letting the process look slightly
into the future. Does this alter the properties of our process, or how it talks to our new filtration?

Theorem 3.1.9 (Martingales and usual conditions) Let X be a càdlàg Martingale with respect to a
filtration tFt u, then X is also a Martingale with respect to the filtration

F ˚
t “σ

˜

č

εą0

Ft `εY tP ´ null setsu
¸

.

i.e: its still a Martingale if we enhance our filtration just enough to satisfy usual conditions.

Proof. We need to show that for any set A PF ˚
s where 0 ď s ď t , we have that

E rpX t ´ X s q1As “ 0.

It turns out that if G is a σ-algebra and N denotes the collection of P -null sets, then the collection
of sets of the form A Y M for A P G and M PN is also a σ-algebra. However, F ˚

t is the smallest
sigma-algebra that contains from F`

t and N , so in particular it is a subset of the sigma algebra of
unions described above, so that A “ B YC for some set B PF`

t and C PN . Since 1A “ 1B YC but C

is of measure zero, then 1A “ 1B almost surely. Thus we have reduced our task to the case in which
A PF`

s . Naturally, since A PF`
s , we also have that for any εą 0, A PFs `ε. So by the Martingale

property of X , we have that
E rpX t ´ X s `εq1As “ 0.

However, note that pX s `εqεPr0,t ´s s is UI, because for any such ε, we have that X s `ε “ E rX t |Fs `εs,
and so it follows by the UI property of conditional expectation. With this out of the way, we apply
Vitali’s Theorem: since X is càdlàg then X s `ε Ñ XS as ε Ó 0, and since almost sure convergence
implies convergence in probability and the family pX s `εqεPr0,t ´s s is UI, we have that X s `ε Ñ X s in
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L 1, which means that we can pass in the limit ε Ó 0 into the integral and we conclude that

E rpX t ´ X s q1 As “ 0.

♥

3.2 Local Martingales

From now on we assume that all Martingales are cadlag and all filtrations satisfy the usual conditions.

Definition 3.2.1 (Local Martingale) A local Martingale is a cadlag adapted process X such that
there exists an increasing sequence of stopping times pTn q with Tn Ò 8 with the property that the
stopped process X Tn ´ X0 is a Martingale, which as a reminder of notation, means:

pX t ^Tn
´ X0qt ě0

The sequence of stopping times pTn q is referred to as a localising sequence, and we also say that pTn q

reduces X to a Martingale. We will always work with continuous local Martingales unless otherwise
specified and we denote byMloc the set of continuous local Martingales.

Remark 3.2.2 Note that in general the requirement of being local is not the same as that of there
being a sequence of stopping times pTn q for which X Tn is itself a Martingale. For the two requirements
to coincide, we would additionally need to impose that E rX0 |Fs s “ X0, which can be achieved for
example, if X0 is a constant, or in more generality, if F0 is a trivial σ-algebra, which doesn’t seem
that far of a reach since at time 0 we don’t have any information.

In light of this remark, we make the assumption from now on that all filtrations we consider have F0 to
be trivial, thus simplifying our requirement for a local Martingale.

Remark 3.2.3 If X0 is also measurable with respect to the "parent" sigma algebra F , then we will
also get the same result because E rX0 |Fs s “ X0.

Proposition 3.2.4 Let X be a continuous local Martingale and set pTn q to be the following sequence
of stopping times:

Tn “ inftt ą 0 : |X t | ą nu .

Then pTn q also localises X .
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The moral of this proposition is that when we are dealing with local Martingales we can always take this
familiar sequence of stopping times as our localising sequence.

Proof. Start by fixing a localising sequence pUn q. By virtue of X being continuous, we have that
|X t ^Tn

| ď n for all t ě 0, n P N , and so we can emply the DCT in the following way:

E rX t ^Tn
|Fs s “ E

”

lim
kÑ8

X t ^Tn ^Uk

ˇ

ˇ

ˇ
Fs

ı

(3.3)

“ lim
kÑ8

E
“

X t ^Tn ^Uk

ˇ

ˇFs

‰

(3.4)

“ lim
kÑ8

X s ^Tn ^Uk
(3.5)

“ X s ^Tn
(3.6)

In step (3.4) we just used the fact that pUk q by assumption has that Uk Ò 8. In step (3.5) we used the
observation we did earlier regarding DCT. In step (3.6) we used the fact that Uk turns Mt “ pX t ^Uk

q

into a Martingale, and in line (3.5) we effectively have Mt ^Tn
, and since a stopped Martingale is still

a Martingale, then we get the desired result in (3.6). ♥

Example 3.2.5 (Geometric Brownian Motion with drift) Naturally, all Martingales local Martingales,
say by choosing the sequence of stopping times Tn “ n . However, the converse is not true, and it is
not immediately obvious from the definition which counterexamples we can use. Here is a way we can
approach to construct one. First consider the so-called Geometric Brownian Motion:

Mt “ exp

ˆ

Wt ´
t

2

˙

Where W is Standard Brownian Motion. Then M is a Martingale with respect to the natural filtration
generated by the Brownian Motion, indeed:

E

„

exp

ˆ

Wt ´
t

2

˙ˇ

ˇ

ˇ

ˇ

Fs

ȷ

“ E

„

exp

ˆ

Wt ´ Ws ` Ws ´
t

2
´

s

2
`

s

2

˙ˇ

ˇ

ˇ

ˇ

Fs

ȷ

(3.7)

“ exp
´

Ws ´
s

2

¯

E

„

Wt ´ Ws ´
t ´ s

2

ȷ

(3.8)

“ exp
´

Ws ´
s

2

¯

(3.9)

Where in step (3.9) we used the fact that Ws is Fs -measurable, as well as the Markov Property. In
step (3.10), we used the form of the Moment Generating Function of the Normal Distribution. As a
fun fact, note that this Martingale is not Uniformly Integrable: That is because Mt converges to 0
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almost surely:

Mt “ exp

ˆ

W

t
´

1

2

˙t

Ñ 0 (3.10)

Where in the limit we used the Law of Large Numbers for Brownian Motion. However,

E |Mt ´ 0| “ E exp

ˆ

Wt ´
t

2

˙

“ 1

which certainly does not go to zero, and so we have almost sure convergence yet no L 1 convergence.
Regardless, let us now construct an example of a non-Martingale that is a local Martingale.

3.3 Class D and Class DL

Recall that we said that a process X was UI if the family of random variables tX t : t P R`u was UI. Even
if X was UI, it does not follow that the family of random variables consisting of X sampled at random
times is UI. We make this into a definition now:

Definition 3.3.1 (Doob Class) A cadlag process X is said to be in the Doob Class, or just Class D
if the family of random variables tXT : T is a finite stopping timeu is UI.

Definition 3.3.2 (Locally in Doob Class) A cadlag process X is said to be locally in Doob CLass, or
just Class DL if for all t ě 0, the family of random variables

tXT ^t : T is a stopping timeu “ tXT ^t : T is a bounded stopping timeu

is Uniformly Integrable.

Remark 3.3.3 (Subtlety: finiteness vs boundedness) A random variable T is finite if for all ω P Ω,
T pωq ă 8. This is a weaker condition than T being bounded, which means that there exists some
M ą 0 such that for all ω PΩ, T pωq ă M .

Now we have a Theorem that characterises when a Local Martingale is a Martingale.

Proposition 3.3.4 (Local Martingales, Martingales and Class DL) A local Martingale is a (true)
Martingale if and only if it belongs to class DL.
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Proof. Start by assuming that a local Martingale X is a Martingale, let us show that X is in class
DL. Let T be a bounded stopping time, then by the Optional Stopping Theorem, we have that

E rX t |FT s “ X t ^T .

From which we conclude that under our assumption,

tXT ^t : T is a bounded stopping timeu “ tE rX t |FT s : T is a bounded stopping timeu.

The proof now follows by the UI property of Conditional Expectation. Conversely, suppose that
X is a local Martingale that belongs to class DL, let us show that X is a Martingale. Start by
choosing a sequence of increasing stopping times pTn q for which X Tn is a Martingale. We have the
following observations: (OBS 1) By our choice of pTn q we trivially have that for any fixed t ě 0,
X t “ limnÑ8 X t ^Tn

almost surely. In particular, since we are assuming X is in class DL, we also have
that the family tX t ^Tn

: n P N u is UI, and so by Vitali’s Theorem our convergence gets upgraded to
convergence in L 1 (OBS 2). Putting all this together:

E rX t |Fs s “ E
”

lim
nÑ8

X t ^Tn

ˇ

ˇ

ˇ
Fs

ı

(3.11)

“ lim
nÑ8

E
“

X t ^Tn

ˇ

ˇFs

‰

(3.12)

“ lim
nÑ8

X s ^Tn
(3.13)

“ X s (3.14)

Where in step (3.12) we have used (OBS 1), in step (3.13) we have used (OBS 2) (technically,
something deeper is going on here, because the usual trick of pulling limits in and out from expectations
only works, well for expectations, but it turns out that this can also be upgraded to work with
conditional expectations). In step (3.14) we have used the fact that X is a local Martingale and pTn q

is a localising sequence, and finally in step (3.15) we have used (OBS 1). ♥

We have one more result, which follows immediately from the OST for UI cadlag Martingales.

Proposition 3.3.5 A uniformly integrable (cadlag) Martingale is in class D.

Proof. This is essentially an immediate application of the OST for UI cadlag Martingales, but I will
reprove it for clarity. We know that since X is UI, then Xn “ E rX8 |Fn s. Now we will prove the
OST for discrete stopping times. If T is a discrete stopping time, then it is clear enough (say by the
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DCT), that if B PFT ,

E rXT 1B s “
ÿ

nPN Yt8u

E r1B 1T “n Xn s “
ÿ

nPN Yt8u

E r1B 1T “n X8s “ E r1B X8s

Where we used in the second equality that E rX8 | Fn s “ Xn and the fact that by definition of a
stopped sigma algebra, B X tT “ nu P Fn . Now that we have the OST for discrete time, namely
that E rX8 |FT s “ XT , we can generalise this to any (potentially continuous time) stopping time T ,
simply take a discretisation Tk Ó T , and observe that whenever A PFT , then

A X tTk ď nu Ď A X tT ď nu PFn

and so A is in FTk
, therefore,

E rX8 1As “ E rXTk
1As

from the discrete OST, but also, since XTk
“ E rX8 |FTk

s, by the UI property of conditional expecta-
tion, we have that pXTk

q is UI, and so it converges in L 1 and we can pass a limit inside the expecation
so that

E r1A X8s “ E r lim
kÑ8

XTk
1As

But now we use the fact that Tk Ó T and X is cadlag to finish the claim. ♥

Alternative Proof which I don’t like. An alternative proof is the following. Since T ^ n is a bounded
stopping time, we have that using X is UI: E rX8 |FT ^n s “ XT ^n . Therefore we have that

XT “ lim
nÑ8

E rX8 |FT ^n s “: Y8.

If we can show that this right hand side equals E rX8 |FT s we will be done. Let A PFT , then we
can express A “ limnÑ8 A X tT ď nu pointwise, and one can see that 1AXtT ďnu Ñ 1A in L 1, so that
Y8 1A “ limnÑ8 XT ^n 1AXtT ďnu in L 1. Moreover, A X tT ^ nu can be seen to be in FT ^n , and so
we have that

E rY8 1As “ lim
nÑ8

E rXT ^n 1AXtT ďnus “ lim
nÑ8

E rX8 1AXtT ďnus “ E rX8 1As

Where the second inequality comes from the fact that AXtT ď nu PFT ^n and XT ^n “ E rX8 |FT ^n s.
♥
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3.4 Square Integrable Martingales

Definition 3.4.1 (Square Integrable Martingales) We defineM2 to be the space of square integrable
Martingales:

M2 “

"

M a continuous Martingale with sup
t

E X 2
t ă 8

*

Remark 3.4.2 (On the value of this supremum) Naturally, by the Martingale Convergence Theorem,
whenever M PM2, we have that Mt Ñ M8 almost surely and in L 2. Moreover, note that if M is a
Martingale, then M 2 is a sub-Martingale, indeed: if t ě s , then

E rM 2
t |Fs s “ E

“

pMt ´ Ms ` Ms q
2

|Fs

‰

ě 2E rMs pMt ´ Ms q |FS s ` E rM 2
s |Fs s

“ M 2
s .

Therefore taking expectations of both sides, we get that E rM 2
t s ě E rM 2

s s, meaning that the map
t ÞÑ E M 2

t is non-decreasing, and as such supt E M 2
t “ E M 2

8
.

Remark 3.4.3 (On a maximal inequality) Recall Doob’s Maximal Inequality (for p “ 2): if X is
a cadlag process, then }supt X t }2 ď 2}X t } . In terms of our situation, since M is assumed to be
continuous, then of course its cadlag and so

E

„

sup
t ě0

X 2
t

ȷ

ď 4E rX 2
8

s.

We now have the following result:

Theorem 3.4.4 (M2 is a complete vector space) The vector space M2 is complete with respect to
the norm

}X }
2
M2

“ E X 2
8

which we know is finite by assumption of X PM2 and the remark of the value of the supremum.

Proof. We take a Cauchy sequence pXn q inM2, i.e:

E rpX n
8

´ X m
8

q2s Ñ 0

as m , n Ñ 8, and show that it has a convergent subsequence. Meaning that there is some subsequence
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pnk q along which we have convergence to a continuous M2 Martingale. We begin by constructing
the limit. By a standard trick in analysis, we can take a subsequence pnk q for which

E rpX nk
8

´ X nk`1
8

q2s ď 2´k

Now notice that obviously we can write

X nk
t “ X nk

0 `

k
ÿ

i “1

X ni
t ´ X

ni ´1
t

So we need to show that this sum almost surely converges for all t as k Ñ 8. For this, note that

E

«

8
ÿ

i “1

sup
t ě0

|X ni
t ´ X

ni ´1
t |

ff

“

8
ÿ

i “1

E sup
t ě0

|X ni
t ´ X

ni ´1
t | (3.15)

ď

8
ÿ

i “1

c

E sup
t ě0

|X ni
t ´ X

ni ´1
t |2 (3.16)

ď 2
8
ÿ

i “1

b

E |X ni
8 ´ X

ni ´1
8 |2 (3.17)

Where (3.16) comes from the MCT, (3.17) comes from Jensen’s Inequality, and (3.18) comes from
Doob’s Maximal Inequality. From this and our construction of the subsequence pnk q it follows that
the sum in (3.18) is summable, and so the original expression in (3.16) is finite. If the expectation of
a random variable is finite, it must mean that it is almost surely finite, i.e:

8
ÿ

i “1

sup
t ě0

|X ni
t ´ X

ni ´1
t | ă 8 a.s

This implies that X ‹
t “ limkÑ8 X nk

t exists. Now we prove that X ‹ is a continuous process. Note that

sup
t ě0

|X nk
t ´ X ‹

t | ď

8
ÿ

i “k`1

sup |X ni
t ´ X

ni ´1
t | Ñ 0

as k Ñ 8 almost surely. Therefore we have that X nk converges uniformly almost surely to X ‹, and
since each X nk is continuous, (and the uniform limit of continuous functions is continuous) it follows
that X ‹ is also continuous almost surely. Now it is left to show that X ‹ is L 2 bounded and that it is a
Martingale, both of this results are proven in a similar way. The important thing to note is that since
pX nk

8
qk is an L 2 bounded family, and so it converges in L 2 and so (say by Jensen’s Inequality) it

also converges in L 1, from this we have that E pX ‹
8

q2 “ E rlimkÑ8pX nk
8

q2s “ limkÑ8 E rpX nk
8

q2s ă 8

where the last inequality comes from L 2 boundedness. Therefore X ‹ has indeed finite norm, and
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finally we just need to show that it is a Martingale. Once again, this is a similar argument:

E rX ‹
8

|Ft s “ lim
kÑ8

E rX nk
8

|Ft s

“ lim
kÑ8

X nk
t

“ X ‹
t .

Where the first inequality we used the L 1 convergence discussed before, and in the second inequality
we used the fact that X nk is a Martingale. Therefore by the Tower Law it now follows that X ‹ is
indeed a Martingale. ♥

3.5 Quadratic Variation

In this section we are going to show that every local Martingale has associated to it a continuous adapted
and increasing process, which captures the "accumulated roughness" of the process.

Proposition 3.5.1 Let M be a Martingale, and let K be a bounded Ft0
measurable random variable,

then
X t “ K pMt ´ Mt ^t0

q

is a Martingale.

Proof. Let T be a bounded stopping time. We will use the converse of the Optional Stopping
Theorem:

E rXT s “ E rK pMT ´ MT ^t0
qs (3.18)

“ E rK E rMT ´ MT ^t0
|Ft0

ss (3.19)

“ 0. (3.20)

Thus satisfying the hypothesis of the Converse of the OST, and so X is a Martingale. Here (3.19)
followed by the Tower Law, and (3.20) followed by the OST and the fact that M is a Martingale. ♥

We will want to talk about convergence of stochastic processes as a whole, and for this we need a new
notion of convergence.

