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Notation and how to study these notes

Difficulty notations:
K: denotes a proof or idea that is hard or hard to reproduce.
�: denotes a proof or idea that requires partially unmotivated tools or machinery that is hard to pull
out of thin air, but the rest of the argument is easy.
♩: denotes a proof or idea that is easy to see knowing some other results that help motivate it.
�: denotes a proof or idea that is easy and no particularly clever ideas are needed. For revision pur-
poses reading it a couple times will suffice.

Other notation:
≲: same this as big O, i.e: f ≲ g iff f =O (g ) iff f ≤C g

A quick word

This script consists of the lecture notes that I compiled during the academic year 2024-2025 at the
University of Cambridge for Professor Wendelin Werner’s course Random Structures on finite dimen-
sional space. Naturally, none of the ideas, (nor the brilliant choice of topics and their presentation)
in this script are mine, whereas all errors and typos certainly are. The object of this script is to
present a beautiful story about randomness. When one starts to learn about probability, one first
learns a few stories about general enumeration and combinatorics, and at some point, we realise that
the interesting things to focus on really do occur when the randomness gets accumulated and goes to
infinity. From these ideas we eventually get the Laws of Large Numbers, the Central Limit Theorem,
Martingales, Markov Chains, etc. The key thing to realise, is that with these first random structures
that we get, randomness piles up with time. Sometimes it can be that randomness comes in the form
of a sequence of independent random variables, sometimes it comes with some structured dependence,
such as a Markov Chain or a Martingale, but there always is this structure of causality and time. In
this course, we explore randomness that accumulates not in a temporal way, but spatially, that is to
say, we will explore random structures defined on spaces like Zd or Rd for d ≥ 2. Examples of the
models we will explore include Percolation Theory, the Ising Model, Gaussian Free Field and others.
These models are often quite simple to define, yet they present remarkably difficult problems, many
of which, are still open questions. As one last comment from myself, as always in my notes, I wish
the reader the best of luck, for the ideas in this script are certainly not easy. I hope these notes are of
help to anyone who decides to read them, as they certainly were of help to me when studying this topic.

Your falsely,

JOF



Chapter 1

Percolation Theory

1.1 Percolation on Zd and its phase transition

Definition 1.1 (Percolation Model ) Let G = (V , E ) be a graph and p ∈ (0, 1). Consider a collection
of independent and identically distributed Ber(p ) random variables {ω(x ) : x ∈ V }. If ω(x ) = 1 for
some x ∈ V , we say that the site is open or occupied. Otherwise its closed or unoccupied.
We say that two open sites x and y are connected, denoted by x ↔ y if there exists a path
x = x0 ∼ x1 ∼ . . .∼ xn = y where each ω(xi ) = 1. By the cluster Cx of x we refer to

Cx = {y ∈V : y is open and y ↔ x }

Remark 1.2 (A remark on measurability) We have to be a bit careful in regard to which statements
we can even talk about. We can model our probability space as ({0, 1}V ,F , Pp ) where F is the
sigma algebra generated by the π-system

⋃

|S |<∞σ(ω(x ) : x ∈ S )
︸ ︷︷ ︸

FS

, i.e: generated by all the events

generated by finitely many of our random variables. That is to say F is the sigma algebra
generated by events that depend on finitely many vertices, and finally Pp is the corresponding
Ber(p )⊗Zd product measure, where each coordinate is Bernoulli p .

The kinds of questions we are interested in asking are to do with the large scale connectivity properties
of the Percolation model: do we see infinitely big clusters? Does every cluster have finite size? With
what probability do these statements occur? We will from now on focus on the graph Zd . Let us
define the following events: for x ∈ Zd , we define Ax = {there is an infinite cluster at x }. First of all,
note that this statement is indeed measurable with respect to our σ-algebra:

Ax =
⋂

n≥0

{y ↔ x for some y at distance n from x }.

5



6 CHAPTER 1. PERCOLATION THEORY

Figure 1.1: Simulation of the percolation model in Python, highlighted is the largest cluster

Naturally the events we are taking an intersection over only depend on finitely many vertices, as they
can be determined by looking at the box [−n : n ]d , which contains only finitely many vertices. Then we
can define the event A = {there is an infinite cluster}, and we can similarly see this is F -measurable,
for

A =
⋃

x∈Zd

Ax

Thus we see that we are safe to talk about the probability Pp [A]. We now have some observations on
Pp [A].

Proposition 1.3 (Preliminary facts of the probability of an infinite cluster) Let {Ax : x ∈ Zd } and
A be as above. Then we have the following.

• All the events Ax for x ∈ Zd have the same probability.

• Pp [A]> 0 if and only if Pp [A0]> 0.

• Pp [A] ∈ {0, 1}.

Main idea: The first statement follows due to the fact that the law of the collection of all "coins" is
translation invariant. The second claim follows simply by the fact that A =

⋃

x Ax and then using part
1. The third claim is due a to Kolmogorov’s zero-one type-argument.
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Proof of first claim. First note that since the random variables {ω(x ) : x ∈ Zd } are i.i.d, the law of
{ω(x ) : x ∈ Zd } is the same law as that of {ω(x + y ) : x ∈ Zd } for y ∈ Zd , and {ω(x ) : x ∈ Zd } ∈ A y

if and only if {ω(x + y ) ∈ Zd } ∈ A0. ♥

Proof of second claim. Note that if Pp [A0] = 0, then by the first claim, each Ax for x ∈ Zd has
zero probability under Pp and so by taking their countable union we also get an event of zero Pp

probability. Conversely, if Pp [A] = 0, given that A0 ⊆ A and hence Pp [A0]≤Pp [A], we will also have
that Pp [A0] = 0. ♥

Proof of third claim. Suppose Pp [A] ̸= 0 and recall that G =
⋃

SFS (where the union is taken over
finite subsets of our configuration space, and FS is the sigma algebra generated by these vertices)
is a π-system that generates F . Let B be any set in G . Since A is the event that there exists
some infinite cluster, A is independent of whatever value ω takes on finitely many vertices, and
so A is independent of B . From this we gather that the maps

B 7→Pp [A ∩B ] B 7→Pp [A]Pp [B ]

agree for all B ∈ G . However, it is easy to see that these two maps are measures, so by the
uniqueness of measures lemma, it follows that they agree on the entire σ algebra F . However,
since A ∈F it also follows that Pp [A ∩A] =Pp [A]2. ♥

Remark 1.4 From this we have learnt that to understand Pp [A], all we need to do is understand
what happens at the origin, and from this we immediately conclude the probability of A occurring.
Of course, we can also note that when p = 0, Pp [A] = 0, and when p = 1, we have that Pp [A] = 1,
so this could lead us to believe that there is some magical value of p for which suddenly Pp [A]

jumps from 0 to 1, thus producing a phase transition.