Definition 3.5.2 (UCP convergence) A sequence of processes Z n converges Uniformly on Compacts
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in Probability (UCP) to a process Z if for all t ě 0 and all εą 0:

P

«

sup
s Pr0,t s

|Z n
s ´ Zs | ą ε

ff

Ñ 0.

Theorem 3.5.3 (Quadratic variation exists) Let X be a continuous local Martingale. Let

rX s
pnq

t “
ÿ

kě0

´

X t ^t n
k

´ X t ^t n
k´1

¯2

.

Then the process rX s
pnq

t converges UCP to a continuous, adapted, and non-decreasing process rX st ,
which we call the Quadratic Variation of X .

Proof. Without loss of generality we assume that X0 “ 0. We distinguish two cases: when the process
is uniformly bounded, meaning that there is some C ą 0 for which |X t pωq| ď C for all pt ,ωq P R`ˆΩ.
Since a uniformly bounded local Martingale is certainly in class DL, then it is a true Martingale, and
moreover it is inM2. (A simple DCT argument also shows that uniformly bounded local Martingales
are true Martingales). Therefore the limit X8 exists almost surely and in L 2 (and in L 1). First of
all notice the following observation that will make our lives easier: since X t Ñ X8 almost surely, we
have that

rX s
pnq

t ´ rX s
pnq

2´n t2n t u
“
`

X t ´ X2´n t2n t u

˘2
Ñ 0

as t Ñ 8. Therefore we can unambiguously write

rX spnq
8

“ sup
k

rX s
pnq

t n
k

“ sup
k

k
ÿ

i “1

´

X t n
i

´ X t n
i ´1

¯2

“ lim
kÑ8

k
ÿ

i “1

´

X t n
i

´ X t n
i ´1

¯2

and so

E rX spnq
8

“ lim
kÑ8

E

«

k
ÿ

i “1

´

X t n
i

´ X t n
i ´1

¯2
ff

(3.21)

“ lim
kÑ8

E rX 2
t n

k
s (3.22)

“ E rX 2
8

s ď C 2 (3.23)

Where (3.22) is due to the MCT, (3.23) is due to the Pythagorean Theorem, and (3.24) is due to X

being inM2 in order to put the limit in. Finally the inequality comes from the assumption of uniform
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boundedness. Therefore rX s
pnq
8 is finite almost surely. Then we define

M n
t “

1

2

`

X 2
t ´ rX sn

t

˘

We can expand M n
t into a series. Indeed, note that by telescoping we can write

X 2
t “

8
ÿ

k“1

X 2
t ^t n

k
´ X 2

t ^t n
k´1

(indeed, there will be some k 1 for which t n
k 1 ď t ă t n

k 1`1, and so the sum will only run until k “ k 1 `1.
The last term will be X 2

t ´ X t 1n
k

and all the terms before that will die). Therefore combining with the
definition of rX sn

t gives:

M n
t “

1

2

8
ÿ

k“1

X 2
t ^t n

k
´ X 2

t ^t n
k´1

´ X 2
t ^t n

k
` 2X t ^t n

k
X t ^t n

k´1
´ X 2

t ^t n
k´1

“

8
ÿ

k“1

X t ^t n
k´1

´

X t ^t n
k

´ X t ^t n
k´1

¯

We have established that X is a Martingale, so each of this summands is the product of a Ft n
k´1

-

measurable bounded random variable times
´

X t ^t n
k

´ X t ^t n
k ^t n

k´1

¯

. From Proposition 3.5.1 it follows
that each of the summands is a Martingale. This sum contains only finitely many terms so it is clear
that pM n

t qt is a Martingale. The idea is now to show that M n is in M2, and then moreover show
that the sequence is Cauchy. From the limit we will be able to extract the quadratic variation rX s.
To show that M n PM2 we compute itsM2 norm and show it is finite.

E pM n
8

q2 ď E C 2

˜

8
ÿ

k“1

X t n
k

´ X t n
k´1

¸2

(3.24)

“ C 2E
8
ÿ

k“1

pX t n
k

´ X t n
k´1

q2 (3.25)

“ C 2E rX sn
8

(3.26)

ď C 4 (3.27)

Where (3.25) follows from |X t ^t n
k´1

| ď C and so we pull it out of the sum, step (3.26) follows from the
Pythagorean Theorem, step (3.27) follows from the definition of rX sn

8
and step (3.28) follows from

the calculation we did in steps (3.22)-(3.24). We have now established that for each n , M n PM2

and now we proceed to show it is a Cauchy sequence. Since the t n
k are dyadic numbers, one can get
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the following formula (don’t worry too much about where it comes from), if n ě m , then

M n
8

´ M m
8

“

8
ÿ

j “1

`

X j 2´n ´ Xt j 2´pn´mqu2´m

˘`

Xp j `1q2´n ´ X j 2´n

˘

,

by the Pythagorean Theorem once again, we have that

E |M n
8

´ M m
8

|2 “

8
ÿ

j “1

E
`

X j 2´n ´ Xt j 2´pn´mqu2´m

˘2 `
Xp j `1q2´n ´ X j 2´n

˘2 (3.28)

ď E sup
|t ´s |ď2´m

pX s ´ X t q2rX sn
8

(3.29)

ď

˜

E sup
|t ´s |ď2´m

pX s ´ X t q4

¸1{2
`

E prX sn
8

q2
˘1{2 (3.30)

Where step (3.29) comes from the Pythagorean Theorem, step (3.30) comes from a simple bound
and the definition of rX sn

8
, and step (3.31) is just the Cauchy-Schwarz inequality. We are going to

show that the first term in the final product goes to zero and that the second term is bounded. Since
for all ω, X t pωq Ñ X8pωq and X pωq is continuous, we have that X pωq is uniformly continuous for
all ω. Therefore, as m Ñ 8, the first term vanishes because the supremum is bounded by 16C 4

and thus we can use the DCT. Now we show that the second term in the product is bounded. By
definition of M n

8
we can write

E prX sn
8

q2 “ E pX 2
8

´ 2M n
8

q2

ď 2E X 4
8

` 8E pM n
8

q2

ď 10C 4

Where in the middle we used that pa ´ b q2 ď 2pa 2 ` b 2q (this just follows from pa ` b q2 ě 0). Thus
we have shown that pM n qn is Cauchy, so it has a limit M ˚ PM2. Now we define

rX s “ X 2 ´ 2M ˚

It is clear that rX s is continuous and adapted, since the right hand side is. Now we need to show
the two other requirements, namely that it is non-decreasing and the convergence. We will start by
showing a convergence statement. By using the definition and Doob’s maximal inequality:

E sup
t ě0

`

rX sn
t ´ rX st

˘2
“ 4E sup

t ě0

`

M n
t ´ M ˚

t

˘2

ď 16E pM n
8

´ M ˚
8

q2.

This last quantity goes to zero because that’s what convergence in M2 means. It follows that
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supt ě0

`

rX sn
t ´ rX st

˘

Ñ 0 in L 2, we can refer to this as rX sn Ñ rX s uniformly in L 2. It is clear that
this implies UCP because L 2 implies convergence in probability. Now we show that rX s is almost
surely non-decreasing. For this, we note that convergence in L 2 allows us to extract a subsequence
pnk q along which rX sn converges pointwise almost surely. It is also clear that the proto-variations
rX sn are non-decreasing, because if s ă t , then rX sn

t includes more non-negative terms in the sum
than rX sn

s does. Therefore, we can say that almost surely,

rX ss “ lim
kÑ8

rX snk
s ď lim

kÑ8
rX snk

t “ rX st .

So we are done for the case where X is uniformly bounded. Now we need to relax our assumption
to unbounded X . The price to pay will simply be that convergence will have to be relaxed to UCP.
This is where we will use that X is a local Martingale, we will localise it with a stopping time that
will make it bounded. For each N ě 1, let

TN “ inftt ě 0 : |X t | ą N u .

Then it is clear that by continuity of X and by the local Martingale property and the fact that this
stopping times are always a localising sequence, X TN is a bounded Martingale. Hence the process
rX TN s is well-defined by the above construction and satisfies the desired properties. It is clear that

rX TN `1sn
t ´ rX TN sn

t

$

&

%

“ 0 t ď TN

ě 0 t ą TN

Therefore by taking n Ñ 8 we have that

rX TN `1st ´ rX TN st

$

&

%

“ 0 t ď TN

ě 0 t ą TN

which means that we can define rX st “ limN rX TN st . (This limit could be 8, but it exists due
to monotonicity). This function is increasing and adapted as it is the supremum of increasing and
adapted functions. Moreover, to show continuity, we note that for each fixed N , on the event that
tt ď TN u, we have that

rX st “ rX TN st

which means that rX s is continuous on the event tt ď TN u, however, since TN Ò 8 as N Ñ 8, we
conclude that rX s is continuous almost surely. Finally we need to show convergence in UCP. This
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follows from the following, let εą 0 and t ą 0 and fix an N ą 0, then

P

„

sup
0ďs ďt

|rX ss ´ rX sn
s ą ε

ȷ

ď P

„"

sup
0ďs ďt

|rX ss ´ rX sn
s ą ε

*

X tt ď TN u

ȷ

` P rTN ă t s

“ P

„"

sup
0ďs ďt

|rX TN ss ´ rX TN sn
s ą ε

*

X tt ď TN u

ȷ

` P rTN ă t s

The first term goes to zero as n Ñ 8 because X TN is a bounded Martingale so we use the previous
result, and the second term can be made arbitrarily small by picking a large enough N . ♥

We have now shown the existence of this process that captures the accumulated roughness or volatility of
the process. We can now attempt to give a more abstract characterisation, which perhaps is more useful
in computation, and give an example of the quadratic variation of Brownian Motion

Proposition 3.5.4 (Finite Variation implies zero quadratic variation) Let X PMloc be a local Mar-
tingale of finite variation. Then rX s “ 0.

Proof. For a fixed t , we naturally we have that rX sn
t Ñ rX st in probability (this is because of

UCP), therefore we can find a subsequence pnk q along which the convergence is almost sure. I.e:
rX s

nk
t Ñ rX st a.s. However, we can also bound rX s

nk
t as follows:

rX snk
t “

8
ÿ

j “1

´

X t ^t
nk
j

´ X t ^t
nk
j ´1

¯2

ď sup
|r ´s |ď2´nk

|X r ´ X s |

8
ÿ

j “1

ˇ

ˇ

ˇ
X t ^t

nk
j

´ X t ^t
nk
j ´1

ˇ

ˇ

ˇ

The first term of this product goes to zero due to uniform continuity of X (once again we are using
the observation that if a function f is continuous on r0,8q and it converges to a finite limit L , then
it is actually uniformly continuous on r0,8q, this is because after some large enough M , the function
has that | f px q ´ f py q| ă ε for all x , y ą M , and on the interval r0, M s the function is uniformly
continuous by Cantor’s Theorem). The second term of this product is just the first variation which is
assumed to be bounded. Therefore it follows that rX st “ 0 for all t . ♥

Now we show that local continuous Martingales with zero quadratic variation are constant.

Proposition 3.5.5 (Local Martingales with zero quadratic variation are constant) Let X PMloc with
rX s “ 0. Then X t “ X0 for all t ě 0.

Proof. We recall from the Proof of Theorem 3.5.3 (Existence of Quadratic Variation) that if X PMloc

is uniformly bounded, then the sequence of processes

Mn “
1

2
pX n ´ rX sn q
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was shown to be in M2, and moreover the sequence was shown to be Cauchy, which meant by
completeness of M2, that there is some limit X 2 ´ rX s PM2. On the general case, we saw that we
can just reduce X to a bounded Martingale with the stopping times TN “ inftt ą 0 : |X t | ą nu, and
so we have that by the previous explanation, that pX 2 ´ rX sqTN “ pX TN q2 ´ rX TN s PM2. This means
that in the general case, X 2 ´ rX s PMloc. Now back to our proposition, since X PMloc, then as we
have just said, X 2 ´rX s PMloc, but since rX s “ 0 by assumption, it follows that X 2 PMloc. Let pTN q

(defined as usual) reduce both X and X 2 to bounded Martingales, then

E
`

X t ^TN
´ X0

˘2
“ X 2

0 ´ 2X0E X t ^TN
` E X 2

t ^TN

“ X 2
0 ´ 2X 2

0 ` X 2
0 “ 0

Therefore X t ^TN
“ X0 almost surely, and by taking N Ñ 8 we get the claim. ♥

With this we

Theorem 3.5.6 (Characterisation of Quadratic Variation) Let X PMloc and A an adapted continuous
process of finite variation with A0 “ 0. If X 2 ´ A PMloc, then A “ rX s.

Proof. First of all note that the process A´rX s is of finite variation. This is because A has finite vari-
ation by assumption, and rX s is an increasing function, and increasing functions have finite variation.
Then We have that one can write this process as

pX 2 ´ rX sq ´ pX 2 ´ Aq

The first term is a local Martingale by the arguments made at the start of the Proof of Proposition
3.5.5, and X 2 ´ A is a local Martingale by hypothesis. Therefore their difference is also a local
Martingale. We have thus shown that A ´ rX s is a local Martingale with finite variation, hence zero
quadratic variation by Proposition 3.5.4, and therefore A ´ rX s is constant, but by assumption and
definition of quadratic variation, A0 ´ rX s0 “ 0, showing that A “ rX s. ♥

Armed with this we have the following:

Example 3.5.7 (Quadratic Variation of Brownian Motion) Let B be Standard Brownian Motion, then
by standard arguments, we know that the process pB 2

t ´ t qt ě0 is a Martingale, in particular a local
Martingale, and since pt qt ě0 is obviously a continuous adapted process of finite variation that starts
at zero, we have that rB st “ t .

This is quite nice. This example quantifies that Brownian Motion accumulates randomness at a unit rate.
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3.6 The Stochastic Integral

We now build the real stochastic integral. Recall we work on a filtered probability space pΩ,F ,tFt ut , P q.

Definition 3.6.1 (Simple Previsible Process) A process H of the form

H “

n
ÿ

k“1

Htk
1ptk´1, tk s

for a sequence of times 0 ď t0 ă ¨¨ ¨ ă tn where Htk
P bFtk´1

is said to be a simple previsible process.
We write S for the set of all simple previsible process.

One can hopefully see the analogy between what’s happening here and the construction of the Lebesgue
integral, we first define the integral for an "elementary" class of processes that have a "natural" definition of
the integral, and then extend by using some non-trivial techniques to some wider class of processes.

Definition 3.6.2 (Stochastic integral of simple previsible processes) Let X PMloc and H P S, then
we define

pH ¨ X qt :“:

ż t

0
H dX :“

8
ÿ

k“1

Htk

`

X t ^tk
´ X t ^tk´1

˘

Remark 3.6.3 (Waffle and intuition) Here’s a very nice way to make sense of this. Think of a stock
trader. The stock trader holds different amounts of stock over time. Here, the stock held by the
trader at time t is given by the process pHt qt . The fact that H is previsible ensures that one can
determine how much stock to hold by knowing only what’s happened slightly before time t . The price
of the asset we are trading evolves according to the local Martingale pX t qt . Then our integral pH ¨X qt

measures our P&L at time t . In the simple previsible process case it is quite easy to see where this
comes from. Between times tk´1 and tk we hold Htk

units of stock. Then on that time interval, our
net gain will be simply Htk

pX tk
´ X ´ tk´1q.

Remark 3.6.4 (Stochastic integral of SPP is an Mloc.) Observe in the definition of the stochastic
integral of a simple previsible process that we have a sum that contains only finitely-many terms, and
each of this terms, of the shape

Htk
pX t ^tk

´ X t ^tk´1
q “ Htk

pX t ^tk
´ Xpt ^tk q^tk´1

q
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H is bounded by assumption, so by Proposition 3.5.1 this thing is a local Martingale.

The stochastic integral of a simple process is a local Martingale, so it has a quadratic variation, let us give
an expression for it:

Proposition 3.6.5 (Quadratic Variation of integral and integral of quadratic variation) Let H and X

be as above, then
„
ż

H dX

ȷ

“

ż

H 2drX s

Where the right hand integral is understood as a Lebesgue-Stieltjes integral (indeed, rX s is a contin-
uous increasing process, so it has a unique measure associated to it)

Proof. First of all we note that if
H “

n
ÿ

k“1

Htk
1ptk´1, tk s

then since the intervals are disjoint,

H 2 “

n
ÿ

k“1

H 2
tk

1ptk´1, tk s

which means that
ż

H 2drX s “

n
ÿ

k“1

H 2
tk

ż

1ptk´1, tk sdrX s “

8
ÿ

k“1

H 2
tk

`

rX st ^tk
´ rX st ^tk´1

˘

The idea is going to be to use Theorem 3.5.6 and so we need to show that
˜

8
ÿ

k“1

Htk

`

X t ^tk
´ X t ^tk´1

˘

¸2

´

8
ÿ

k“1

H 2
tk

`

rX st ^tk
´ rX st ^tk´1

˘

PMloc

Since X is a local Martingale, we can reduce X to a bounded Martingale by stopping it with the
"usual" stopping times TN . For convenience, we will just write X instead of X TN . Then we have the
following claim:

pX tk ´ X tk´1q
2

´ prX stk ´ rX stk´1q

is a Martingale. Let T be a bounded stopping time, we will verify that

E

„

´

X tk
T ´ X

tk´1

T

¯2

´

´

rX s
tk
T ´ rX s

tk´1

T

¯

ȷ

“ 0 (3.31)

But the key is that if we expand the square on the left,

2E rXT ^tk
XT ^tk´1

s “ 2E rXT ^tk´1
E rXT ^tk

|Ftk´1
ss
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But X is a Martingale, so this equals 2E rX 2
T ^tk

s. Therefore putting it all together, equation (3.31)
becomes

E
”´

X 2
T ^tk

´ rX sT ^tk

¯

´

´

X 2
T ^tk´1

´ rX sT ^tk´1

¯ı

And each of these things in brackets are a Martingale by the Characterisation of quadratic variation,
so we get that the whole thing is equal to zero. Recall that our original goal is to show that

˜

8
ÿ

k“1

Htk

`

X t ^tk
´ X t ^tk´1

˘

¸2

´

8
ÿ

k“1

H 2
tk

`

rX st ^tk
´ rX st ^tk´1

˘

PMloc (3.32)

And so since we have already assumed X has been localised, we just need to pick a bounded stopping
time T and show that the expected value of the expression in (3.32) stopped at T is equal to zero.
Notice then that

E

˜

8
ÿ

k“1

Htk

`

XT ^tk
´ XT ^tk´1

˘

¸2

“ E

˜

8
ÿ

k“1

H 2
tk

`

XT ^tk
´ XT ^tk´1

˘2

¸

(3.33)

“ E

˜

8
ÿ

k“1

H 2
tk

`

rX sT ^tk
´ rX sT ^tk´1

˘

¸

(3.34)

and so we are done. The justification for this last step is similar to that of a proof that we have seen
before, and it relies on the fact that H is previsible. Indeed: Let T be a bounded stopping time, then

E

„

H 2
tk

ˆ

´

X tk
T ´ X

tk´1

T

¯2

´

´

rH s
tk
T ´ rX s

tk´1

T

¯

˙ȷ

“ E

„

H 2
tk

E

„

´

X tk
T ´ X

tk´1

T

¯2

´

´

rH s
tk
T ´ rX s

tk´1

T

¯

ˇ

ˇ

ˇ

ˇ

Ftk´1

ȷȷ

and the thing inside the conditional expectation is zero by the Optional Stopping Theorem. ♥

Corollary 3.6.6 (Itô’s Isometry) If H PS and X PM2, then

E

ˆ
ż 8

0
H dX

˙2

“ E

ˆ
ż 8

0
H 2drX s

˙

Recall that one of the main ideas we have been using so far is that if X is a bounded Martingale, then
X 2 ´ rX s PM2, but in order to prove Itô’s isometry we are going to need something stronger:

Proposition 3.6.7 If X PM2, then X ´ rX s is a UI Martingale. In particular,

E X 2
8

“ X 2
0 ` E rX s8
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Proof of (In particular). Let pTN q be a sequence of stopping times that reduce X to a bounded
Martingale. Then X 2 ´ rX s is a Martingale, and so

E rX 2
TN

s “ X 2
0 ` E rX sTN

Now since X PM2, we have that XTN
Ñ X8 almost surely and in L 2 by the MGCT, so E X 2

TN
Ñ E X 2

8
.

Now the term E rX sTN
Ñ E rX s8 by the MCT. ♥

Remark 3.6.8 Itô’s isometry can be proven for general previsible processes using the machinery we
will describe in a second:

This proves Itô’s isometry because by an argument similar to that of Remark 3.6.4, we have that if X PM2

and H PS, then
ş

H dX PM2. With these technical tools we are ready to extend our class of integrands
to all previsible process. For this we will use the Hilbert space Machinery we developed forM2, as well as
the following measure-theoretic fact:

Lemma 3.6.9 (Approximation Lemma) Let µ be a finite on a measurable space pE ,E q, and let A
be a π-system that generates E . Then the set of simple functions

n
ÿ

i “1

ai 1pAi q

for ai P R and and Ai PA are dense in L p pE ,E ,µq for all p ě 1.

Let us give some technicalities to set up this Lemma in our case. Clearly, we are trying to approximate
previsible processes, which can simply be though of as a map ps ,ωq ÞÑ Hs pωq that is P {BpRq measurable.
Look at Itô’s isometry. Why do you think it is called an isometry? Could it be that we could interpret

E

ż 8

0
Y 2

s drX ss

as a norm? Well for a given X PM2, we can construct a measure µX on the sigma field P , given by
µx pdx , dωq “ rX spdt ,ωqP rdωs, or perhaps more clearly, if we define it on the generating sets as

µX ps , t s ˆ A “ E r1AprX st ´ rX ss s

Here of course rX spd t ,ωq means the measure that we get from rX s for free, since this is a continuous
increasing function. Therefore, we can construct the following space L 2 pr0,8q ˆΩ,P ,µX q, in which a
previsible process Y has norm

}Y }
2
L 2pX q

“ E

ż 8

0
Y 2

s drX ss



46 CHAPTER 3. THE STOCHASTIC INTEGRAL

Of course, by the Lemma, we have that one can approximate any Y PL 2 pr0,8q ˆΩ,P ,µX q by simple
previsible processes, and Itô’s isometry becomes, for a simple previsible process H ,

}H }L 2pX q “

›

›

›

›

ż

H dX

›

›

›

›M2

Finally, we are ready to construct the Itô integral for general previsible processes. We will take a slightly
non-standard approach and instead of giving theorems and proofs, we explain it like if it were a recipe.

1. Let Y PL 2pX q be a previsible process with inherent the integrability condition of being in L 2pX q.
By the approximation Lemma, there is a sequence pYn qn of simple processes in L 2pX q with Yn Ñ Y

in L 2pX q.

2. Since we have convergence, it must be that pY n qn is also Cauchy in L 2pX q. This means that as
m , n Ñ 8,

›

›

›

›

ż

Y n dX ´

ż

Y m dX

›

›

›

›M2

“ }Y n ´ Y m }L 2pX q Ñ 0

Where the key step, the middle equality is Itô’s isometry. Showing that the sequence
`ş

Y n dX
˘

n
is

Cauchy inM2.

3. SinceM2 is complete, we have that there is some limiting Martingale M PM2 for which
ż

Y n dX Ñ M

inM2.

4. We define
ż

Y dX :“ M

This has proven existence of the Stochastic integral. Of course, there is a big gap in what we have done
just now, we haven’t shown that this is well defined, what if we obtained a different sequence Ỹn Ñ Y in
L 2pX q, could it be that we obtain a different end-result? No.

Proposition 3.6.10 The stochastic integral is well-defined.

Proof. Let pYn q and pỸn q be two sequences of simple previsible process that converge to Y . We
will show that the M2 Martingales M and M̃ that correspond to pYn q and pỸn q as per the above
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construction are the same. This is a straightforward computation

›

›M ´ M̃
›

›M2
ď }M ´ Mn }M2

`
›

›M̃ ´ M̃n

›

›M2
`
›

›M̃n ´ Mn

›

›M2
(3.35)

“ }M ´ Mn }M2
`
›

›M̃ ´ M̃n

›

›M2
`
›

›Ỹn ´ Yn

›

›L 2pX q
(3.36)

ď }M ´ Mn }M2
`
›

›M̃ ´ M̃n

›

›M2
`
›

›Ỹn ´ Y
›

›L 2pX q
` }Yn ´ Y }L 2pX q (3.37)

and this whole thing goes to zero. ♥
Another fact that we can prove now that we have a stochastic integral is that Ito’s isometry actually
extends to all previsible processes, not just simple:

Theorem 3.6.11 (Ito’s isometry revisited) Let X PM2 and H PL 2pX q. We then have that
›

›

›

›

ż

H dX

›

›

›

›M2

“ }H }L 2pX q

that is to say,

E

ˆ
ż 8

0
H dX

˙2

“ E

ż 8

0
H 2 drX s

Proof. Follows immediately by an application of the triangle inequality, and approximating H with a
sequence pHn qn of simple processes, and

ş

H dX with a sequence ofM2 Martingales
ş

Hn dX . ♥

The journey was painful but we now we have a stochastic integral. Before we start doing things with it,
we need to show some properties of it and later extend the integrators to local martingales.

Theorem 3.6.12 (Stochastic integral behaves well with stopping) Let X PM2, Y PL 2pX q, and T

be a stopping time. Then X T PM2, Y 1p0, T s PL 2pX q, Y PL 2pX T q and

1. rX T s “ rX sT .

2.
ż

Y 1p0, T sdX “

ˆ
ż

Y dX

˙T

“

ż

Y dX T

Dear reader, before embarking on this proof please go take a cup of coffee and a snus.

Proof. Let us start by checking the preliminaries.

• To "show" rX T s “ rX sT we give some intuition: X T is equal to X up to time T , after that, it
becomes constant, once it becomes constant, it no longer accumulates any quadratic variation,
therefore the quadratic variation of the process X T up to time t is precisely the quadratic
variation of X up to time t ^ T .
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• X T PM2. The fact that it is a Martingale comes from the Optional Stopping Theorem. To
show that }X T }M2

ă 8, we have the following nice trick:

›

›M T
›

›

2

M2
“ E

“

X 2
T

‰

(3.38)

ď E

„

sup
t ě0

X 2
t

ȷ

(3.39)

ď 4E rX 2
8

s “ 4}X }
2
M2

ă 8. (3.40)

Where (3.40) uses Doob’s inequality.

• To show that Y 1p0, T s PL 2pX q we simply note that 1p0, T s is left-continuous hence previsible
and Y is previsible by hypothesis. One should now check square integrability but that’s obvious.

• Y PL 2pX T q. For this, we note that

E

ż 8

0
Y 2drX T s “ E

ż 8

0
Y 2drX sT “ E

ż T

0
Y 2 drX s ď E

ż 8

0
Y 2drX s ă 8

where the second equality comes because for a fixed ω, we have that since rX sT pωq is constant
after time T pωq, the corresponding measure will assign zero mass to all time intervals with
start point after T pωq.

We now go on to check that these integrals coincide. Let us check firstly that
ˆ
ż

Y dX

˙T

“

ż

Y dX T

We first check that this holds for simple processes Y , and then extend to the general case. For the
case of a simple process Y , we have that

ˆ
ż t

0
Y dX

˙T

:“

˜

n
ÿ

k“1

Hk pX t ^tk
´ X t ^tk´1

q

¸T

(3.41)

“

n
ÿ

k“1

Hk pX T
t ^tk

´ X T
t ^tk´1

q (3.42)

“:

ż t

0
Y dX T (3.43)

We now extend to the general case. For this, let Y PL 2pX q and let pY n qn be a sequence of previsible
simple processes with Y n Ñ Y in L 2pX q. We have already shown that

ş

Y n dX T “
`ş

Y n dX
˘T . So

what we will show is that each of these terms converge to "what they should". In particular:

•
ş

Y n dX T Ñ
ş

Y dX T inM2. The idea is that Y n Ñ X also in L 2pX T q, then by the construction
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of the integral the claim will follow. To see the claim:

}Y n ´ Y }L 2pX T q “ E

ż 8

0
pY n ´ Y q

2 drX T s (3.44)

“ E

ż T

0
pY n ´ Y q2drX s (3.45)

ď E

ż t

0
pY n ´ Y q2drX s Ñ 0. (3.46)

•
`ş

Y n dX
˘T

Ñ
`ş

Y dX
˘T in M2. This just follows from the simple fact that if a sequence

pMn qn inM2 converges to M PM2, then pM T
n qn converges inM2 to M T . Indeed, by Doob’s

inequality
›

›M T
n ´ M T

›

›M2
“

›

›

›
pM n ´ M q

T
›

›

›M2

ď 2}M n ´ M }M2
Ñ 0.

♥
So far we have constructed a stochastic integral of a previsible process H against anM2 Martingale. We
now wish to increase our space of integrators, starting by enlarging it to Mloc. To justify the validity of
this we have the following proposition

Proposition 3.6.13 (Mloc integrators) Suppose X is a continuous local Martingale and H is a
previsible process such that for any t ě 0, almost surely

ż t

0
H 2

s drX ss ă 8

Let
Tn “ inf

"

t ą 0 : |X t | ą n or
ż t

0
H 2

s drX ss ą n

*

Then X Tn PM2, H 1p0, Tn s PL 2pX Tn q and there is some M ‹ PMloc for which

M n :“

ż

H 1p0, Tn sdX Tn Ñ M ˚

UCP.

Proof. We start by noting that X Tn PM2. This is because we can think of Tn as the minimum of
two stopping times, Tn “ Un ^Qn where Un is the stopping time that captures when |X t | gets too
large, and Qn captures when the integral gets too large. Therefore X Tn “ X Un ^Qn “ pX Un qQn now
as we know, the thing on the inside is in M2, and so since stopping an M2 Martingale leaves it in
M2 by Doob’s inequality (Indeed if M PM2, then }M T }M2

“ E rM 2
T s ď E rsupt M 2

t s≲ E rM 2
8

s ă 8).
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Moreover, since

E

ż t

0
H 2

s 1p0, Tn sdrX Tn s “ E

ˆ
ż t

0
H 2

s drX s

˙Un ^Qn

ă 8

by definition of Qn , we have that it indeed makes sense to talk about the processes M n . We start by
constructing M ˚. Fix a value of t . Then observe that on the event tt ă Tn u, we have that M n “ M N

whenever N ě n . Now note the following, since Tn Ñ 8 almost surely, it follows that for all t , almost
surely the sequence M n

t will become constant and equal to some M ˚
t . Furthermore, we note that if

tt ă Tn u holds, then for all s P r0, t s, we have that |M n
s ´ M ˚

s | “ 0. In particular, for all εą 0, for all
t ě 0:

P

«

sup
s Pr0,t s

|M n
s ´ M ˚

s |

ff

ď P rTn ď t s Ñ 0

To check that the process M ˚ is a local Martingale, we note that if you stop M at Tn then its just
M n , which is anM2 Martingale (?). ♥

Definition 3.6.14 (Stochastic integral for local Martingales) Let H be previsible and X PMloc, then
ż

H dX

is defined to be the UCP limit of
ş

H 1p0, Tn sdX Tn for the stopping times defined as

Tn “ inf

"

t ą 0 : |X t | ą n or
ż t

0
H 2

s drX ss ą n

*

Now we can give the final version of the stochastic integral, the integral with respect to semi-Martingales.

Definition 3.6.15 (Semi-Martingale) A continuous semi-Martingale X is a process of the form

X t “ X0 ` At ` Mt

where A is a continuous adapted finite variation process, and M is a continuous local Martingale. We
also take A0 “ M0 “ 0.

Proposition 3.6.16 (Uniqueness of semi-Martingale decomposition) Let X be a semi-Martingale.
Then the processes A and M in its definition above are unique up to indistinguishability.
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Proof. If we write
X t “ X0 ` At ` Mt “ X0 ` A1

t ` M 1
t

we can rearrange and obtain that
A ´ A1 “ M ´ M 1

the right-hand-side is a continuous local Martingale, whereas the left-hand-side is a finite variation
process. We know that continuous local Martingales of finite variation are constant and so it means
almost surely for all t , Mt ´ M 1

t “ M0 ´ M 1
0 “ 0. Hence M “ M 1 and A “ A1. ♥

We can define therefore define integrals with respect to semi-Martingales in an unambiguous way:

Definition 3.6.17 (The Stochastic Integral) Let X “ X0 ` A ` M be a semi-Martingale, and let H

be a previsible process. Then
ż

H dX “

ż

H dA `

ż

H dX

where the first integral is interpreted as a Lebesgue-Stieltjes integral, and the second one as we have
already discussed.

Definition 3.6.18 (Local Integrability) Let X “ X0 ` A ` M be a semi-Martingale, and let H be a
previsible process. We say H is locally X integrable if for all t ě 0, we have that

ż t

0
|Hs |d|A|s `

ż t

0
H 2

s drM ss ă 8 a.s

Definition 3.6.19 (Local Boundedness) A previsible process H is said to be locally bounded if there
exists a sequence of stopping times pTn q with Tn Ò 8, and constants Cn ą 0 for which, for any pt ,ωq,
one has that

|Ht pωq|1tt P p0, Tn pωqsu ď Cn

Remark 3.6.20 If H is locally bounded, then it is locally X -integrable for any continuous semi-
Martingale X . Indeed: we know that with probability 1, there is some n large enough after which

ż t

0
Hs d|A|s “

ż t

0
Hs 1p0, Tn sd|A|s

On this event, we clearly have that
şt

0 |Hs |d|A|s ď Cn VApt q ă 8. A similar argument applies to the
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other condition.

3.7 Quadratic Covariation of semi-Martingales

Definition 3.7.1 Let X “ X0 `Mt `At be a continuous semi-Martingale, then the quadratic variation
of X is defined as rX s :“ rM s.

This definition is not entirely arbitrary, it is justified by the following:

Proposition 3.7.2 Let X “ X0 ` A ` M be a continuous semi-Martingale, let rX sn
t be the proto-

quadratic variation. Then rX sn Ñ rX s :“ rM s UCP.