Remark 1.5 Note that Pp [A0] takes values in [0, 1], not just {0, 1} because it is not a 0− 1 type
event, as it indeed does depend on the behavior of finitely meany vertices, for example, if there is
a "cycle" around the origin of all closed vertices, we conclude A0 does not occur.
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Of course we haven’t yet shown that p 7→ Pp [A] just keeps bouncing up and down from zero to one
without order, but if there is still a God in this world, this should not be the case: if we increase p ,
there is no reason to believe that A would become less likely. The key to formalising this argument is
to construct the so-called monotone coupling.

Proposition 1.6 (Monotonicity of probability of infinite cluster) Let A be the event that there is
an infinite cluster, then the function θ (p ) =Pp [A] is non-decreasing.

Main idea: Construct a coupling of the law Pp as a collection of indicator functions of the event that
some Unif[0, 1] random variable exceeds the value p .

Proof. Define on a probability space (Ω,Ξ, Q) a family of independent identically distributed random
variables {X (x ) : x ∈ Zd } that take uniform values in the interval [0, 1], and are indexed in the graph
Zd . It is clear that the family of random variables {Up (x ) : x ∈ Zd } defined by Up (x ) = 1X (x )≤p has
law Pp . However, it is also clear that if p ≤ p ′, then Up (x ) ≤Up ′(x ) for all x ∈ Zd . Now finally
we simply note that Up (x ) takes values one or zero representing whether the vertex x is open or
closed. Naturally, since Up (x )≤Up ′(x ), under Up ′ there will at least as many open vertices on Zd

that under Up , therefore, since adding more open vertices cannot destroy an infinite cluster, it
must be that if Up ∈ A, then Up ′ ∈ A, and so

Pp [A] =Q[Up ∈]≤Q[Up ′ ∈ A] =Pp ′[A]

♥

Remark 1.7 (Critical probability) Having established monotonicity of the map θ (p ), and noting
again that θ (0) = 0 and θ (1) = 1, we conclude the existence of some value pc ∈ [0, 1] for which θ (p )
experiments a phase transition: it goes from almost surely not containing any infinite clusters, to
almost surely containing some. Of course, we have yet not argued that pc should not be either
zero or one. It could be that as soon as your percolation parameter increases above zero, the
infinitude of vertices will make it so that an infinite cluster will appear, or alternatively, it could
just as well be the case that if the percolation parameter is even just a tiny bit below one, the
amount of closed sites will already be sufficiently big to prevent any cluster. We however reach a
much more interesting answer, there is indeed a special value somewhere in between that triggers
the transition.
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0

γ

Figure 1.2: A self avoiding walk

Definition 1.8 With the function θ (p ) =Pp [A0], we define the critical probability pc as

pc = sup
�

p : θ (p ) = 0
	

Of course this will be a function of the dimension. Naturally by definition we have that whenever
p < pc , Pp [A0] = 0 and whenever p > pc , Pp [A0] = 1.

Theorem 1.9 (Non-triviality of critical probability) Consider the percolation model on Zd , d ≥ 2.
Then the value of pc = pc (d ) is in the interval (0, 1).

The heuristics are: if A0 holds, then you have arbitrarily long open self avoiding paths, and if p is too
small, this can’t happen. Conversely, if A0 does not hold, then you will find a closed loop of vertices,
and this can’t happen if p is large enough.
Main idea: (Lower bound) To prove pc is bounded away from zero, we note that if A0 holds, then
for each n , one has a self-avoiding-path of length n consisting of open vertices. This gives that in fact
for all p < 1

2d , Pp [A0] = 0, which in turn implies that pc > 0.

Proof that pc > 0. Suppose A0 holds, then for each n ∈N, there will be a self-avoiding walk γ of
length n that only visits open vertices. (The reason why we want self-avoiding walks, is that if
we didn’t require this, the walk could just go in circles for as long as it wants without actually
going far away). We define Ωn to be the set of self-avoiding walks of length n . Then we have the
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0 (m , 0) 0 (m , 0)

Figure 1.3: The diagram that says it all: proof that pc < 1. Two possible cases of clusters about zero.

following simple calculation. For any n ∈N:

Pp [A0]≤Pp [∀n ,there is some γ ∈Ωn with only open vertices] (1.1)

=Pp

�

⋂

n

⋃

γ∈Ωn

{γ only goes through open vertices}

�

(1.2)

≤ lim
n→∞

∑

γ∈Ωn

Pp [γ only goes through open vertices] (1.3)

≤ lim
n→∞
|Ωn |p n (1.4)

≤ lim
n→∞

(2d p )n (1.5)

Where step (3) comes from a union bound and the fact that the events

⋃

γ∈Ωn

{γ only goes through open vertices}

form a decreasing (in n) sequence of events. Step (4) comes from the fact that the configurations
are iid Bernoulli p and so the probability that the entire γ consists only of open vertices equals p

to the power of the length of γ. Finally step (5) comes from the brutal bound that the amount of
self-avoiding walks of length n is at most (2d )n . If p < 1/2d , then this quantity goes to zero as
n→∞, therefore ♥

Main idea: (Upper bound) The key is that if A0 does not hold, then you can find a "closed loop"
around the origin. So in particular, we can find a path of closed sites of some length m . There are
at most 8m such paths and each path has probability (1−p )m . By choosing p close enough to 1, one
can make

∑

m≥0(8(1−p ))m < 1.