Proof. Already have that rM sn Ñ rM s UCP. The idea will be to use some sort of triangle inequality
argument to show that rX n s Ñ rX s UCP. For this we note that for any fixed t ě 0 we have that

sup
s Pr0,t s

|rX sn ´ rM sn | “ sup
s Pr0,t s

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kě1

´

At ^t n
k

´ At ^t n
k´1

¯”

2
´

Mt ^t n
k

´ Mt ^t n
k´1

¯

`

´

At ^t n
k

´ At ^t n
k´1

¯ı

ˇ

ˇ

ˇ

ˇ

ˇ

(3.47)

ď VApt q sup
|u´v |ď2´n

|2pMu ´ Mv q ` Au ´ Av | (3.48)

but since the function 2M ` A is continuous on the compact interval r0, t s, it’s uniformly continuous,
so this whole quantity goes to zero almost surely. Now putting it all together we have that

sup
s Pr0,t s

|rX sn ´ rM s| ď sup
s Pr0,t s

|rX sn ´ rM sn | ` sup
s Pr0,t s

|rM sn ´ rM s|

the first term goes to zero almost surely, the second one goes to zero in probability, therefore the
whole thing goes to zero in probability and we have the desired UCP convergence. ♥

Theorem 3.7.3 (Quadratic variation of the stochastic integral) Let X be a semi-Martingale, and let
H be X -locally integrable. Then

„
ż

H dX

ȷ

“

ż

H 2drX s

Proof. Since by definition rX s ignores the finite variation part, we may as well suppose that X is a
continuous local Martingale. Hence by localisation, we may assume that X PM2 and H PL 2pX q

(This integrability condition is precisely what being locally integrable in this context means). We
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must show that
ˆ
ż

H dX

˙2

´

ż

H 2drX s

is a Martingale. This is exactly what proposition 3.6.5 says when H is a simple process. (Let us
mention what this localisation trick is actually saying. To show that a process A is the quadratic
variation of a local Martingale X , you need to show that X ´ A is a local Martingale, therefore, this
is the same as showing that for some sequence of stopping times pTn q, pX ´ Aq

Tn “ X Tn ´ ATn is a
Martingale. Then one extends to the general case of previsible processes using an Example Sheet
question. ♥

Definition 3.7.4 (Quadratic covariation) Let X and Y be continuous semi-Martingales. The quadratic
covariation rX , Y s is defined as

rX , Y s :“
1

4
prX ` Y s ´ rX ´ Y sq

Remark 3.7.5 Note that rX , Y s is the difference of two increasing (hence finite variation) process,
so it is itself a finite variation process, this means that integrals of the type

ż

H drX , Y s

can be made sense of as a Lebesgue-Stieltjes integral.

There is perhaps a more natural way to approach this definition:

Proposition 3.7.6 (Alternative definition of covariation) Let X and Y be continuous semi-Martingales,
then

ÿ

kě1

´

X
t n

k
t ´ X

t n
k´1

t

¯´

Y
t n

k
t ´ Y

t n
k´1

t

¯

Ñ rX , Y s

UCP.

Proof. The term on the sum can easily be seen to be

1

4
prX ` Y sn ´ rX ´ Y sn q

both of these things converge UCP to their respective quadratic variations. Then by definition of the
polarisation identity the claim follows. ♥

Now we collect some properties of this process.
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Proposition 3.7.7 (Characterisation of quadratic covariation) Let X and Y be continuous local
Martingales, then rX , Y s is the unique finite variation process starting at zero for which X Y ´rX , Y s

is a local Martingale.

Proof. Let A be a finite variation process for which X Y ´ A “ M is a local Martingale. Then we can
rewrite

A “
1

4

`

pX ` Y q2 ´ pX ´ Y q2
˘

´
1

4
prX ` Y s ´ rX ´ Y sq ` rX , Y s ´ M

But rearranging we have that

A ´ rX , Y s “
1

4

¨

˚

˚

˝

pX ` Y q2 ´ rX ` Y s
l jh n

PMloc

`pX ´ Y q2 ´ rX ´ Y s
l jh n

PMloc

˛

‹

‹

‚

´ M
ljhn

PMloc

is a local Martingale, and since A is assumed to be of finite variation, and rX , Y s being the difference
of two increasing (hence finite variation) processes is itself of finite variation, it follows that A´rX , Y s

is a local Martingale of finite variation, hence constant and by assumption of started at zero we have
that they are both equal. To show that rX , Y s satisfies the claim is clear.

♥

Corollary 3.7.8 (Bilinearity of quadratic covariation) One has that

rX ` Y , Z s “ rX , Z s ` rY , Z s

almost surely.

Proof. A way to prove this is using the UCP limit above and then justifying why the result holding "in
UCP" means that it holds almost surely. A better way to prove this is by using the characterisation
of Quadratic covariation, indeed, we note that

pX ` Y qZ ´ prX , Z s ` rY , Z sq

is obviously a local Martingale, and so we are done. ♥

Corollary 3.7.9 If X is a semi-Martingale of finite variation, then rX , Y s “ 0.
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Proof. We simply have that rX ` Y s “ rX ´ Y s “ rY s. Because the definition of the quadratic
variation of a semi-Martingale only includes the local-Martingale term. ♥

Theorem 3.7.10 (Kunita-Watanabe Inequality) Let X and Y be continuous semi-Martingales and
let H be locally X -integrable. Then

ż t

0
|H ||drX , Y s| ď

d

rY st

ż t

0
H 2drX s

Theorem 3.7.11 (Kunita-Watanabe identity) Let X and Y be continuous semi-Martingales and let
H be locally X -integrable. Then H is locally rX , Y s integrable and

„

Y ,

ż

H dX

ȷ

“

ż

H drX , Y s

Proof. We can consider the case where X and Y have only their local-Martingale part. By the
characterisation of quadratic covariation, we must show that

Z “ Y

ż

H dX ´

ż

H drX , Y s PMloc

By localisation, we can assume that X , Y PM2 and so we need to show that Z is a true Martingale.
We first show that this is true for simple processes. By linearity of the integral, it even suffices to show
that it works for processes of the form H “ K 1ps0, s1s for K P bFs0

. If we compute the expressions
above, we have that in this case

Zt “ K Yt

`

X t ^s1
´ X t ^s0

˘

´ K
`

rX , Y st ^s1
´ rX , Y st ^s0

˘

which can be conveniently rewritten as

Zt “ K Yt

`

X s1
t ´ X s0

t

˘

´ K prX s1 , Y st ´ rX s0 , Y st q

if it weren’t for the K, this would clearly be a Martingale, but as we have seen in a prior calculation,
since K is Fs0

measurable, the Martingale property is still there. Indeed, let T be a bounded stopping
time, then

E ZT “ E
“

K E
“

YT X s1
T ´ rX s1 , Y sT ´ YT X s0

T ´ rX s0 , Y sT

ˇ

ˇFs0

‰‰

(3.49)

and now one sees that this becomes zero. Therefore the converse of the OST is satisfied, and so
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the claim is proven for simple processes. For general processes one renames the processes H , Y , X to
H 1p0, T s, Y T , X T for a bounded stopping time T , and so the goal is to show that

E

„

Y8

ż 8

0
Hs dX s ´

ż 8

0
Hs drX , Y ss

ȷ

“ 0

This is accomplished through a series of not very stimulating calculations. (See Lecture 12 notes) ♥

3.8 Itô’s Formula

After all this dry theory, we can provide one of the fundamental results of Stochastic calculus:

Theorem 3.8.1 (Itô’s formula) Let X “ pX 1, ¨ ¨ ¨ , X n q be an n-dimensional continuous semi-Martingale.
Let f P C 2 pRn ,Rq. then

f pX t q “ f pX0q `

n
ÿ

i “1

ż t

0

Bf

Bx i
pX s qdX i

s `
1

2

ÿ

i , j

ż t

0

B2 f

Bx i Bx j
pX s qdrX i , X j ss

The proof will come after a series of smaller results. The first one is an analogue to the Riemann sum:

Lemma 3.8.2 Let X be a continuous semi-Martingale, and Y a locally bounded, adapted, left con-
tinuous process, then

ż t

0
Y dX UCP

“ lim
nÑ8

ÿ

kě1

Yt n
k´1

´

X t n
k

´ X t n
k´1

¯

Proof. Since X “ X0 ` A ` M where A is of finite variation, and M is a continuous local Martingale,
we need to show that

ż t

0
Y dA UCP

“ lim
nÑ8

ÿ

kě1

Yt n
k´1

´

At n
k

´ At n
k´1

¯

and
ż t

0
Y dM UCP

“ lim
nÑ8

ÿ

kě1

Yt n
k´1

´

Mt n
k

´ Mt n
k´1

¯

Let us start with the dM integral. Recall that Y is locally bounded and M is a local Martingale, so
we can rewrite Y for Y 1p0,Un q and M for M Tn where pUn q and pTn q are a sequence of stopping
times for which Y ď Cn and M Tn PM2. Now note that by left-continuity of Y , we have that

Y n “
ÿ

kě1

Yt n
k

1pt n
k´1, t n

k s

converges pointwise to Y , so by the dominated convergence Theorem, (Y n is also uniformly bounded),
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we have that
ż

ΩˆR`

pY n ´ Y q2 drM s b dP “ E

„
ż 8

0
pY n ´ Y q2 drM s

ȷ

Ñ 0

and so
ş

Y n d rM s Ñ
ş

Y d rM s in M2. Now this allows us to conclude UCP convergence for these
localised processes:

P

«

sup
s Pr0,t s

ˇ

ˇ

ˇ

ˇ

ż s

0
Y n ´ Y drM s

ˇ

ˇ

ˇ

ˇ

ą ε

ff

ď
1

ε2
E

«

sup
s Pr0,t s

ˇ

ˇ

ˇ

ˇ

ż s

0
Y n ´ Y drM s

ˇ

ˇ

ˇ

ˇ

2
ff

(3.50)

≲ E

«

ˇ

ˇ

ˇ

ˇ

ż t

0
Y n ´ Y drM s

ˇ

ˇ

ˇ

ˇ

2
ff

(3.51)

ď E

„
ż t

0
pY n ´ Y q2 drM s

ȷ

Ñ 0 (3.52)

Where (3.50) is Markov’s Inequality, (3.51) is Doob’s Inequality, (3.52) is Jensen’s Inequality and the
limit we saw just now. To recap, we have shown that for some stopping times pQm q with Qm Ò 8,

P

«

sup
s Pr0,t s

ˇ

ˇ

ˇ

ˇ

ż s

0
Y n ´ Y drM s

ˇ

ˇ

ˇ

ˇ

Qm

ą ε

ff

Ñ 0

Now one needs to "remove" the Qm . For this, let us momentarily define Z n
t “ sups Pr0,t s

ˇ

ˇ

şs
0 Y n ´ Y drM s

ˇ

ˇ

for convenience. Since Qm Ò 8 almost surely, it is true that the event
Ť

m tZ n
t “ pZ n

t qQm u has proba-
bility one. Therefore, we have that

P
“

Z n
t ą ε

‰

“ P

«

tZ n
t ą εu X

ď

m

tZ n
t “ pZ n

t qQm u

ff

ď P

«

ď

m

tpZ n
t qQm ą εu

ff

“ lim
mÑ8

P rpZ n
t qQm ą εs

Where this last limit is due to increasing events. This means that for any arbitrarily small ηą 0, there
is some M ą 0 for which

P

«

sup
s Pr0,t s

ˇ

ˇ

ˇ

ˇ

ż s

0
Y n ´ Y drM s

ˇ

ˇ

ˇ

ˇ

ff

ď P

«

sup
s Pr0,t s

ˇ

ˇ

ˇ

ˇ

ż s

0
Y n ´ Y drM s

ˇ

ˇ

ˇ

ˇ

QM
ff

`η

and we have seen how the first term goes to zero. I’m not going to show the second part of the proof,
i.e: the dA integral, but it follows by the DCT and localisation. ♥

With this out of the way, we can prove the following
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Lemma 3.8.3 (Stochastic integration by parts) Let X and Y be continuous semi-Martingales, then

X Y “

ż

X dY `

ż

Y dX ` rX , Y s

or in differential notation
dpX Y q “ X dpY q ` Y dpX q ` drX , Y s

Proof. We have the following limits in UCP sense.

2

ż t

0
X dX “ 2 lim

nÑ8

ÿ

kě1

X t n
k´1

´

X t ^t n
k

´ X t ^t n
k´1

¯

“ 2 lim
nÑ8

ÿ

kě1

X 2
t ^t n

k
´ X 2

t ^t n
k´1

´

´

X t ^t n
k

´ X t ^t n
k´1

¯2

“ X 2
t ´ X 2

0 ´ rX st

But as we’ve discussed on prior occasions, since these equalities in UCP end up not depending on n ,
we have that 2

şt
0 X dX “ X 2

t ´X 2
0 ´rX st almost surely. From this, we can apply polarisation identities

to pX ` Y q and pX ´ Y q using the above equation with these instead of X . ♥

With this in mind we are ready to prove Itô’s formula

Proof of Itô’s formula. We do for simplicity the case of dimension n “ 1. Let us start proving the
claim for polynomials. Let us prove it for monomials and then linearity does the rest. Clearly the
claim holds for f pX t q “ X 0

t , so now suppose that for some m , one has that

dpX m q “ m X m´1 dX `
mpm ´ 1q

2
X m´2 drX s

Using the inductive hypothesis, bilinearity and Kunita-Watanabe we have that

rX m , X s “

„
ż

m X m´1 dX `

ż

mpm ´ 1q

2
X m´2 drX s, X

ȷ

“

„
ż

m X m´1 dX , X

ȷ

`

„
ż

mpm ´ 1q

2
X m´2 drX s, X

ȷ

“

ż

m X m´1 drX s `

ż

mpm ´ 1q

2
X m´2 drrX s, X s

“

ż

m X m´1 drX s

where the last equality comes from the fact that since rX s is of finite variation, Corollary 3.7.9 says
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that rrX s, X s vanishes. Thus in differential notation, drX m , X s “ m X m´1 drX s. From this it follows
that

dpX m`1q “ dpX X m q (3.53)

“ X m dX ` X dpX m q ` drX m , X s (3.54)

“ X m dX ` X d
ˆ
ż

m X m´1 dX `

ż

mpm ´ 1q

2
X m´2 drX s

˙

` m X m´1 drX s (3.55)

“ X m dX ` m X m dX `
mpm ´ 1q

2
X m´1 drX s ` m X m´1 drX s (3.56)

“ pm ` 1qX m dX `
pm ` 1qm

2
X m´1 drX s (3.57)

Thus proving the formula for monomials. In step (3.54) we used the stochastic integration by parts,
in step (3.559 we used the inductive hypothesis and the calculation done just before. In step (3.56)
we used the stochastic chain rule (Example Sheet 2), that says that

ż

A d
ˆ
ż

B dX

˙

“

ż

AB dX

Then step (3.57) is just putting it all together. Thus Itô’s formula is proven for polynomials and so
now one just needs to extend it to general C 2 functions. This is done with Weierstrass’ Theorem.
Finish

♥
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Chapter 4

Applications to Brownian Motion

4.1 The Brownian Motion characterisation of Mloc.

We can now use the stochsatic calculus we have developed to provide some interesting results about
Brownian Motion.

Theorem 4.1.1 (Lévy’s Characterisation of Brownian Motion) Let X be a continuous d -dimensional
local Martingale with X0 “ 0 and quadratic covariation rX i , X j s “ tδi j , then X is standard Brownian
Motion.

Main idea: The key is to consider the process, for θ P Rd

Mt “ exp
`

iθ ¨ X t ` }θ }
2 t {2

˘

show it is a Martingale, and therefore show using the Martingale property, that the characteristic function
of X is that of a Normal random variable.

Proof. Let θ P Rd , and consider

Mt “ exp
`

iθ ¨ X t ` }θ }
2 t {2

˘

Then to show that Mt is a Martingale, we start by showing it is a local Martingale, for this we use
Itô’s formula

dMt “ Mt

˜

iθ ¨ dX t `
}θ }

2

2
dt

¸

´
1

2
Mt

d
ÿ

j ,i “1

θ iθ j drX i , X j st

which gives that
dMt “ i Mt θ ¨ dX t

which means that Mt is a local Martingale, since it is the integral of a continuous (hence locally

61
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integrable) process against a local Martingale. Now we show that M is actually a Martingale, for
this, we start by noting that for a fixed t , sups Pr0,t s |Ms | “ exp

´

}θ }
2t

2

¯

, which is integrable. We will
now use this to show M is a Martingale. Let pTn qn be a sequence of stopping times with Tn Ñ 8

such that M Tn is a Martingale. Then

Ms “ lim
nÑ8

Ms ^Tn

“ lim
nÑ8

E rMt ^Tn
|Fs s

“ E rMt |Fs s

Where the last equality, came from the fact that |Mt ^Tn
| ď sups Pr0,t s |Ms |, which we showed above

that is integrable, hence by the DCT we were able too introduce the limit inside the expectation.
Now that we know that M is a Martingale, we have that

E rexppiθ ¨ pX t ´ X s qq|Fs s “ exp

˜

´
}θ }

2

2
pt ´ s q

¸

so by taking expectation of both sides, we have that the characteristic function of the increments
X t ´ X s is that of a N p0, t ´ s q random variable. Moreover, since the conditional expectation given
Fs is a non-random object, we have that X t ´ X s is independent of Fs . (for a proof of this fact
consult [Teh16, Page 21]). Therefore X is Brownian Motion. ♥

The following result is a clever consequence of Lévy’s Characterisation:

Theorem 4.1.2 (Dubins-Schwarz Theorem) Let X be a scalar continuous local Martingale for a
filtration pFt qt so that X0 “ 0 and rX s8 “ 8 a.s. Define the the stopping times

T ps q “ inftt ě 0 : rX st “ s u,

and the family of random variables
Ws “ XT ps q

with the sigma-algebras Gs “ FT ps q. Then pGs qs is a filtration and the process W is a Brownian
Motion in pGs qs . (To clarify, when we say W is a Brownian Motion in pGs qs we mean that W is
adapted to this filtration and that the increments Wt ´ Ws are independent of Gs )

Proof. We start by noting that for a fixed ω P Ω, the map t ÞÑ rX st pωq is continuous and non-
decreasing. Hence the map s ÞÑ T ps ,ωq is increasing and right-continuous.



4.1. THE BROWNIAN MOTION CHARACTERISATION OFMloc. 63

t ÞÑ rX st s ÞÑ T ps q

t0 t1

s0
s0

t0

t1

Let us first show that pGs q is a filtration. This is immediate from the fact that T is increasing.
The remaining ingredients to check are: to show that W is continuous, to check that W is a local
Martingale, and to check that the quadratic variation of W is rW st “ t . This last condition is
immediate from the continuity of X and the definition of T . Now let us show that W is continuous.
The only doubt to see that W is continuous comes from the possible jumps of T , that is to say,
when the quadratic variation of X is constant. So in this regard, if we can show that whenever rX s

is constant then so is X we will be done. I.e. we must show that whenever rX st1
“ rX st2

, then
X t1

“ X t0
. Let t0 be given and let U “ inftu ą t0 : rX su ą rX st0

u. We will show that XU “ X t0
(note

that in our diagram U pωq “ t1). For this, consider the process

Yu “ Xu^U ´ Xu^t0

“

ż u

0
1pt0,U spr qdX r

since Y is the integral of a left-continuous process with respect to a local Martingale, we have that
Yu is itself a local Martingale. Hence it has quadratic variation

rY s8 “

ż 8

0
1pt0,U sdX r “ rX sU ´ rX st0

“ 0

Therefore we have that the quadratic variation of Y is always zero (because if the quadatic variation
at infinity is zero, and the quadratic variation is a non-decreasing process, we must have that rY st “ 0

for all t ) and since if a local Martingale has zero quadratic variation it must be almost surely constant
(Indeed, if rY s “ 0, then by the characterisation of quadratic variation we must have that Y 2 is a
Martingale, which means that E rY 2

t ´ Y 2
0 s “ 0, and since E rpYt ´ Y0q2s “ E rY 2

t ´ Y 2
0 s, we get that

Yt ´Y0 almost surely). This shows that XU “ X t0
almost surely, and so we have almost sure continuity

(This is enough for Lévy, no need for strict continuity). We now show that W is a local Martingale,
then we will be done. First of all, since X is a local Martingale, let τN be the "canonical localising
sequence", so that X τn is a bounded Martingale (with respect to the filtration tFt u). Then define
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Figure 4.1: Proof by picture: conformal invariance of Brownian Motion

σN “ rX sτN
, so that

E rWσN ^s1
|Gs0

s “ E rXT pσN ^s1q |Gs0
s

“ E rXτN ^T ps1q |FT ps0qs

“ XτN ^T ps0q “ WσN ^s0

Where in the first step we used the definition of W , in the second one we used the fact that
T pσN ^ s1q “ inftt : rX t s ą prX sτN

^ squ, and in the last step we used the fact that X τN is a
Martingale, along the OST. I suppose that for full clarity we can note that rW ss “ rX sT ps q because
W 2

s ´ s “ X 2
T ps q

´ rX sT ps q and this latter is a Martingale with respect to pGs qs . ♥

Remark 4.1.3 The power of this Theorem comes from the fact that if X PMloc with X0 “ 0 and
rX s8 “ 8, then X is a time-change of a Brownian Motion. Meaning, there exists a Brownian Motion
for which X t “ WrX st

. It turns out that the assumption of infinite quadratic variation can be relaxed.
This finally gives the intuition that was hinted at, that said that the quadratic variation is the clock of
a Martingale, moreover, this Theorem also says that Brownian Motion is in some sense, the universal
local Martingale.

4.2 Conformal Invariance of Brownian Motion

Theorem 4.2.1 (Conformal Invariance of Brownian Motion) Let X and Y be independent standard
Brownian Motions in R and so that W “ X ` i Y is a Complex Brownian Motion (planar Brownian
Motion). Let f : C Ñ C be a holomorphic function. Then

f pWt q “ f p0q `cWAt

Where cW is a planar Brownian Motion and pAt qt is a non-decreasing process.
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Proof. Let f px ` i y q “ upx , y q ` i v px , y q, so that f pWt q “ Ut ` i Vt . We can assume that Ut and
Vt start at zero so that we can write f pWt q “ f p0q `Ut ` i Vt . The goal is to show that Ut “ ÒXAt

and Vt “ ÒYAt
for some increasing process A and a pair of independent Brownian Motions ÒX and ÒY .

We first note that since Ut “ upWt q and u being the real part of a holomorphic function is C 8, we
can apply Itô’s formula:

dupWt q “

ˆ

Bu

Bx
dX `

Bu

By
dY

˙

`
1

2

ˆ

B2u

Bx 2
drX s ` 2

B2u

Bx By
drX , Y s `

B2u

By 2
drY s

˙

and since rX , Y s “ 0 because they are independent, and ∆u “ 0 since u is harmonic, we have that

dUt “
Bu

Bx
dX `

Bu

By
dY

In a similar fashion,
dVt “

Bv

Bx
dX `

Bv

By
dY

From this we learn that U and V , being integrals of continuous functions against local Martingales, are
themselves local Martingales, which means we are a step closer to be able to use the DDS Theorem.
Next, let us compute the quadratic variations of U and V , for this, we will need the Kunita-Watanabe
Theorem:

rU s “

„
ż

Bu

Bx
dX `

ż

Bu

By
dY ,

ż

Bu

Bx
dX `

ż

Bu

By
dY

ȷ

“

ż
ˆ

Bu

Bx

˙2

drX s `

ż
ˆ

Bu

By

˙2

drY s `

„
ż

Bu

Bx
dX ,

ż

Bu

By
dY

ȷ

“

ż
ˆ

Bu

Bx

˙2

drX s `

ż
ˆ

Bu

By

˙2

drY s `

ż

Bu

Bx

Bu

By
drX , Y s
l jh n

“0

and so
drU s “

ˆ

Bu

Bx

˙2

drX s `

ˆ

Bu

By

˙2

drY s

similarly

drV s “

ˆ

Bv

Bx

˙2

drX s `

ˆ

Bv

By

˙2

drY s

But using the fact that d rX s “ d rY s “ dt , and the Cauchy-Riemann equations, we have that
drU s “ drV s, and in turn, since the derivative of a complex function is the sum of the derivatives of
the real and imaginary components in the real direction, we have that

drU s “ drV s “ | f 1pWt q|2 dt
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we can call these quadratic variations say At , and so we have that

rU st “ rV st “ At “

ż t

0
| f 1pWt q|2 dt

If we are able to show that A8 “ 8, then we’ll have that rU s8 “ rV s8 “ 8 and so by DDS we will
have that Ut “ ÒXAt

and Vt “ ÒYAt
for two Brownian motions ÒX and ÒY . Moreover, note that

drU , V s “

ˆˆ

Bu

Bx

˙ˆ

Bv

Bx

˙

`

ˆ

Bu

By

˙ˆ

Bv

By

˙˙

dt “ 0

So in particular we will have that rÒX ,ÒY sAt
“ rU , V st “ 0 and since At is increasing and continuous

we have that in fact rÒX ,ÒY st “ 0 for all t , and so the two Brownian Motions are independent. Let us
then finish off the proof by showing that A8 “ 8. We will do this by using the recurrence properties
of Brownian Motion. Since f is non-constant, there are points a and b such that f pa q ‰ f pb q, and
so by continuity of f there will be some εą 0, and disks D1 and D2 about a and b such that for any
α P D1 and all β P D2, | f pαq´ f pβq| ą ε. Since planar Brownian motion is neighbourhood-recurrent,
it will visit D1 and D2 infinitely-often almost surely. Which means that P r f pWt q convergess “ 0. But
since for a general local Martingale X , we have that trX s8 ă 8u Ď tX convergesu, and since

r f pW qst “

ż

| f 1pWs q|2 ds ,

(This comes from Itô’s formula that says that f pWt q “
şt

0 f 1pWs qdWs ` 1
2

şt
0 f 2pWs qds , and so takinig

quadratic variations and using Kunita-Watanabe gives the above claim) we have that A8 “ 8. ♥
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4.3 Cameron-Martin-Girsanov Theorem

In many applications of stochastic calculus, we often encounter situations where a Brownian motion
acquires a drift. A key question is how this affects its distribution. The Cameron-Martin-Girsanov Theorem
provides a precise answer by showing that a drifted Brownian motion can be viewed as a standard Brownian
motion under an equivalent change of measure, with the Radon-Nikodym derivative given by an exponential
martingale. Let us first recall some preliminary concepts:

Definition 4.3.1 (Equivalent measures) Two probability measures P and Q are said to be equivalent
on pΩ,F q if P rAs “ 0 if and only if Q rAs “ 0. We may use the symbol P „ Q to denote equivalence.

We already know the Radon-Nikodym Theorem from a second course in Probability, but let us give a nicer
version:

Theorem 4.3.2 (Filtered Radon-Nikodym) Let P „ Q be two equivalent probability measures on a
filtered measurable space pΩ,F ,tFt ut q. Then there exists a uniformly integrable Martingale Z such
that for any t , P rZt ą 0s “ Q rZt ą 0s “ 1, and for any A PFt , one has that

Q rAs “ E P rZt 1As

Proof. By the Normal Radon-Nikodym, there is some integrable random variable Z8 ą 0 that is
positive P -almost surely for which

Q rAs “ E P rZ8 1As

for any A PF . In particular, if we choose an A PFt , then by definition of conditional expectation,
we can write

Q rAs “ E P rE rZ8 |Ft s
l jh n

“:Zt

1As

Now since Z “ pZt qt is L 1 closed, it is UI, and it is also clearly a Martingale. ♥

Some immediate consequences of the Filtered Radon-Nikodym are:

Remark 4.3.3 Consequences:

1. Z0 “ 1: Indeed, since Zt “ E rZ8 |Ft s, and F0 is assumed to be trivial (Recall this is a running
assumption throughout the entire course), we have that Z0 “ E rZ8s and by choosing A “Ω we
can easily see that this is equal to one.
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2. If ξ is both Q and P integrable, as well as Ft , measurable, then for all 0 ď s ď t , we have that

E Q rξ |Fs s “
E P rZtξ |Fs s

Zs

Indeed: let A PFs pĎFt q, then by Radon-Nikodym, we have the following change of measure
for expectations

E Q rξ1As “ E P rξ1A Zt s (4.1)

“ E P r1A E P rξZt |Fs ss (4.2)

“ E P

„

1A Zs E P

„

ξZt

Zs

ˇ

ˇ

ˇ

ˇ

Fs

ȷȷ

(4.3)

“ E Q

„

1A E P

„

ξZt

Zs

ˇ

ˇ

ˇ

ˇ

Fs

ȷȷ

(4.4)

where (4.1) is from the fact that A PFt , so we can use the Filtered Radon-Nikodym, step (4.2)
is by definition of conditional expectation, step (4.3) is by putting a Zs in the denominator
inside the inner conditional expectation as it is Fs -measurable, and step (4.4) is by the Filtered
Radon-Nikodym

With this out of the way, we can now present the goal of this section: the Cameron-Martin-Girsanov
Theorem.

Theorem 4.3.4 (Cameron-Martin-Girsanov ) Fix a probability measure P and let W be a Brownian
Motion for P in Rn , and let pαs qs be a previsible process in Rn for which

ş8

0 }as } ds ă 8 P -almost
surely. Define

Zt “ exp

ˆ
ż t

0
α ¨ dW ´

1

2

ż t

0
}αs }

2 ds

˙

and assume that pZt qt is P -Uniformly Integrable Martingale. Let Q be the measure defined by

dQ

dP
“ Z8

Then the process cWt “ Wt ´
şt

0 αs ds is a Q -Brownian Motion.

The proof relies on a few Lemmas:

Definition 4.3.5 (Stochastic Exponential) Let X be a continuous-semi-Martingale, then E pX qt “

exp
`

X t ´ 1
2 rX st

˘

is called the Stochastic Exponential.
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Lemma 4.3.6 Let P be a probability measure with respect to which Z is a Uniformly Integrable
Martingale with that is strictly positive almost surely. Let X be a continuous P -local Martingale, and
define a measure Q as

dQ

dP
“ Z8

Then the process X ´ rX , log Z s is a Q -local Martingale.

Proof. We note by Itô’s formula that

dlog Z “
dZ

Z
´

drZ s

2Z 2

so plugging this into quadratic covariation, and using Kunita-Watanabe, we have that

rX , log Z s “

„

X ,

ż dZ

Z

ȷ

´

„

X ,

ż drZ s

2Z 2

ȷ

“

ż drX , Z s

Z
´

ż drX , rZ ss

2Z 2

and so
drX , log Z s “

drX , Z s

Z

Now let ÒX “ X ´rX , log Z s.By localisation suppose that ÒX is bounded, we will now show that it is in
fact a Martingale with respect to the measure Q . The key is to note that ÒX Z is a P -local Martingale,
this is because

dpÒX Z q “ X dZ ` Z dX ` drX , Z s

´ Z drX , log Z s ´ rX , log Z sdZ

“ Z dX ` ÒX dZ

and so ÒX Z is the sum of integrals of continuous processes against local Martingales. But since Z is
UI and ÒX is assumed to be bounded, then ÒX Z is also a UI P -Martingale, so that we have

E Q rÒX8 |Ft s “
E P rZ8
ÒX8 |Ft s

E P rZ8 |Ft s

“ ÒX t

Where in the first equality we used Remark 4.3.3 and in the second equality we used the fact that
Z ÒX is a UI P -Martingale, and that so is Z . ♥

In particular, if we choose Z to be a stochastic exponential E pM q, then we have that X ´ rX , M s is a
Q -local Martingale. We are ready to prove Cameron-Martin-Girsanov:
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Proof of Cameron-Martin-Girsanov. Recall that we are considering

Zt “ exp

ˆ
ż t

0
α ¨ dW ´

1

2

ż t

0
}αs }

2 ds

˙

and we are trying to show that cWt “ Wt ´
şt

0 αs ds is Brownian Motion under Q . By the previous
Theorem, we see that since

rW , log Z s “

„

W ,

ż

α ¨ dW

ȷ

´
1

2

„

W ,

ż

}αs }
2 ds

ȷ

“

ż

αs ds

then cWt is indeed a Q -local Martingale. Continuity is obvious, so to finish off, we just need to
show that the quadratic variation of cW under Q is t . For this, we note that since P and Q are
equivalent measures, UCP convergence under Q is equivalent to UCP convergence under P (this is
due to a homework problem that says that if P „ Q then convergence in P -probability is the same
as convergence in Q -probability, and so the quadratic variation of cW under Q is the same as the
quadratic variation under P . Finally, we note that under P ,

rcW i ,cW j s “

„

W i ´

ż

αi
s ds , W j ´

ż

α j
s ds

ȷ

“ rW i , W j s “ tδi , j

Where the second equality comes from the fact that those integrals are of finite variation. ♥

Remark 4.3.7 (Novikov’s Condition) Naturally, the big elephant in the room is that Girsanov’s
Theorem requires

Zt “ exp

ˆ
ż t

0
α ¨ dW ´

1

2

ż t

0
}αs }

2 ds

˙

to be a Uniformly Integrable Martingale, but how can one check this without doing loads of work? It
turns out that there is a condition (Novikov’s condition), whose proof we omit, that guarantees it: if
M is a continuous local Martingale for which

E

„

exp

ˆ

1

2
rM s8

˙ȷ

ă 8

then
Z “ E pM q
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is a UI Martingale. Therefore, Girsanov’s Theorem is true if we merely now require that

E

„

exp

ˆ

1

2

ż 8

0
}αs }

2 ds

˙ȷ

ă 8

There is one last important result, which we will state but not prove:

Theorem 4.3.8 (Martingale Representation Theorem) Let pΩ,F , P q be a probability space in which a
d -dimensional Brownian Motion W is defined, and let pFt qt be the (completed and right-continuous)
filtration generated by W . Assume thatF “σ p

Ť

t Ft q, i.e: the information on the probability space is
that generated by the Brownian Motion. Let M be a cadlag locally square integrable local Martingale.
Then there exists an Leb b P almost sure unique predictable d -dimensional process α“ pαt qt such
that

şt
0 }αs }

2 ds ă 8 and

Mt “ M0 `

ż t

0
α ¨ dW
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Chapter 5

Stochastic Differential Equations

The goal of this chapter is to make sense of objects of the form

dX t “ b pX t qdt `σpX t qdWt (5.1)

Where b : Rn Ñ R, and σ : Rn Ñ Rnˆd are given and W is a d -dimensional Brownian Motion.