Proof that pc < 1. We will proceed similarly, by showing that for all values of p larger than some
value less than one, we will have that Pp [A0] = 1. Moreover, we will show this for the case that
d = 2, because Z2 can be seen as a subgraph of Z3, and so if on this restricted plane there is a
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path to infinity, then so will there be a path on the larger Zd . Now suppose Ac
0 holds, meaning

that the cluster at zero is finite, then there will be some (m , 0) for some m large enough for which
ω(m , 0) is closed. The idea now is to "circumvent the cluster". But since we don’t know the
shape of the cluster, we can only guarantee that we can get to a point with x -coordinate equal
to zero, (since it could be that the open cluster about zero is only a thin strip of length m − 1.
That is to say, we can guarantee a self-avoiding-walk of length m (We can actually guarantee a
larger walk, of at least 2n +4 vertices, corresponding to the second picture in the figure that says
it all, which would improve our bounds but we don’t care). There are at most 8m such walks,
because at each point in the walk, you have 8 at most choices of vertices to move to (the ones at
Euclidean distances 1 and

p
2). The probability that these are all closed is of (1−p )m , and so

1−Pp [A0] =Pp [A
c
0 ]≤

∑

m≥0

�

8(1−p )
�m

If p is close enough to 1, this sum can be made strictly less than 1, and so it will follow that
Pp [A0]> 0, which by the Kolmogorov-type argument we did, means that Pp [A0] = 1. ♥

Remark 1.10 We have therefore shown that percolation exhibits a phase transition. The range
p ∈ [0, pc ) is called the subcritical phase, p = pc is called critical percolation, and p ∈ (pc , 1] is
called the supercritical phase. It is actually a major open problem to show that Ppc

[A0] = 0 in Zd

for d = 3. Notice that even though θ (p ) can be shown to be right-continuous, this does not imply
θ (pc ) = 1, this is because pc is defined as sup{p > 0 : θ (p ) = 0}.

Remark 1.11 (A remark on the self-avoiding-walk ) On the Proof of Theorem 1.9, we invoked
the seemingly obvious fact that if C0 is infinite, then there is a self-avoiding-walk consisting of
open sites that connects 0 with infinity. Why is this the case? Well, since C0 is infinite, it must be
that C0 \ {x } contains an infinite connected component (indeed, if all the connected components
of C0 \ x were finite, then C0 itself would be finite), such that at least one of the neighbours of x

belongs to this new connected infinite component. If we call γ our self-avoiding-path, then we can
set γ(0) = 0, and γ(1) to be this neighbour. Then we can repeat the procedure: since γ(1) belongs
to an infinite component C (1), then C (1) \γ(1) contains a connected infinite component, etc.
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1.2 Number of infinite clusters

In this section we will focus on the range of p for which there is Pp almost surely an infinite cluster.
In this case, we are interested in asking the question of how many infinite clusters we can see. For
the remaining of this chapter, define N : {0, 1}Zd →N∪{0,∞} be the random variable that for a given
configuration ω ∈ {0, 1}Zd , returns the number of infinite clusters of that configuration. We will work
towards the following goal:

Theorem 1.12 (Uniqueness of infinite cluster) Let p be in the range for which there is Pp almost
surely an infinite cluster. Then Pp [{ω : N (ω) = 1}] = 1, i.e: the infinite cluster is almost surely
unique.

One of the ideas that we will use in the proof of this fact is that of translation invariance. This can
be seen as a stronger statement than the one we saw to show that Pp [A] ∈ {0, 1}.

Definition 1.13 (Translation-Invariant Events ) An event A ∈ F is said to be invariant under
translation by e = (1, 0, . . . , 0) ∈ Zd if for any configuration ω ∈ {0, 1}Zd , we have that

�

ω(x ) : x ∈ Zd
�

∈ A ⇐⇒
�

ω(x + e ) : x ∈ Zd
�

∈ A

A clear example of such an event is the existence of an infinite cluster. A non-example of a translation-
invariant event is the existence of an infinite cluster at the origin. As our intuition would tell us,
translation-invariant events also satisfy a zero-one law.

Lemma 1.14 (Zero-one law for Translation-Invariant events) If A ∈F is translation invariant by
e , then Pp [A] ∈ {0, 1}.

The proof of this Lemma in turn relies on this approximation fact, which is intuitively true:

Lemma 1.15 (Approximation Lemma) Let A ∈F . Then for any ε> 0 there exists some B ∈G =
⋃

SFS , where S is taken over finite subsets of the vertices, such that

Pp [A∆B ]<ε.

Proof. Let Gn be the σ-algebra generated by the events that can be determined by observing
the [−n , n ]d box, i.e: Gn = σ

�

ω(x ) : x ∈ [−n , n ]d
�

. Now let A be the event to be approximated.
Consider the following Martingale:

(Pp [A | Gn ])n
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It is clear that this Martingale is L 1 bounded. Indeed: Ep [|Pp [A | Gn ]|] = Pp [A] ≤ 1. Therefore by
the UI Martingale Convergence Theorem, we have that almost surely,

Pp [A | Gn ]→Pp [A | F ] = 1(A)

Now we can construct the following approximating sets:

An = {Pp [A | Gn ]> 1/2}

Then we have that limn→∞1(An ) = 1(A) almost surely and in L 1. Indeed: by almost sure con-
vergence, we have that for n large enough, |Pp [A | Gn ]−1A | is very very small with probability 1.
Since 1(A) can only take the values zero and 1, it follows that for n large enough, Pp [A | Gn ]> 1/2

if and only if 1A = 1 with probability 1. From this we have that 1An
→ 1A almost surely and in L 1.

Now finally we just note that

Pp [An∆A] = Ep |1(An )−1(A)| → 0.

♥

Remark 1.16 (Why symmetric difference? ) It may not be clear at the start why a small symmetric
difference indeed means that our set can be well-approximated. Simply note that the following
relation holds in general: P[A] =P[A∩B ]+P[A\B ]. And similarly for B , therefore, if our symmetric
difference is small, then we can write

|Pp [A]−Pp [B ]|= |Pp [A ∩B ] +Pp [A \B ]−Pp [A ∩B ]−Pp [B \A]|

= |Pp [A \B ]−Pp [B \A]|

≤ |Pp [A \B ] +Pp [B \A]|

= |Pp [A∆B ]|<ε.

We can actually already see this statement from the last step of our proof above. Since we showed
E|1(An )−1(A)| → 0 and |Pp [An ]−Pp [A]|= |E[1(An )−1(A)]| ≤ E|1(An )−1(A)|

We are now ready to prove the zero-one law for translation invariant events:
Main idea: By using the approximation Lemma, show that Pp [A]≤Pp [A]2.