5.1 An application of Girsanov’s Theorem

As a warmup for our study of SDE’s, we use Girsanov’s Theorem to show the existence of what we will
define later to be a weak solution.

Proposition 5.1.1 Let b : R Ñ R and σ ą 0 a constant. For every constant T ą 0 and x P R,
there exists some probability space pΩ,F , P q on which a Brownian Motion W and a continuous
semi-Martingale pX t qt Pr0,T s is defined satisfying

dX “ b pX qdt `σdW

and initial condition X0 “ x .

Proof. Let pΩ,F ,ÒP q on which there is some Standard Brownian Motion cW . Set X “ σcW ` x .
Define

Z “ E
ˆ

1

σ

ż

b pX qdcW ˙

Since b is bounded, then so is b 2 and so

E

„

1

2σ2

ż t

0
b pX s q2 ds

ȷ

ă 8

for all t ě 0. And so by Novikov’s condition, the process Z is in fact a UI Martingale. Therefore for

73
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a fixed T ą 0, we can define the measure P by

dP

dbP “ ZT

and by Girsanov’s Theorem we immediately get that

W “ cW ´
1

σ

ż

b pX qdt

is a Brownian Motion under Q . So rearranging, we have that

X t “ x `

ż t

0
b pX s qds `σWt

♥

5.2 Definitions of solution

Let us start by introducing what a solution to an equation like 5.1 should be. It is clear that we should
have the following ingredients:

1. A probability space pΩ,F , P q with a complete, right-continuous filtration pFt qt ,

2. a d -dimensional Brownian Motion W adapted to pFt qt ,

3. an adapted process X , such that b pX q and σpX q are predictable, and
ż t

0
}b pX s q} ds ă 8 and

ż t

0
}σpX s q}

2 ds ă 8

almost surely for all t . Here }σ}
2

“ tracepσσT q is the Frobenius matrix norm. Finally, we need

X t “ X0 `

ż t

0
b pX s qds `

ż t

0
σpX s qdWs

for all t ě 0.

Remark 5.2.1 (Matrix integral?) In the definition above, we are talking about this thing
ż t

0
σpX s qdWs

which is apparently an integral of an n ˆ d matrix against a d -dimensional Brownian Motion. The
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way this is defined is intuitively as a vector, so that the equation above really reads

X i
t “ X i

0 `

ż t

0
b i pX s qds `

d
ÿ

k“1

ż t

0
σi k pX s qdW k

s .

Note how the item 3. really is what we mean by equation 5.1, which has no a priori meaning. The
integrability conditions mentioned in item 3. ensure that the dt integral is well-defined as a Lebesgue-
Stieltjes integral, and that the dW integral is well-defined according to the theory of Stochastic integration.
We will now introduce two notions of solution:

Definition 5.2.2 (Strong solution) A strong solution to the SDE 5.1 takes as the data the functions
b and σ as well as the probability space pΩ,F , P q and the Brownian Motion W (the filtration is
assumed to be generated by the Brownian Motion), and the output is the process X .

Remark 5.2.3 The key to understand what this is saying is the requirement that X is adapted, and the
requirement that for a strong solution, the filtration is generated by the Brownian Motion. This means
that in fact X is a functional of the sample paths of the Brownian Motion. That is to say, given the
dynamics b and σ, and the realisation of the noise, one can reconstruct exactly the resulting process
X . From a simulation perspective, the natural thing to consider is a strong solution. Suppose we were
trying to simulate the SDE 5.1 in a computer. We may discretise time in intervals 0 “ t1 ă t2 ă t3 ă ¨¨ ¨

and get a family pZk qkě0 of independent N p0,1q random variables, then effectively, we can think of

X tk
“ X tk´1

` b pX tk´1
qptk ´ tk´1q `σpX tk´1

qpWtk
´ Wtk´1

q
l jh n

?
tk ´tk´1Zk

Now it is clear, that the evolution of the process X is clearly driven by the values of the normal random
variables pZk qkě0, so that in effect, if we were given the seed that generated the random numbers, we
could always reconstruct the exact same sample path for X .

In contrast to a strong solution, we have:

Definition 5.2.4 (Weak solution) A weak solution to the SDE 5.1 takes in as the data the functions
b and σ and outputs a probability space pΩ,F , P q, a filtration pFt qt , a Brownian Motion W and
the process X .

Remark 5.2.5 (On the difference between a strong and weak solution) Recall that for the strong
solution, X is adapted to the filtration generated by a given Brownian Motion, this means that we
must construct an X whose randomness is exactly that of the Brownian Motion. In a weak solution,
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one is free to construct both X t and Wt together in a way that the differential equation is satisfied,
both X and W may have randomness of their own, instead of the strong case, where the randomness
of X is constrained to the externally given W .

Let us provide an example of an SDE that admits a weak solution, that is not a strong solution.

Example 5.2.6 (Tanaka’s Example) Consider the following SDE, in the case n “ d “ 1:

dX t “ g pX t qdWt , X0 “ 0.

where

g px q “ sgnpx q :“

$

&

%

`1 x ě 1

´1 x ă 1

This SDE has a weak solution but no strong solution

Proof. Let us show the existence of a weak solution: let pΩ,F , P q be a probability space on which
a Brownian Motion X is defined, let pFt qt be any filtration for which X is adapted. Define a local
Martingale W by

Wt “

ż t

0
g pX s qdX s

note that this is indeed well defined, because even if g px q is not left-continuous, the Brownian motion
is previsible and the signum function is a pointwise limit of continuous functions, which preserves
measurability. Of course since X is a local Martingale, it follows that W is also a local Martingale.
Now note by the chain rule that

ż t

0
g pX s qdWs “

ż t

0
g pX s qd

ˆ
ż

g pX qdX

˙

s

“

ż t

0
g pX s q2 dX s

“

ż t

0
dX s “ X t

therefore the SDE is satisfied. Now we are just left with checking that W is a Brownian Motion,
but since we have seen that it is a continuous local Martingale, all left to do is simply compute its
quadratic variation, but this is rather simple by using say Kunita-Watanabe:

rW st “

ż t

0
drX ss “ t

so we indeed have a weak solution. To show that it has no strong solution, we need the following
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fact (Tanaka’s formula) if B is a Brownian Motion, then:

|Bt | “

ż t

0
sgnpBs qdBs ` lim

εÓ0

1

2ε
Lebps P r0, t s : |Bs | ď εq

Now suppose that X is any process that satisfies the SDE, note that X must be a Brownian Motion
because it is a local Martingale whose quadratic variation is clearly seen to be equal to t . Then we
see that by the chain rule, as we have done before, one can recover the Brownian Motion W in the
solution from X :

Wt “

ż t

0
sgnpX s qdX s

“ |X t | ´ lim
εÓ0

1

2ε
Lebps P r0, t s : |X s | ď εq

where the last step is Tanaka’s formula with the fact that we’ve just shown X must be Brownian
Motion. In particular, Wt is a function of |X s | up to time t , which means that Wt is σp|X s | : s P r0, t sq

measurable. But if X were to be a strong solution, we must have that X t is σpWs : s P r0, t sq

measurable, but if this were true it means that X would be a function of |X |, which is nonsense. ♥

5.3 Notions of uniqueness

As usual, whenever we have a solution to a differential equation, the next step is to ask whether this
solution is indeed unique. But in the case of stochastic differential equations, it turns out that just as
there are two different notions of solutions, there are two different notions of uniqueness:

Definition 5.3.1 (Pathwise uniqueness) The SDE 5.1 has the pathwise uniqueness property if any
two solutions X and X 1 both defined on the same filtered space and driven by the same Brownian
Motion, which moreover have the same initial conditions almost surely, then one has that

P rX t “ X 1
t for all t ě 0s “ 1.

The second notion of uniqueness is the following:

Definition 5.3.2 (Uniqueness in law) The SDE 5.1 has the uniqueness in law property if any two
weak solutions pΩ,F , P , X , W q, pΩ1,F 1, P 1, X 1, W 1q such that X0 „ X 1

0, we have that the processes

pX t qt „ pX 1
t qt
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Remark 5.3.3 This last statement about identical distribution is a statement about laws on the space
of continuous functions, after all, recall that pX t qt can be seen as a measurable function ΩÑ C pR;Rn q.
Therefore we are asking that the laws of the two processes on C pR;Rn q agree.

We would now like to see an example of an SDE that has uniqueness in law but not pathwise unique-
ness.

Example 5.3.4 (Tanaka’s example continued) Tanaka’s SDE:

dX t “ sgnpX t qdWt

with X0 “ 0 has uniqueness in law but no pathwise uniqueness. (Recall that here sgn means the
slightly unusual version of the signum function that we described in Example 5.2.6)

Proof. To check if an SDE has uniqueness in law, we have to check that for any two weak solutions,
their laws agree (Here we make the distinction of weak solution because we only care about the law
of the solution, not the pathwise properties which are determined by the probability measure on the
space). But if X is any weak solution, as we saw before, by computing the quadratic variation and
seeing rX st “ t , we deduce that X is in fact a Brownian Motion, which means that all weak solutions
have the Wiener measure as their law and so we have uniqueness in law. However, we are now going to
show that one does not have pathwise uniqueness. Suppose that pΩ,F , P , X , W q is a weak solution.
Then note that

dp´X t q “ ´g pX t qdWt

“ g p´X t qdWt

Where the first equality follows by Ito’s Lemma. The second equality follows by inspection. It follows
that the process ´X is also a weak solution, but since they are on the same probability space, we
deduce that this SDE does not have pathwise uniqueness. ♥

It might seem natural to believe that the reason why this SDE fails to have pathwise uniqueness is the
lack of smoothness of the function σ (Recall the general form of the SDE dX t “ b pX t qdt `σpX t qdWt ).
Indeed, we now see that by fixing some smoothness condition on the function b and σ, we indeed are
guaranteed to have pathwise uniqueness:

Theorem 5.3.5 (Pathwise uniqueness) The SDE 5.1 has pathwise uniqueness if the functions b and
σ are locally Lipschitz, i.e: for all N ą 0, there is some KN ą 0 such that whenever }x } and }y } are
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both no greater than N , we have that

}b px q ´ b py q} ď KN }x ´ y } and }σpx q ´σpy q} ď KN }x ´ y }

(Note that the norm with the σ’s is the matrix norm)

Remark 5.3.6 Note that this Lipschitz condition means that in particular the integrands are locally
bounded so the Stochastic Integral Makes sense.

to prove this Theorem we will need the following lemma

Lemma 5.3.7 (Gronwall’s Lemma) Suppose there are constants a P R and b ą 0 for which a locally
integrable function f satisfies for all t ě 0:

f pt q ď a ` b

ż t

0
f ps qds .

Then f pt q ď a exppb t q for all t ě 0.

Proof of Theorem 5.3.5. We prove this for the case of dimension n “ d “ 1. Let X and X 1 be two
solutions to the SDE 5.1 defined on the same probability space with X0 “ X 1

0 almost surely. For a
fixed N ą 0, define TN “ inftt ě 0 : |X t | ą N or |X 1

t | ą N u. The goal is to show that for the function

f pt q “ E

„

›

›

›
X t ^TN

´ X 1
t ^TN

›

›

›

2
ȷ

, one has that f pt q “ 0 for all t ě 0. This will finish off the proof,
because

P rX t “ X 1
t for all t s “ P

«

8
č

N “1

"

sup
t ďTN

›

›X 1
t ´ X t

›

›“ 0

*

ff

“ lim
N Ñ8

P

„

sup
t ďTN

›

›X 1
t ´ X t

›

›“ 0

ȷ

and in turn, if we manage to show that f pt q “ 0, we’ll have that for each N , E

„

›

›

›
X t ^TN

´ X 1
t ^TN

›

›

›

2
ȷ

“

0 and so P
”

X t ^TN
“ X 1

t ^TN

ı

“ 1 for all t . Now the key observation is that since X and X 1 are
continuous (almost surely) we have that

P

„

sup
t ďTN

›

›X t ´ X 1
t

›

›“ 0

ȷ

“ P

«

č

q PQ

!›

›

›
Xq ^TN

´ X 1
q ^TN

›

›

›
“ 0

)

ff

ě 1 ´
ÿ

q PQ

P
”

Xq ^TN
‰ X 1

q ^TN

ı

l jh n

“0
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So all left to do is to prove that f pt q is in fact zero for all values of t ě 0. For this we simply note
that

X t “ X0 `

ż t

0
b pX s qds `

ż t

0
σpX s qdWs

and
X 1

t “ X 1
0 `

ż t

0
b pX 1

s qds `

ż t

0
σpX 1

s qdWs

then if we assume that X0 “ X 1
0 and take the difference, we can apply the inequality pa ` b q2 ď

2a 2 ` 2b 2 and see that (Here I’m a bit careless writing }X ´ Y } as pX ´ Y q2 and viceversa, but its
all good because we have assumed that we are working in dimensions one)

E

„

´

X t ^TN
´ X 1

t ^TN

¯2
ȷ

ď 2E

«

ˆ
ż t ^TN

0
b pX s q ´ b pX 1

s qds

˙2
ff

` 2E

«

ˆ
ż t ^TN

0
σpX s q ´σpX 1

s qdWs

˙2
ff

ď 2E

„
ż t ^TN

0
pb pX s q ´ b pX 1

s qds q2

ȷ

` 2E

„
ż t ^TN

0
pσpX s q ´σpX ´ s 1qq2 ds

ȷ

ď 4K 2
N

ż t

0
E

„

›

›

›
X s ^TN

´ X 1
s ^TN

›

›

›

2
ȷ

ds

Where in the first step we used pa `b q2 ď 2pa 2 `b 2q, in step two, we used Jensen’s inequality for the
first integral and Ito’s isometry for the second integral, and in the third step, we used the Lipschitz
condition as well as Fubini’s Theorem. Now from Gronwall’s Lemma, it follows that in fact f pt q “ 0.
♥

To me it seems natural that pathwise uniqueness is a stronger condition than uniqueness in law, but
proving it is not a trivial result, as we have to deal with solutions being defined in different probability
spaces. This result is indeed correct, but we ommit its proof:

Theorem 5.3.8 (Yamada-Watanabe) If an SDE has the pathwise uniqueness property, then it has
uniqueness in law.

5.4 Existence of strong solutions

In this section we provide a result that states that under certain smoothness conditions, one is guaranteed
to have a solution to the SDE

dX t “ b pX t qdt `σpX t qdWt (5.2)

Theorem 5.4.1 (Existence of strong solutions) Suppose the functions b and σ are globally Lipschitz,



5.4. EXISTENCE OF STRONG SOLUTIONS 81

i.e, there is some K ą 0 such that for all x , y P Rn :

}b px q ´ b py q} ď K }x ´ y } }σpx q ´σpy q} ď K }x ´ y }

(Mind the blatant abuse of norm notation) Then there is a unique strong solution to the SDE 5.2.

Main idea: The main idea is to show that for some deterministic value of time T , one can show the
existence of a strong solution on r0, T s for any starting value X0, and then extend by "gluing solutions"
together.

Proof. Suppose we can prove the existence of a strong solution X p1q to the SDE 5.2 for any initial
condition X0 on an interval r0, T s for some T ą 0. Recall that the key difference between weak and
strong existence is that for X p1q to be a strong solution, it must be indeed a function of the Brownian
motion W defined on the underlying space, as well as of the initial condition X0. This means there
is a function φ such that X

p1q

t :“φpWt , X0q satisfies

X
p1q

t “ X0 `

ż t

0
b
`

X p1q
s

˘

ds `

ż t

0
σ
`

X p1q
s

˘

dWs

for any t P r0, T s. We could then use this same function φ with initial condition X
p1q

T and the Brownian
Motion pWu`T ´ WT quě0 to construct a process X p2q such that for t P r0, T s

X
p2q

t “ X
p1q

T `

ż t

0
b
`

X p2q
s

˘

ds `

ż t

0
σ
`

X p2q
s

˘

dpWs `T ´ WT q

And we can glue both processes together to form the following

X t “ X
p1q

t 1t0 ď t ď T u ` X
p2q

t ´T 1tT ă t ď 2T u

By construction, this process solves the SDE 5.2 in t P r0, T s, let us check that it also solves it in
t P rT , 2T s:

X t “ X
p1q

T `

ż t ´T

0
b
`

X p2q
s

˘

ds `

ż t ´T

0
σ
`

X p2q
s

˘

dpWs `T ´ WT q

“ X0 `

ż T

0
b
`

X p1q
s

˘

ds `

ż T

0
σ
`

X p1q
s

˘

dWs `

ż t

T
b
´

X
p2q

s ´T

¯

ds `

ż t

T
σ
´

X
p2q

s ´T

¯

dWs

X0 `

ż t

0
b pX s qds `

ż t

0
σpX s qdWs .