Proof of Lemma 1.14. Let A ∈F be a translation-invariant event. Denote by τx the translation
map by x units in direction (1, 0, · · · , 0). By hypothesis of translation-invariance, Pp [A] =Pp [τx (A)].
Then, let ε> 0 be given, and by the Approximation Lemma 1.15, choose an event B that depends
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on the sites of a finite subset E ⊂ Zd , such that Pp [A∆B ] < ε. Since B depends only on a finite
set E of vertices, we can find some x large enough, so that E ∩τx (E ) = ∅, so that in particular,
the translated event τx (B ) is independent of B . Then:

Pp [A] =Pp [A ∩A] (1.1)

=Pp [A ∩τx (A)] (1.2)

≤Pp [B ∩τx (B )]+2ε (1.3)

=Pp [B ]Pp [τx (B )]+2ε (1.4)

=Pp [B ]
2+2ε (1.5)

≤Pp [A]
2+4ε+ε2. (1.6)

Where step 1.2 is due to the fact that A = τx (A), and 1.5 is due to the fact that the measure
Pp itself is translation invariant. Thus sending ε → 0 gives that Pp [A] ≤ Pp [A]2 which means
Pp [A] ∈ {0, 1}. ♥

Now we can actually rule out most possibilities of the number of clusters that there could almost surely
be:

Corollary 1.17 Letting N : {0, 1}Zd →N∪{0∪∞} be the number of clusters of a given percolation
configuration, we have that either

Pp [N = 0] = 1 or Pp [N = 1] = 1 or Pp [N =∞] = 1

Main idea: The key here is that if we are working on the event that there are finitely many clusters,
we can intersect all of them with a large enough box, and then by resampling within this new box,
there is a positive probability of merging all these finitely many clusters into one big cluster.

Proof. For notational simplicity, let Ek be the event that N = k . Suppose that Pp [Ek ] = 1 for some
k ≥ 2 finite. Let Fn be the event that all clusters intersect the box [−n , n ]d . Clearly, we have that

Pp [E≤1]≥Pp

�

Fn ∩{ω(x ) = 1 for all x ∈ [−(n −1), n −1]d }
�

Indeed, if all the clusters, however there may be, intersect the box [−n , n ]d , and all the sites in the
[−(n −1), n −1]d box are open, then all clusters are connected so there is either one cluster or no
cluster. However, whether the infinite cluster reaches the [−n , n ]d box is independent to whatever
happens in the smaller box (think of the infinite cluster coming from infinity into the graph, while
the smaller box changes configurations, the probability that the cluster stops "growing inwards"
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before reaching the n-box is independent of whatever happens inside the smaller box), therefore

Pp [E≤1]≥Pp [Fn ]p
something

Since we are assuming Pp [Ek ] = 1, we can however choose an n large enough so that Pp [Fn ]> 0.
Therefore Pp [E≤1] > 0, which means Pp [E≤1] = 1, but it is not possible that Pp [E≤1] = Pp [Ek ] = 1.
Therefore either Pp [E∞] = 1 or Pp [E≤1] = 1. ♥

Remark 1.18 A cleaner proof is by Harris Inequality.

We are now ready to finish off the proof of the unicity of the infinite cluster. The only thing we need is
to rule out the possibility of there being infinite clusters. Of course, it would be outrageous to believe
in the almost sure infinitude of clusters, the philosophy being that in Zd , there is simply not enough
space to accommodate too many disjoint infinite clusters. We will need one last definition:
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x 0

Λn

x y

z

Figure 1.4: A trifurcation on the left, and the diagram that says it all on the right

Definition 1.19 (Trifurcation ) Let ω ∈ {0, 1}Zd be a configuration. A vertex x ∈ Zd is said to
be a trifurcation of ω if x is contained in an infinite cluster C , and C \ {x } is comprised of three
disjoint infinite clusters.

Main idea: The key idea is that if there are infinitely many clusters, then there is a positive probability
that the origin is a trifurcation. However, by an isoperimetric argument, that uses the fact that there
cannot be more trifurcation points in Λn than there are points in ∂Λn , the probability that the origin
is a trifurcation is actually zero.

Proof of Theorem 1.12. All there is to show is that Pp [E∞] = 0. Suppose there are indeed infinitely
many clusters, we are going to reach a contradiction. Given E∞ holds, it is clear that for any fixed
k ,

Pp

�

⋃

n

�

k clusters intersect [−n , n ]d
	

�

= 1

Which by taking out the union as a limit means that there is some n (k ) large enough so that
Pp

��

k clusters intersect [−n , n ]d
	�

≥ 1/2. (The one half is irrelevant, we just want some large
enough number) Let us call this event as F for simplicity. An important observation to make is
that the event F is independent of whatever happens in the interior of the box Λn := [−n , n ]d (you
may modify the local structure of the clusters if you alter the interior of the box, but the fact
that k clusters touch the box will remain intact, for a cluster cannot touch the box if it doesn’t
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touch its boundary). With this powerful observation in mind, we proceed to choose k in a clever
way. Choose k large enough so that there are three vertices in the boundary of the box ∂Λn , say
x , y , z that are a distance at least 3 apart from each other, and that are all connected to infinity,
of course, with this choice of k and n , we still have that Pp [F ] ≥ 1/2. The idea is that we are
now going to modify the interior of the box to create a trifurcation. Say by connecting x , y , z in
any trifurcation like path of open sites to the origin, and closing everything else, call T ′ the event
that this construction holds. Let T (0) denote the event that we have a trifurcation at the origin,
then we obviously have that

Pp [T (0)]≥Pp [T (0)∩ F ]≥P[T ′ ∩ F ] = p something(1−p )|Λn |−somethingP[F ]> 0

The punchline will come now when we show that actually Pp [T (0)] = 0, which will give us our
desired contradiction. The observation to make is that clearly, the event T (x ) - that x ∈ Zd is
a trifurcation - is independent of x . So the expected number of trifurcations in the box Λn is
precisely Pp [T (0)]× |Λn |. On the other hand, we have the observation (This should really require
a proof of its own, but we just claim that it is intuitive enough) that there cannot be more
trifurcations in Λ than points on the boundary ∂Λn (Intuitively, no matter how cleverly you try to
make a trifurcation, you will always end up having to make one "arm" of the trifurcation leave to
infinity in a new path to infinity that has not been used before, so a new point of the boundary
has to be crossed). Therefore, combining all this:

Pp [T (0)] =
E#{trifurcations in Λn}

|Λn |
≤
|∂Λn |
|Λn |
→ 0

as n →∞, since the number of vertices in the box grows like O (n d ) whereas the size of the
boundary grows like O (n d−1). ♥

Remark 1.20 (On the ommitted step) In the proof we claimed that there couldn’t be more
trifurcation points inside a box than there were points on its boundary. Let us give a more clear
but still not rigorous explanation of this fact: Suppose that we have an already existing trifurcation
in our box, and we wish to add a new trifurcation. We have a few cases to consider:

A The new trifurcation point y is in one of the prior "arm", in which case, is has already two
open neighbours, which when y is removed, will each be in an infinite cluster disjoint from
the other. Therefore the third arm of y has to be a path going to infinity, disjoint from the
already existing connected component, thus occupying one more point in the boundary.

B The new trifurcation point z is on "empty space", then it can either have all its arms going
off to infinity, opening 3 new vertices in the boundary, or one of its arms can be connected
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y
z z

Figure 1.5: The diagram that says it all of Remark 1.20

to the already existing component, in which case we have 2 new paths to infinity.

An important comment to make is that of course this proof only holds because we are in Zd , in par-
ticular, we used the isoperimetric fact of the ratio between the boundary and size of the box Λn . As
a fun final remark, note that on trees, this result is not true.

Summary of the proof:

1. We first show that if there are a finite number of infinite clusters, we may merge them together
and thus have one or zero infinite clusters.

2. To show that there cannot be infinitely many clusters, we show that if there are infinitely many
clusters, we can deduce that the probability of a trifurcation at the origin is non-zero by doing a
“surgery" at a small box around the origin, and then contrast this with the observation that by
an isoperimetric argument, the probability of a trifurcation at the origin is indeed of zero.
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1.3 Exponential decay in the subcritical regime

In the subcritical regime, i.e: p < pc we know that almost surely there will be no infinite cluster,
metaphorically, a big ocean of closed sites with some smaller islands of open resistance. How big will
these islands be? Can we give bounds on the probability that their radius is at least some number n?
How will this probability decay? The title of this section should give a spoiler as to what to expect.
We will work towards proving the following goal:

Theorem 1.21 (Exponential decay of subcritical percolation ) If p is in the subcritical regime,
then there is some ψ=ψ(p ) for which

Pp [0↔ ∂Λn ]≲ exp
�

−ψn
�

Before we start proving this Theorem, we need to introduce a bunch of notation, please observe the
following diagram:

S
CS

OS

US

Let S be the set of sets S ⊆ Zd that are finite and connected, that contains the origin, and with Zd \S
being itself connected this is a discrete analogue of a simply connected finite domain, so for example, S

cannot be the boundary of a box). We then perform percolation on S , and denote CS to be the Cluster
containing the origin, OS denotes the Outside points of distance 1, finally US denotes the neighbours
of the cluster CS in OS , i.e: US is the set of available exit points of the cluster. We then define ϕp (S )

to be the expected of such exit points, i.e: ϕp (S ) = Ep [#US ]. Finally, note that if D is a subset of S

that contains the origin and is connected, the event that CS = D depends only on the value of the
percolation inside D (namely all the sites in D must be open) as well as the values of the percolation
on the neighbours of D (in the sense that the neighbours must all be closed). Therefore if we let
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D̃ = D̃ (D ,S ) denote the union of D with its neighbours in S , we see that {CS =D } ∈σ
�

ω(x ) : x ∈ D̃
�

.
The main idea in the proof of this result will be a close connection between ϕp (S ) being bounded from
above or below for large S , and the regime being supercritical or subcritical.

Lemma 1.22 If there is some S ∈S such that ϕp (S )< 1, then Pp [0↔ ∂Λn ] decays exponentially
in n .

Main idea: What the calculation we are going to do now is morally telling us is that since we can
fit S inside some box Λn0

, for all n ≥ n0, we have that if 0↔ ∂Λn , then for each possible exit point of
S , we must be able to move a distance of n −n0. This is the content of Diagram 6.1. This will give
that Pp [0↔ ∂Λn ]≤ E[#US ]Pp [0↔ ∂Λn−n0

], so by iterating this we get the exponential decay, since we
are assuming that E[#US ]< 1.

Proof. Start by fixing some n0 so that S ⊆ Λn0−1 and choose n ≥ n0. We make the following
observation (OBS 1): if 0↔ ∂Λn , then we have a path γ of open sites started at 0 that reaches
∂Λn . In particular, by assumption of n ≥ n0, there is a point after which γ ceases forever to be inside
CS . Say x = γ( j ) ∈ CS and then onwards we have that γ stays outside CS . In particular, we have
that after this point γ stays out of eCS =CS ∪{neighbours of CS inside S} (it may actually return to
S , but not to CS or any of its neighbours by definition of x being the last one). Moreover, we have
the second rather crude observation (OBS 2) that for a set D , percolation on D is independent
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to percolation on eD c . With this we can now condition on how CS looks:

Pp [0↔ ∂Λn ] =
∑

D⊆S

Pp [{CS =D }∩ {0↔∂ΛD }] (1.1)

=
∑

D⊆S

Pp

�

{CS =D }∩
⋃

y ∈OS

{0↔ y }∩
§

y
eD c

↔ ∂Λn

ª

�

(1.2)

≤
∑

D⊆S

∑

y ∈OS

Pp

�

{0↔ y }∩ {CS =D }∩
§

y
eD c

↔ ∂Λn

ª�

(1.3)

=
∑

D⊆S

∑

y ∈OS

Pp

�

{0↔ y }∩ {CS =D }
�

Pp

�

y
eD c

↔ ∂Λn

�

(1.4)

≤
∑

D⊆S

∑

y ∈OS

Pp

�

{0↔ y }∩ {CS =D }
�

Pp

�

y↔∂Λn

�

(1.5)

≤
∑

D⊆S

∑

y ∈OS

Pp

�

{0↔ y }∩ {CS =D }
�

Pp

�

y↔∂Λn−n0
+ y

�

(1.6)

=
∑

D⊆S

∑

y ∈OS

Pp

�

{0↔ y }∩ {CS =D }
�

Pp

�

0↔∂Λn−n0

�

(1.7)

=Pp [0↔ ∂Λn−n0
]
∑

y ∈OS

Pp [0↔ y ] (1.8)

=Pp [0↔ ∂Λn−n0
]E[#{y ∈OS : 0↔ y }] (1.9)

≤Pp [0↔ ∂Λn−n0
]E[#US ] (1.10)

This clearly completes the proof by assumption that ϕp (S ) := E[#US ] < 1 by iterating it. Now let
us justify the steps. Step (1.1) is trivial. Step (1.2) comes from (OBS 1). Step (1.3) is a
union-bound. Step (1.4) uses (OBS 2). Step (1.5) uses the fact that if we restrict on y reaching
∂Λn strictly via eD c , then we obviously have that y reaches ∂Λn . Step (1.6) uses the fact that y

is in OS and that S ⊆Λn0
(you may wish to look at the diagram). Step (1.7) comes from the fact

that Pp is a translation-invariant measure. Step (1.8) is trivial. Step (1.9) is trivial. Step (1.10)
comes from the fact that the number of vertices in OS that are connected to 0 are no more than
the possible exit points (the subtlety is that vertices in US need not be open, whereas the set that
we are taking an expectation of in step (1.9) need to be open). ♥
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Sy

Λn0

Λn

Λn−n0
+ y

Figure 1.6: Diagram of Step (1.6) in the proof above

Before continuing with the proof of the Theorem of this section, we need one more tool: Russo’s
Formula.