Thus showing that the SDE is also satisfied (why is this change of variables justified?). By iterating
this procedure, we could construct a solution on r0,8q. The uniqueness of the solution would follow
as global Lipschitz property implies the local Lipschitz property needed for the Uniqueness Theorem
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to hold. We now prove that there exists a solution on some interval r0, T s. The key is to consider
the following map F : for an adapted continuous process Y and an initial condition X0, define

F pY qt “ X0 `

ż t

0
b pYs q ds `

ż t

0
σ pYs q dWs

The key of the proof is to find a Banach space B of adapted processes where this map F is actually
a contraction with respect to its norm. First we define the norm

~Y ~2 “ E sup
t Pr0,T s

}Yt }
2

where T is to be determined later. ConsiderB to be the vector space of continuous adapted processes
Y with ~Y ~ ă 8. It can be checked that this space is complete in a similar manner that it was shown
earlier in these notes that M2 is complete. Assume further (it can be shown that this assumption is
without loss by modifying the norm), that X0 is square-integrable. Then we can now show that F is
a contraction. Using the general fact that pa ` b q2 ď 2pa 2 ` b 2q, one has that

~F pX q´F pY q~ ď 2E

«

sup
t Pr0,T s

›

›

›

›

ż t

0
b pX s q ´ b pYs qds

›

›

›

›

2
ff

`2E

«

sup
t Pr0,T s

›

›

›

›

ż t

0
σpX s q ´σpYs qdWs

›

›

›

›

2
ff

(5.3)

We now use Jensen’s inequality combined with our Lipschitz assumption to see that

E

«

sup
t Pr0,T s

›

›

›

›

ż t

0
b pX s q ´ b pYs qds

›

›

›

›

2
ff

ď E

»

–

˜

sup
t Pr0,T s

ż t

0
}b pX s q ´ b pYs q} ds

¸2
fi

fl

ď K 2T 2E

«

sup
t Pr0,t s

}X t ´ Ys }
2

ff

♥

We can obtain a similar bound for the second term in 5.3 by using Burkholder’s inequality

E

«

sup
t Pr0,T s

|Mt |2

ff

ď C E rrM sT s

as well as the Lipschitz assumption to say that

E

«

sup
t Pr0,T s

›

›

›

›

ż t

0
σpX s q ´σpYs qdWs

›

›

›

›

2
ff

ď C K 2T E

«

sup
t Pr0,T s

}X t ´ Yt }
2

ff

and so combining all this, we have that

~F pX q ´ F pY q~ ď p2T ` 2C qK 2T ~X ´ Y ~2
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hence we can choose T small enough so that this coefficient, call it c , is less than one and F is indeed
a contraction. By the Fixed Point Theorem, we have a unique solution to SDE 5.2 in the time interval
r0, T s, provided that we can check that F actually maps B to B . This is straightforward, because by a
simple application of the triangle inequality, we have that

~F pX q~ ď ~F pX q ´ F p0q~ ` ~F p0q~

the first term is at most c ~X ~ by the contraction property, and since

F p0qt “ X0 ` t b p0q `σp0qWt

and the norm ~¨~ is an integral over a finite time horizon, it is easy to see that F p0q has finite norm, and
so F pX q has also finite norm and is a bunch of integrals so it is indeed an adapted continuous process
that has finite norm so it belongs to B .



84 CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS

5.5 Relation to PDE’s and the Feynman-Kac formula

In this section we see an interesting application of SDE Theory that connects partial differential equations
to stochastic differential equations. We already know from Advanced Probability that the heat equation
∆u “ 0 in a "good enough" domain with C 2 boundary conditions is intimately related to the average
paths of Brownian motion on that domain. This formula can be seen as a more general version of this
statement. The connection is given by the following Theorem:

Theorem 5.5.1 (Feynman-Kac formula) Let v : R` ˆ Rn Ñ R be C 1,2pR`;Rn q and satisfy the PDE

Bv

Bt
“

n
ÿ

i “1

b i Bv

Bx i
`

1

2

ÿ

i , j

a i j B2v

Bx i Bx j
´ c v (5.4)

where a i j “
řd

k“1σ
i kσ j k , i.e: a i j “ pσσT qi , j and initial conditions v p0, x q “ f px q, for some given

functions c : Rn Ñ R and f : Rn Ñ R. Then for every finite time horizon T , one has that the process
pMt qt Pr0,T s defined by

Mt “ exp

"

´

ż t

0
c pX s qds

*

v pT ´ t , X t q

is a local Martingale, where X t is the process defined by the SDE dX t “ b pX t qdt `σpX t qdWt .
Furthermore, if v is bounded and c is bounded from below, then

v pT , X0q “ E

„

exp

"

´

ż T

0
c pX s qds

*

f pXT q

ˇ

ˇ

ˇ

ˇ

X0

ȷ

.

Proof. The argument boils down to using Ito’s formula to show that Mt is an integral of a continuous
process against a local Martingale. For this we perform first integration by parts:

dMt “ d
ˆ

exp

"

´

ż t

0
c pX s qds

*˙

v pT ´ t , X t q ` exp

"

´

ż t

0
c pX s qds

*

dpv pT ´ t , X t qq

` d
„

exp

"

´

ż t

0
c pX s qds

*

, v pT ´ t , X t q

ȷ

Next, we have that

d
ˆ

exp

"

´

ż t

0
c pX s qds

*˙

“ ´exp

"

´

ż t

0
c pX s qds

*

c pX t qdt

(Notice that we leave out the term with quadratic variation, because the quadratic variation of the
integral inside the exponential is of finite variation). On the other hand:

dpv pT ´ t , X t qq “

n
ÿ

i “1

Bv

Bx i
dX i

t `
1

2

ÿ

i , j

B2

Bx i Bx j
drX i , X j st ´

Bv

Bt
dt
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and one now sees, by using the fact that dX t “ b pX t qdt `σpX t qdWt that

“

X i , X j
‰

t
“

«

d
ÿ

k“1

ż

σi k pX s qdW k
s ,

d
ÿ

l “1

ż

σ j l pX s qdW l
s

ff

t

“
ÿ

k ,l

„
ż

σi k pX s qdW k
s ,

ż

σ j l pX s qdW l
s

ȷ

t

“

d
ÿ

k“1

pσi kσ j k qpX s qt

“ ai j t

where in the third equality we used Kunita-Watanabe, as well as the fact that W is a Brownian
Motion (Levy). Putting all of this nonsense together:

dMt “ exp

"

´

ż t

0
c pX s qds

*

˜

n
ÿ

i “1

Bv

Bxi
b i `

1

2

ÿ

i , j

ai j

B2

Bx i Bx j
´

Bv

Bt
´ c v

¸

` exp

"

´

ż t

0
c pX s qds

*

ÿ

i k

σi k Bv

Bx i
dW k

We observe that the first term of this sum incorporates precisely the PDE 5.4, and so we are left just
with the second term. In other words, Mt really is a local Martingale. Now we use the hypothesis
that c is bounded from below, meaning that the exponential is bounded, and then using that v is
bounded, we also get that the derivative term is bounded, and so we get that M is bounded. Indeed
remember that M is a Martingale over a finite time horizon, and

Mt “ exp

"
ż t

0
c pX s qds

*
ż t

0

ÿ

i ,k

σi k pX s q
Bv

Bxi
pT ´ t , X s qdW k

s .

moreover we see that if f ď c is a bounded previsible function and say W is a Brownian Motion,
then the martingale Y defined by Yt “

şt
0 f pX s qdWs is indeed bounded on a fixed time Horizon, for

rY st “

ż t

0
f 2pX s qds ď c 2t

and so if the quadratic variation is at most c 2t , then |Yt | cannot be greater than c 2t , and so for a
finite time horizon we are bounded . Now since pMt qt Pr0,T s is a bounded local Martingale, it is indeed
a true Martingale (this was an easy application of DCT after choosing a localising sequence). Now



86 CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS

by looking again at the definition of Mt , and plugging in t “ 0, we see that

v pT , X0q “ M0

“ E rMT |F0s

“ E

„

exp

"

´

ż T

0
c pX s qds

*

f pXT q

ˇ

ˇ

ˇ

ˇ

F0

ȷ

now we can use Tower law on both sides with respect to the sigma algebra σpX0q and we are done.
♥

Remark 5.5.2 (Waffle) Let us take a minute to appreciate this result by putting into words what the
formula is saying (in one dimension for simplicity). Suppose that you have some physical system with
initial conditions v p0, x q “ f px q, and it evolves according to the PDE

Bv

Bt
px , t q “ b px , t q

Bv

Bx
`

1

2
σ2px , t q

B2

Bx 2
´ V px qv px , t q

if we imagine v px , t q to indicate, say the amount of "heat" at position x and time t , this is saying that
the "heat bump" (this is described by the initial condition) moves with a drift given by b px , t q, and
diffuses with a diffusivity given by σ. Moreover, there is a potential V that directly adds or removes
heat at some points. The Feynman-Kac equation tells us that one can understand the motion of
the heat blob as follows: suppose for simplicity that there is no potential, then Feynman-Kac says
that to understand the heat upx , T q at time T and position x , one can "launch" many particles that
randomly move according to the appropriate SDE dX t “ b pX t qdt `σpX s qdWt , and see what at what
temperature of the "initial heat blob" they are at time T , then one takes this average. If we included
the potentials, this says that now we must moreover discount the effect that the potential has had on
the path of the particle.



Chapter 6

Applications to Finance

6.1 Introduction

In this last chapter, we consider how the theory of stochastic integration and differential equations can
be used in application to financial Mathematics. In this section we will consider a Market with 1 ` d

assets, where the first asset is a money market account, i.e: an account that accrues interest, and d "risky
assets".

Definition 6.1.1 (Market) A market with 1 ` d assets is a filtered probability space pΩ,F ,tF ut , P q

with:

1. tFt ut ě0 satisfying the usual conditions.

2. A risk-free asset, whose price is given by a semi-Martingale pBt qt ě0 with dynamics

dBt “ Bt rt dt

where prt qt ě0 is the interest-rate, a previsible, locally dt -integrable process.

3. d risky assets, with prices given by the d -dimensional continuous semi-Martingale pS 1
t , ¨ ¨ ¨ ,S d

t qt ě0.

Remark 6.1.2 (Assumptions) We will make some simplifying assumptions about our Market to the
theory:

1. There are no transaction costs.

2. There is no bid-ask spread.

3. There is no price impact.

87
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Remark 6.1.3 (Risk-free asset) The risk free asset should be interpreted as money that one deposits
in an interest-bearing bank account. The dynamics are easy to solve for, simply:

Bt “ B0 exp

"
ż t

0
rs ds

*

, B0 ą 0.

We now introduce a trader that holds:

• φ “ pφt qt ě0 shares of the money market asset, and θ “
`

θ i
t

˘

t ě0,1ďi ďd
shares of asset i at time t .

These are assumed to be previsible processes, such that ϕ and θ are B -integrable and S -integrable
respectively.

We can think of these processes as being under the control of the trader, (hence the previsibility). One of
the key requirements of the theory is that we do not want to allow for cases where the trader consumes
from their wealth on the market, nor deposits more wealth. This is the condition of self-financing.

Definition 6.1.4 (Self-financing) A 1`d dimensional process pφ,θ q is called a self-financing trading
strategy if it is precisible, pB ,Sq-integrable, and

dpφt Bt `θt ¨ St q “φt dBt `θt ¨ dSt

Remark 6.1.5 (On the definition of self-financing portfolio) Naturally, the value Vt of our portfolio
at time t is given by Vt “ φt Bt ` θt ¨ St , no much controversy in that. If we wanted to see the
infinitesimal change in value of our portfolio, we could use Ito’s Lemma and obtain some extra terms
in the differential of Vt , namely Bt dpφt q`St ¨ dpθt q plus quadratic covariation terms, which usually in
the usual models we will consider. Therefore, the extra terms we get, correspond to the infinitesimal
change of stock we hold, this would correspond to selling stock to consume from our wealth or injecting
wealth by means of adding more stock, the self-financing condition simply forbids that from happening.
Informally, the change of wealth comes solely from the change of price of the money market and the
change of price of the risky assets.

6.2 Construction of a self-financing strategy

As it turns out, if we are given an initial wealth x and a trading strategy θ , we can construct the process
φ, i.e: we can find how much money we need to put into the money-market for the strategy to be
self-financing. Indeed, we start noting that by definition of the value of the portfolio, Btφt “ Vt ´θt ¨ St .
Therefore the self-financing equation is equivalent to:

dVt “ rt pVt ´θt ¨ St q dt `θt ¨ dSt .
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The goal will be to use this equation to constrain a value of Vt that makes the portfolio self-financing,
and then simply use the expression of φ in terms of B , V ,θ . Once again, we can rewrite the self-financing
equation equivalently as

d
ˆ

exp

"

´

ż t

0
rs ds

*

Vt

˙

“ ´r exp

"

´

ż t

0
rs ds

*

Vt dt ` exp

"

´

ż t

0
rs ds

*

prt pX t ´θt ¨ St q dt `θt ¨ dSt q

“ θt ¨

ˆ

exp

"

´

ż t

0
ru du

*

dSt ´ rt exp

"
ż t

0
ru du

*

S dt

˙

“ θt ¨ d
ˆ

exp

"

´

ż t

0
ru du

*

St

˙

where the first step is just an application of Ito’s formula and the fact that exp
!

´
şt

0 ru du
)

is of finite
variation, (so that the quadratic covariation term dies), and then some minor manipulation on the second
step, and finally, integration by parts formula with again the finite variation observation.

Remark 6.2.1 In conclusion, this computation tells us that the discounted wealth is equal to a
stochastic integral of θt against the discounted asset prices.

Remark 6.2.2 (Financial jargon: discounting) If Vt is the value of our portfolio at time t , sometimes
we wish to talk about the discounted value, exp

!

´
şt

0 ru du
)

Vt . Discounting is a way of measuring
“how good the returns of the portfolio actually are", by adjusting for the fact that putting money in
the risk-free asset would have generated some growth either way. It we look at the raw value Vt , it
might seem that the portfolio is making money, but it could be partially due to overall growth in the
economy via the interest rate, thus discounting eliminates the effect of the risk-free growth.

With the above computation in mind, we can redefine the value of our portfolio Vt , by removing from
our controls the amount of money we have in the money market, and having our initial wealth x and our
trading strategy θ as the only controls to our wealth. In summary,

Proposition 6.2.3 A portfolio with initial wealth x and trading strategy θ is self-financing if and
only if its value Vt , can be expressed as Vt “ V x ,θ

t , where

V x ,θ
t “ exp

"
ż t

0
ru du

*ˆ

x `

ż t

0
θs ¨ d

ˆ

exp

"

´

ż t

0
ru du

*

Ss

˙˙

“ Bt

ˆ

x

B0
`

ż t

0
θ ¨ d

ˆ

S

B

˙˙
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Remark 6.2.4 As an immediate consequence, if we choose V x ,θ
t as above, setting

φt “
X x ,θ

t ´θt ¨ St

Bt

gives that pφ,θ q is a self-financing trading strategy.

6.3 Arbitrage

Now we approach the following question: given a utility function u : R Ñ R, and x P R, can we find

θ ˚ “ argmaxθE rupV x ,θ
T qs (6.1)

where T is some fixed time horizon? Some usual assumptions that we make on our utility function is that
it is increasing (you prefer more to less), and concave (you are risk averse). We will not actually try to solve
this question, but rather use it as motivation to talk about the importance of one of the main assumptions
of our theory, namely that there is indeed no free lunch. An example of such “free-lunch" strategies
would be a d -dimensional previsible process π such that for a fixed time horizon T , P rV 0,π

T ě 0s “ 1 and
P rV 0,π

T ą 0s ą 0. The key objection to allowing these kinds of strategies in our market is that θ ˚ in 6.1
does not exist. The key fact is that V x ,θ

t is sort of linear in θ . In particular,

V x ,θ1`θ2
t “ V x ,θ1

t ` V 0,θ2
t

this comes from the shape we obtained for V x ,θ
t in Proposition 6.2.3, so that if θ ˚ existed and π is an

arbitrage, then
E
”

u
´

V x ,θ˚`π
T

¯ı

ą E
”

u
´

V x ,θ˚

T

¯ı

since V 0,π
t ě 0 with probability one and strictly greater than zero on some set of non-zero probability. The

conditions on π we gave above are related to the notion of arbitrage, and we want to rule these kind of
strategies out. However, let us illustrate an example of why we actually need some more conditions on
what we refer to as an arbitrage.

Example 6.3.1 (A "legit" example of free-lunch) Consider a market where the interest rate rs is
identically zero and there is one risky asset, namely a Brownian motion. Then there exists a strategy
π, with in fact P rV 0,π

T ą 0s “ 1.