Definition 1.23 (Increasing event ) An event A that depends on the outcomes of percolation
on finitely many vertices - i.e: say A ∈ σ(ω(x ) : x ∈ Λn ) for some n - is said to be increasing if
whenever ω ∈ A, and ω≤ω′, then we also have that ω′ ∈ A.

There’s this observation we can notice: consider the coupling ωp introduced before, namely, a prob-
ability space (Ω,Ξ, Q) in which a collection of iid uniform [0, 1] random variables (X (x ) : x ∈ Zd ) exist,
and we define (ωp (x ) : x ∈ Zd ) to be the collection of random variables with

ωp (x ) = 1(X (x )≤ p )

We can think of increasing p just a little bit. What would be required for ωp to not belong to A but
suddenly, after having increased p by just a little bit, it belonged to A. Clearly, some vertices must
have switched on, and some of those must have been vital, i.e: without those specific ones, it might
not have been possible for ωp to suddenly belong to A. We refer to these special vertices as pivotal.
In some sense, they are the vertices that hold the key to the outcome.

Definition 1.24 (Pivotal vertex) Let ω ∈ {0, 1}Zd and let A be an event that depends on finitely
many vertices. We say that a vertex v is A-pivotal for ω if whenever ω with v closed does not
belong to A, but ω with v open does belong to A. With symbols we may write something like

ωv,0 /∈ A, but ,ωv,1 ∈ A.

Naturally, the more pivotal vertices there are, the more sensitive we expect the probability of ωp ∈ A

being, because there will be more chance that one of the key vertices will flip. This intuitive relation
is formulated in Russo’s Formula, and the proof will reflect very clearly this intuition too.
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Proposition 1.25 (Russo’s Formula) Let A be an increasing event that depends on the outcomes
on some box Λn . Then we have that

d
dp

Pp [A] = Ep [#{A-pivotal vertices}]

Proof. Once again consider the coupling (ωp (x ) : x ∈ Zd ) defined on the common probability space
(Ω,Ξ, Q). Then

Pp+ε[A]−Pp [A] =Q[{ωp+ε ∈ A}∩ {ωp /∈ A}]

As outlined above, it must be that some pivotal sites have "turned on", and so we can start
by decomposing this probability in terms of the pivotal sites. Of course it could be that a large
number of sites were pivotal meaning that all needed to be turned on, so we will decompose
probability as follows: (the sums are taken over distinct values in Λn)

Q[{ωp+ε ∈ A}∩ {ωp /∈ A}] =
∑

x∈Λn

Q[{ωp+ε ∈ A}∩ {ωp /∈ A}∩ {x is pivotal}]

+
∑

x ,y ∈Λn

Q[{ωp+ε ∈ A}∩ {ωp /∈ A}∩ {(x , y ) are pivotal}]

+
∑

x ,y ,z∈Λn

Q[{ωp+ε ∈ A}∩ {ωp /∈ A}∩ {(x , y , z ) are pivotal}]

+ · · ·

(There’s a little subtlety here: when we say {x is pivotal} we mean that if x is off, then A doesn’t
hold. If x is on, then A holds. However, when we say {(x , y , z ) is pivotal}, we mean that if all
x , y , z are on, then A holds, but if one of them fails, then A doesn’t hold. Note therefore that the
events {x is pivotal} and {y is pivotal} are disjoint). Observe that if say (x1, · · · , xk ) are the pivotal
vertices, and we are also working on the event that ωp /∈ A but ωp+ε ∈ A, then this is equivalent
to saying that have all switched on as the probability increased. Formally, what this means is that

Q[{ωp+ε ∈ A}∩ {ωp /∈ A}∩ {(x1, · · · , xk ) are pivotal}]

=Q[{X (x1) ∈ [p , p +ε]}∩ · · · ∩ {X (xk ) ∈ [p , p +ε]}∩ {(x1, · · · , xk ) are pivotal}]

= εk Q[(x1, · · · , xk ) are pivotal] =O (εk ) =O (ε2)

where this last equality is if k ≥ 2. Therefore we have that

Q[{ωp+ε ∈ A}∩ {ωp /∈ A}] =
∑

x∈Λn

εQ[x is pivotal] +O (ε2) (1.1)
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x yx

Figure 1.7: An illustrative example of {x is pivotal} (left) and an example of {(x , y ) are pivotal} (right),
for the event that the two sausages are connected.

Where we used the fact that Q[X (x ) ∈ [p , p + ε],{x is pivotal}] = εQ[x is pivotal] because the
event of x being pivotal can be determined without knowing the value of x , hence {x is pivotal}
is independent of X (x ). Putting this all together:

Pp+ε[A]−Pp [A]

ε
=
∑

x∈Λn

Q[x is pivotal] +O (ε)

which when taking ε ↓ 0 gives the desired claim for the right derivative. The left derivative follows
similarly. ♥

We are now ready to finish the proof of the Theorem.

Proof of Theorem 1.21. We will finish proving the Theorem by showing the following:

if inf
S∈S
ϕp0
(S )> 0 then p0 ≥ pc .

The conclusion of the Theorem will indeed hold, because if infS∈S ϕp0
(S )< 1, then by the Lemma,

we have exponential decay, and if infS∈S ϕp0
(S )≥ 1, then in particular it will be strictly greater than

zero and so p0 ≥ pc , i.e: we are not subcritical. For this we make the following observation (OBS
1): the map p 7→ϕp (S ) is non-decreasing (larger p , more exit sites out of S), so if infS∈S ϕp0

(S )> 0,
then there is some α > 0 so that for any p ≥ p0 and for any S ∈ S we also have that ϕp (S ) ≥ α.
Now let p1 ∈ (p0, 1), we will show that Pp1

-almost surely, there is an infinite connected cluster. We
start by using Russo’s Formula:

d
dp

un (p ) = Ep #pivotal sites for un (1.1)

=
1

1−p
Ep # closed pivotal sites for un (1.2)

where we have defined un (p ) = Pp [0↔ ∂Λn ] and for convenience we also let un be the event
{0↔ ∂Λn}. Step (1.1) is Russo’s formula and step (1.2) comes from the fact that a site x being
pivotal is independent of the value at the site, so that

Ep #closed pivotal sites for un =
∑

x∈Λn

Ep 1ω(x )=0 1x is pivotal

and now you split the expectation using independence. The idea is that we will explore what’s
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happening at Λn from the boundary inwards: let U be the random set of all points in Λn that
are connected to the boundary. Then the event {U =V } is measurable with respect to V (whose
sites must all be open) and the neighbours of V in Λn . We call the union of these two sets Ṽ .
Of course, we still haven’t discovered what happens on the complement of Ṽ . Define now S (V )

to be the connected component containing the origin in Ṽ c (don’t get confused, this is not the
open connected cluster, just the connected component, see diagram). We will now decompose
Ep # closed pivotal sites for un in terms of the possible values that U can take:

Ep # closed pivotal sites for un =
∑

0/∈V

Pp [U =V ]Ep

�

∑

y ∈Λn

1(y is pivotal and closed for un )

�

�

�

�

�

U =V

�

(1.1)

=
∑

0/∈V

Pp [U =V ]ϕp (S (V )) (1.2)

≥α
∑

0/∈V

Pp [U =V ] (1.3)

=αPp [0 ̸↔ ∂Λn ] (1.4)

Where (1.1) is a simple conditioning, step (1.2) is the saucy one: given that U =V , then y being
pivotal for the event that {0↔ ∂Λn} is equivalent to saying that there is an open path connecting
zero to a neighbour of y in S (V ) (see diagram), which gives the equality with ϕp (S (V )) (note
that this also takes care of the “pivotal AND closed" part, because the immediate outside of S (V )

contains all closed vertices). From then (1.3) comes from the discussion above that used (OBS
1). Step (1.4) comes from the fact that if you sum over all the events that the components in Λn

that reach the boundary equals a set that does not contain the origin, this equals the probability
that zero does not reach the boundary. Therefore we have that for all p ∈ [p0, p1], where p1 ∈ (p0, 1),
we have that

d
dp

Pp [0↔ ∂Λn ]≥
α

1−p
Pp [0 ̸↔ ∂Λn ]≥

α

1−p
(1−p1)

where the last inequality comes from the fact that if the origin is closed, which occurs with
probability 1−p ≥ 1−p1, then the origin is not connected to ∂Λn . We can of course also get one
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Figure 1.8: The diagram that says it all: second part of exponential decay

more inequality where we forget about that denominator. Therefore:

Pp1
[0↔∞] = lim

n→∞
Pp1
[0↔ ∂Λn ] (1.1)

= lim
n→∞

Pp0
[0↔ ∂Λn ] +

∫ p1

p0

d
dp

Pp [0↔ ∂Λn ]dp (1.2)

≥ lim
n→∞

∫ p1

p0

α(1−p1)dp (1.3)

≥α(1−p1)(p1−p0)> 0 (1.4)

And thus we have that p1 ≥ pc . But since p1 was chosen to be any 1 > p1 > p0, it follows that
p0 ≥ pc . ♥

Summary and study tips: In this chapter we covered:

1. How the existence of a set S whose ϕp (S ) := E[#outside escape points] is < 1 implies exponential
decay: the proof in one line is that for you to reach Λn , you must first reach one of these escape
points and then travel the remaining distance. Thus, by fitting S inside Λn0

, and letting n be
arbitrary and large, we have that Pp [0↔ ∂Λn ] ≤ Pp [0↔ ∂Λn−n0

]ϕp (S ). This is the content of
diagram 6.1

2. To finish the proof we explored Russo’s formula, which says that for an increasing event such
as {0↔ ∂Λn}, the derivative d

d p Pp [0↔ ∂Λn ] = E[#pivotal sites for the event]. The proof of the
second part of the Theorem was to show that if there was some α > 0 such that for all S ,
ϕp (S ) ≥ α, meaning that there is a large enough number of possible escape routes, then there
will be a lot of pivotal points for the event 0↔ ∂Λn (for this see diagram 1.8), and as such
Pp [0↔ ∂Λn ] will be bounded from below by a constant independent of n , and so there will be
an infinite cluster with non-zero probability.
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Figure 1.9: Why the triangular lattice: in Z2 it is not necessary that there is either a top-to-bottom or
left-to-right connection

1.4 The value of pc on the triangular lattice

We are now going to focus on the value of the critical percolation parameter on the triangular lattice
T . The main goal of this section is to prove the following Theorem:

Theorem 1.26 (pc on triangular lattice) For site percolation on T , we have that pc = pc (T ) = 1/2.
Moreover, P1/2[there is an infinite cluster] = 0.

There is a key observation, unique to T as opposed to Z2, which will come in handy later. If we consider
Λn to be a rhombus of side-length 2n + 1, the probability of an open horizontal crossing is identical
to the probability of a top-to-bottom closed crossing. Indeed: consider the sites that are connected
to the top boundary, if this set stretches out to the bottom boundary, then there is a top-to-bottom
open connection, and therefore a left-to-right closed connection cannot exist, and if there is not a
top-to-bottom open connection, it must be the case that there is a left-to-right closed connection
blocking the open path. This is a property intrinsic to the triangular lattice, since it is allowed to
use the diagonals. In Z2 for example it could be the case that neither there is a left-to-right closed
or top-to-bottom open connections (see diagram). We have established that one of the two events
must always hold. Of course, they cannot both happen at the same time, and since we are working at
p = 1/2, both events have the same probability by symmetry. Therefore we have the following:

P 1
2

∪1=
= P 1

2

+ P 1
2

1/2 1/2

Now we can easily prove half of our goal:
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Lemma 1.27 On percolation in T , one has that pc ≤ 1/2.