Proof. This example will be so pathological that we can in fact make our gains arbitrarily big. Let
K ě 0 (this will be our gains by time T ) and let f : r0, T s Ñ r0,8s be a differentiable, strictly
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increasing function such that f p0q “ 0 and f pT q “ `8. Then define

Zt “

ż f ´1pt q

0

b

f 1ps qdWs

observe that

rZ st “

ż f ´1pt q

0
f

1

ps qds “ t

and so in fact Z is a Brownian motion. From this we can define

τ“ inftt ą 0 : Zt “ K u ă 8 a.s

and now the idea is to let σ “ f ´1pτq and define πt “ 1tt ď σu
a

f ´1pt q. Then we observe that
indeed this strategy is W -integrable, for

ż t

0
π2

s ds ă 8

and moreover,

VT “

ż T

0
πs dWs “

ż σ

0

b

f ´1ps qdWs “ Zτ “ K a.s

♥

Remark 6.3.2 (What happened here?) Morally speaking, what happened here is that we chose our
strategy π in a way that our portfolio value was a Brownian motion sped up to hit K by time T . The
problem in doing so, is that we are in fact allowing for times t ď T where our portfolio has arbitrarily
large losses, but since we know that Brownian motion will eventually hit K with probability one, we
just wait the losses out. This will be the final detail that we want to rule out. In real life, this kind of
strategies would not be admissible, as we would be arbitrarily in the red for some time before reaching
our target payout, and unless you have an infinite bankroll, you probably won’t be able to execute
this.

In light of this, we introduce the following definition:

Definition 6.3.3 (Admissibility) A trading strategy θ is a -admissible if

P rV a ,θ
t ě 0s “ 1.

and now we are able to introduce the definition of arbitrage:
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Definition 6.3.4 (Arbitrage) An arbitrage is a 0-admissible trading strategy π, such that there exists
some (non-random) time horizon T for which P rV 0,π

T ě 0s “ 1 and P rV 0,π
T ą 0s ą 0.

6.3.1 Constructing an arbitrage

Suppose that we have a d ` 1 dimensional Market with prices:
$

&

%

dBt “ r Bt dt

dS
pi q

t “ S
pi q

t

´

µpi q dt `
řn

k“1σ
i k dW

pkq

t

¯

Where r,µ,σ are sufficiently integrable previsible processes and the W k ’s are Brownian Motions. Under
what conditions can we hope to find an arbitrage in the Market? Note that by Ito’s Formula:

dpS pi q{B q “ pS pi q{B q

˜

pµpi q ´ r qdt `

n
ÿ

k“1

σi k dW
pkq

t

¸

,

and recall that if ϕ “
`

ϕp1q, ¨ ¨ ¨ ,ϕpd q
˘

is our trading strategy, then the value of our portfolio, X 0,ϕ
t ,

supposing for simplicity that B0 “ 1, is given by

X 0,ϕ
t

Bt
“

ż t

0
ϕ ¨ d

ˆ

S

B

˙

(6.2)

“

d
ÿ

i “1

ż t

0
ϕpi q

s

S
pi q
s

Bs
pµpi q ´ r qdt `

n
ÿ

k“1

ż t

0

d
ÿ

i “1

ϕpi q
s

S
pi q
s

Bs
σi k

s dW pkq
s (6.3)

“

ż t

0
ψ ¨ pµ´ r 1qdt `

ż t

0
σTψ ¨ dWs (6.4)

the last equation is just putting it into matrix form, and we have set ϕpi q
s “

Bs

S
pi q
s

ψ
pi q
s for process ψ. This

means that if we can manage to find a process ψ such that

σTψ“ 0 and ψ ¨ pµ´ r 1q ą 0, (6.5)

then we have found arbitrage.

Example 6.3.5 Suppose a three asset market has the dynamics
$

’

’

’

&

’

’

’

%

dBt “ 2Bt dt ,

dS
p1q

t “ 3dt ` dW
p1q

t ´ 2dW
p2q

t

dS
p2q

t “ 5dt ´ 2dW
p1q

t ` 4dW
p2q

t
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then we have that

σ“

˜

1 ´2

´2 4

¸

µ“

˜

3

5

¸

thus in light of the previous discussion, we see that ψ “

˜

2

1

¸

satisfies 6.5, and so by trading the

strategy
ϕs “

´

2Bs

S
p1q
s

Bs

S
p2q
s

¯

we have indeed a free lunch.

6.4 The Fundamental Theorem of Asset Pricing

Our next step is to study some mathematical condition that rules out the existence of arbitrage. For this
we introduce the following definition

Definition 6.4.1 (Equivalent Local Martingale Measure) Let P be the "real world" probability mea-
sure, i.e: the probability measure of our market. We say that Q is an equivalent local Martingale
measure (ELMM), if:

1. Q is equivalent to P ,

2. the discounted asset prices S i {B form a Q -local Martingale.

We will now see that the existence of an ELMM rules out any arbitrage opportunities. An informal
interpretation of this is that if under Q the discounted asset prices form a Martingale, then they are a
"fair game", and so it is impossible to make money out of them under the probability measure Q . But
since equivalence of measures preserves the "impossibility of statements", it will turn out that arbitrages
will also not be possible under the real world probability measure. Let us now introduce (a version of)

Theorem 6.4.2 (The Fundamental Theorem of Asset Pricing) Suppose that in our market there
exists an ELMM. Then the market is arbitrage-free.

Proof. Let θ be a 0-admissible trading strategy. Then under this strategy, we have that our wealth
equation reads

V 0,θ
t “ Bt

ż t

0
θu ¨ d

ˆ

Su

Bu

˙

.

Then if Q is an ELMM, we have that V 0,θ
t
Bt

is a Q -local Martingale. However, since θ is admissible,
we have that V 0,θ

t ě 0 P , and hence Q -almost surely, and since non-negative local Martingales are
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super Martingales (Homework sheet 1), we have that V 0,θ
t is a Q super Martingale. Therefore,

E Q rV 0,θ
t {Bt s ď V 0,θ

0 {B0 “ 0.

Therefore we have that V 0,θ
t “ 0 Q -almost surely, and so also P -almost surely. Hence no arbitrage is

possible. ♥
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6.5 Contingent Claim Pricing

In this last section we will discuss the topic of contingent claims and their pricing. The setup is as follows,
we have a market with d ` 1 assets, pB ,Sq, and we want to market a new asset whose payout ξ at some
maturity, depends (is contingent) on the price of the underlying assets.

Example 6.5.1 (European call option) The canonical example of a contingent claim is the European
call option. Suppose we are in a market with only one asset, namely the risky asset S . A European
call option is the right but not the obligation to buy a stock of the asset for a predetermined price K

at a future date T .

The big question is: how much should I charge someone to sell them this option? In order to tackle this
question, we first need to observe that the payout of our European option is precisely pK ´ ST q`. Let us
briefly give a definition to clarify what we mean by European:

Definition 6.5.2 A European claim is specified by an expiration date T ą 0 and an FT random
variable ξ, that specifies the payout of the claim at expiration. A European call is called vanilla if it
is a function of the underlying assets, i.e, if

ξ“ f pS 1
T , ¨ ¨ ¨ ,S d

T q

We would now like to augment our market to include a new asset, whose price pξt qt ě0 represents the
price of our European claim at time t .

Remark 6.5.3 If our original market admits an ELMM Q , there is a natural way to price this asset,
we simply want ξ{Bt to be a Q -local Martingale, so we can set

ξt “ Bt E Q

„

ξT

BT

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

,

and now it follows that this augmented market has no arbitrage either. This is actually the “correct"
way to price the option: even though we will not provide a formal proof, intuitively, this price will
be the one required replicate the payout of the option using a portfolio of the stock and the money
market. Indeed, suppose that the cost of the replicating portfolio was any lower, then I could buy the
portfolio, sell the option, and replicate it and get a free lunch, which is forbidden by the fact that we
have constructed this augmented market to be arbitrage-free. However it might not seem immediately
clear how to actually calculate this quantity. This is what we do in the next section
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6.5.1 The Black-Scholes formula

With the introduction of contingent claims out of the way, we can now talk about the famous Black-Scholes
formula, which gives an explicit way of pricing European call options.

Setup of the model

Definition 6.5.4 (Black-Scholes model) Our setup is now in a d “ 1 dimensional market, where our
risk-free asset has the dynamics

dBt “ r Bt dt

and our risky asset S has dynamics

dS “ S pµdt `σdWt q

where σą 0 and µ are constants and W is Brownian motion. All of the processes above are defined
only in the finite time horizon r0, T s for some T ą 0.

We will now compute explicitly the price at time t , ξt according to the no-arbitrage principle of a contingent
claim that pays g pST q at time t . Of course the first step is to show that this market is arbitrage free. As
it turns out, we can actually compute an equivalent local Martingale measure by using Novikov’s criterion
and Girsanov’s Theorem. Let us present how one finds this measure, perhaps in a slightly backwards but
more illustrative way:

Step 1: identify the drift

We want to find a measure Q , under which S{B is indeed a Q -local Martingale. Note that by Ito’s
formula:

d
ˆ

S

B

˙

“ d
ˆ

1

B0
exp

"ˆ

µ´
σ2

2
´ r

˙

dt `σdWt

*˙

“
S

B

ˆˆ

µ´
σ2

2
´ r

˙

dt `σdWt `
σ2

2
dt

˙

“
S

B
ppµ´ r qdt `σdWt q . (6.6)

A way of verifying that this is indeed a local Martingale under Q , would be to set for example

cWt “
µ´ r

σ
t ` Wt , (6.7)

i.e: a Brownian motion with drift. If we can find a measure Q for which cWt is indeed a Brownian motion,
we would rewrite 6.6 as S

BσdcWt , which would turn S{B into a Q -local Martingale.
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Step 2: Using Girsanov’s Theorem

Girsanov’s Theorem states that under certain conditions, if W is a P -Brownian motion, and pαs qs is such
that E `şαs dWs

˘

is a UI Martingale, then cWt “ Wt ´
şt

0 αs ds is a Q -Brownian Motion under a suitable
measure Q . Looking at 6.7 we notice that the appropriate choice of αs is to set

αs ” ´
µ´ r

σ
,

and since E exp
´

şT
0 α

2
s ds

¯

ă 8, Novikov’s condition tells that in fact E p
ş

αs dWs q is a UI Martingale, and
so we have our desired measure Q for which cWt “

µ´r
σ t `Wt is a Q -Brownian motion. Therefore we have

an equivalent local Martingale measure and so the model defined in 6.5.4 is arbitrage free. Naturally, one
may now rewrite the market dynamics as

dSt “ St

`

r dt `σdcWt

˘

,

or alternatively solve for St :

St “ S0 exp

"ˆ

r ´
σ2

2

˙

t `σcWt

*

(6.8)

Step 3: Price the contingent claim

As mentioned in Remark 6.5.3, a way to price new assets at time t ď T is given by

ξt {Bt “ E Q

„

ξT

BT

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

,

this way we immediately have that ξ{B is a Q -local Martingale, and since Q was so that the risky asset
divided by the bank account was also a Q -local Martingale, we would then have that the entire market
pB ,S ,ξq is arbitrage-free. Naturally, if what we are trying to price is a contingent claim with payout g pST q

at time T , ξT should be g pST q and so from this we get that

ξt “ e ´r pT ´t qE Q rg pST q|Ft s (6.9)

“ e ´r pT ´t qE Q

„

g

ˆ

St exp

"ˆ

r ´
σ2

2

˙

pT ´ t q `σ
`cWT ´cWt

˘

*˙ˇ

ˇ

ˇ

ˇ

Ft

ȷ

(6.10)

“ e ´r pT ´t q

ż

R
g

ˆ

St exp

"ˆ

r ´
σ2

2

˙

pT ´ t q `σ
`?

T ´ t z
˘

*˙

ϕpz qdz (6.11)

where in this last step we have used the independence Lemma, and ϕpz q is the density of a standard
Gaussian. Thus if s is the price of the stock at time t , the price of the option will be the function

v ps , t q “ e ´r pT ´t q

ż

R
g

ˆ

s exp

"ˆ

r ´
σ2

2

˙

pT ´ t q `σ
`?

T ´ t z
˘

*˙

ϕpz qdz (6.12)
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Replicating the payoff

We end these notes with the following result, which tells us how one may produce a trading strategy whose
payout at time T is the exact same as that of the contingent claim, i.e: g pST q.



Appendix A

Measure Theory

Here is some Measure Theory that is used throughout this document. All of it is seen already in previous
courses.

A.1 Big Theorems

Theorem A.1.1 (Monotone Class Theorem for functions) Let A be a π-system that contains Ω and
let H be a collection of functions ΩÑ R with the following properties:

• For all A PA , we have that 1pAq PH .

• If f and g are both functions in H , then f ` g PH .

• If t fn u is a sequence of measurable functions in H whose monotone increasing pointwise limit
is some bounded function f , then f PH

Then H contains all bσpA q functions.

A.2 Uniform Integrability

Definition A.2.1 (Uniform Integrability) A family χ of Random Variables is said to be Uniformly
Integrable if any of the two equivalent characterisations holds:

• supX Pχ E r|X |1p|X | ě k qs Ñ 0 as k Ñ 8.

• χ is L 1 bounded and supX Pχ supA:P rAsăδ E r|X 1A |s Ñ 0 as δÑ 0.

99
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Theorem A.2.2 (Bounded Convergence Theorem) If pXn q is a uniformly bounded family of random
variables, i.e: |Xn | ă C for all n , then if Xn Ñ X in probability, we also have that Xn Ñ X in L 1.

Theorem A.2.3 (Vitali’s Theorem) Let pXn q be a family of Random Variables. The following are
equivalent:

• Xn Ñ X in Probability and pXn q is Uniformly Integrable.

• Xn Ñ X in L 1.

Proof of the direct part: We want to show that E r|Xn ´ X |s Ñ 0 as n Ñ 8. And we have the
following:

• Since UI families are in particular L 1 bounded, its easy to check that E r|X |s ă 8 by using
Fatou’s Lemma and the fact that if we have Xn Ñ X in probability there is a subsequence along
which we have convergence almost surely. From this, it follows that there exists some K1 large
enough so that E r|X |1|X |ąK1

s ă ε{3, since a single integrable random variable is also uniformly
integrable.

• By definition of pXn q being UI, there exists some K2 large enough so that supn E r|Xn |1p|Xn | ą

K2qs ă ε{3.

Finally, we define X K
n and X K as pXn _´K q^K and pX _´K q^K respectively. Then we have that

E |Xn ´ X | ď E |X K
n ´ X K | ` E |X ´ X K | ` E |Xn ´ X K

n |

Note that |X ´ X K | ď |X |1p|X | ě K q (you may wish to draw a diagram) and by the bounded
convergence theorem for any K , there is some n large enough, so that we have that E |X K

n ´X K | ă ε{3.
Now just choose K :“ K1 _ K2 and choose the corresponding n and so E |Xn ´ X | ă ε{3`ε{3`ε{3.
♥

Theorem A.2.4 (UI Property of Conditional Expectation) Let X be an integrable random variable on
pΩ,F , P q and let G be a collection of sub-sigma-algebras of F . Then the family of random variables

tE rX |H s :H PG u

is UI
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Proof. The key idea is that for any Y “ E rX |H s in the described family, we can use the Tower
Property and see that

P r|Y | ą k s “
E |Y |

k
“

E r|E rX |H s|s

k
ď

E rE r|X | |H ss

k
“

E r|X |s

k

Now, we simply have that

E |Y |1p|Y | ą K q ď E |X |1pY ą K q (A.1)

ď E |X |1pY ą K , X ď r q ` E |X |1pY ą K , X ą r q (A.2)

ď r P rY ą K s ` E |X |1pX ą r q (A.3)

Where in step (A.1) we have used Jensen’s Inequality and the Tower Property, and in step (A.3) we
have used the fact that 1pA X B q ď 1pAq. Now one takes K Ñ 8, and then r Ñ 8 and use the
fact that a single integrable random variable is itself a UI family. Note of course that (A.3) does not
depend on Y , from here we determine that

sup
H

E |Y |1p|Y | ą K q Ñ 0

as K Ñ 8. ♥
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Appendix B

Probability

B.1 Stopping

Definition B.1.1 (Stopped σ-algebra) Let T be a stopping time for a filtration pFt q, the stopped
sigma algebra: FT is defined as the set of events that can be seen before T rings:

FT “ tA PF : A X tT ď t u PFt u

Theorem B.1.2 (Optional Stopping Theorem for Continuous Martingales) Let X be a continuous
time Martingale, S and T be bounded stopping times, then

E rXT |FS s “ XT ^S

In fact Martingales, are the class of adapted processes that satisfy the Optional Stopping Theorem:

Theorem B.1.3 (Converse to the Optional Stopping Theorem) Let X be a cadlag adapted process,
if for any bounded stopping time T we have that E rXT s “ E rX0s, then X is a Martingale.

Proof. Let 0 ď s ď t , and A PFs , our goal is to show that E r1ApX t ´ X s qs “ 0. For this, construct
the stopping time T “ s 1A `t 1Ac . By hypothesis, we have that

E rX0s “ E rXT s “ E rX s 1A `X t 1Ac s “ E rX t ` pX s ´ X t q1As

This holds for any A PFs , so firstly, in particular choose A “ ∅, this shows that E rX0s “ E rX t s so
we may subtract that from both sides of the equation, and then we are left with our goal. ♥
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