Proof. Assume that pc > 1/2. We will reach a contradiction using our observation as well as
exponential decay (note that the exponential decay Theorem can also be shown to work in T with
essentially the same proof). By our observation, we have that

1

2
=P 1

2
[there is a left-to-right open crossing in Λn ]

≤P 1
2
[there is a point on the left boundary of Λn in a cluster of diameter at least 2n +1]

≤
∑

x∈ left boundary of Λn

P 1
2
[diam(Cx )≥ 2n +1]

≤ (2n +1)exp(−ψ(p )n )→ 0

Where in the last step we used exponential decay. Thus we reach a contradiction and pc ≤ 1/2. ♥

In order to continue our quest for pc , we need to make a small detour and develop a tool that will
prove crucial later on:

FKG Inequality

In this subsection we will prove an inequality referred to as the FKG or Harris’ inequality. Recall that
an event A is said to be increasing if v ∈ A and v ≤ v ′ implies that v ′ ∈ A. Then Harris’ inequality
states that

Proposition 1.28 (Harris’ Inequality) Let A and B be two increasing events that depend on the
outcome of finitely many sites. Then P[A ∩B ]≥P[A]P[B ].

One could prove this formula via combinatorial arguments, performing induction on the number of
sites for which A and B depend on, but the proof that we present here, quite beautiful indeed, uses a
coupling of suitably chosen Markov chains, whose invariant distributions are the measures of interest
to us.



1.4. THE VALUE OF pc ON THE TRIANGULAR LATTICE 29

Proof. We start by writing S for a large enough finite set for which the outcomes of A and B

depend on percolation only inside S . That is to say, A ∈FS and B ∈FS . We are going to run two
Markov Chains, Xn and Yn on {0, 1}S . Call Q the probability measure of the probability space on
which these two Markov chains live. Let us first define the chain (X t )t≥0 as follows:

• X0 is the configuration where every site is open, i.e: the ones vector.

• At time n , choose one of the #S sites uniformly at random (here is why we need in this
proof that A and B depend on a finite amount of vertices, otherwise we would not be able
to pick one at random). And resample the site, opening it with probability p , and closing it
with probability 1−p .

We have the following preliminary observations about X = (Xn )n≥0:

• X is an irreducible Markov Chain. Indeed, it is easy to see that one can go from any point
in {0, 1}S to any other point with positive probability by waiting enough time.

• X is aperiodic. In fact it is lazy, which as we know implies aperiodicity.

• X is reversible with respect to the percolation measure Pp , and hence Pp is the invariant
measure, not very surprising! To see reversibility one can manually check the detailed balance
equations, which shouldn’t be too terrible (I’ve done it I swear).

It follows from these observations, by the Fundamental Theorem of Markov Chains, that L (Xn )

converges to Pp in Total Variation. This Markov chain is the one that will give us part of the
proof. Now we need to couple this Markov Chain to another. Define (Yn )n≥0 as follows. Similarly,
set Y0 to be the ones vector. By the fact that B is an increasing an non-empty set, it is clear
that Y0 ∈ B . Now we sample Yn just as Xn (i.e: we use the outcomes of the sampling of Xn to
determine what Yn will be, thus using the same source of randomness). However, if at time say
n +1, one of these updates makes Yn+1 leave the set B , we cancel this update and set Yn+1 = Yn .
Thus by our construction, we see that Yn ∈ B for all n . Now we have the following observations
about the chain Y = (Yn )n≥0:

• Y is an irreducible and aperiodic chain in B .

• Y is reversible with respect to the conditioned measure Pp [· | B ], and hence this is its invariant
measure. Indeed:

Q[Yn = v x , Yn+1 = vx ]
Q[Yn = vx , Yn+1 = v x ]

=
1−p

p
=

Pp [vx ]

Pp [v x ]
=

Pp [vx | B ]
Pp [v x | B ]

Where the only mysterious inequality could be the last one, and it simply follows because
both v x and vx must be in B , and so v x ∩B = v x and same for vx .
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• The last observation, which is quite trivial, is that by construction Xn ≤ Yn , and so if A is
an increasing event, and Xn ∈ A, then Yn ∈ A.

Putting this all together, we get

Pp [A | B ] = lim
n→∞

Q[Yn ∈ A]

≥ lim
n→∞

Q[Xn ∈ A]

=Pp [A].

And so by expressing Pp [A | B ]−Pp [A ∩ B ]/Pp [B ] we are done. Of course in this proof we have
implicitly assumed that the probability of B is non-zero, but if it were, the claim would have
followed trivially. ♥

Remark 1.29 We can now extend this to some other cases. Obviously by induction we have that if
A1, · · · , An are all increasing, then Pp

�⋂

i Ai

�

≥
∏

i Pp [Ai ]. The second observation, is that since if A

is increasing, then Ac is decreasing, (I had proof for this but now I forgot, it went by contradiction
I believe) and so if A is increasing and B is decreasing, we have that Pp [A ∩ B ] ≤ Pp [A]Pp [B ].

Similarly, if a collection A1, · · · , An are all decreasing, we have that Pp

�⋂

i Ai

�

≥
∏

i Pp [Ai ].

The value of pc on the triangular lattice

We now return to the main quest of this section. Armed with Lemma 1.27 and Harris’ Inequality, we
are ready to finish off the proof of Theorem 1.26.

Proof of Theorem 1.26. It is left to show that there is almost surely no infinite cluster at p = 1/2.
If we show this, it will follow that pc ≥ 1/2, and by Lemma 1.27, the Theorem will follow. Recall
that we define Λn as the rhombus of side-length 2n +1. For each of its sides, L1, · · · , L4, we define
Ei (n ) to be the event that there is an open path from L i to infinity that stays outside the rhombus.
Then it is clear that

4
⋃

i=1

Ei (n ) = {Λn↔∞}

Note that the events Ei (n )c are all decreasing, and hence all positively correlated. Suppose
now that there is an infinite cluster at p = 1/2. Working on this event, we naturally have that
Pp [Λn ̸↔∞]→ 0 as n→∞, so putting this all together, we have that

Pp [E1(n )
c ]4 =

4
∏

i=1

Pp [Ei (n )
c ]≤Pp [Λn ̸↔∞]→ 0.
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Where the first equality is due to symmetry of the rhombus, and the inequality is due to Harris’
Inequality. From this it follows that for large enough n , Pp [E1(n )c ]< 1/8. Now note the following,
since we are working at p = 1/2, the probability that there is an open path from L i to infinity is
the same as the probability that there is a closed path from L i to infinity. Therefore, since

Pp

� 4
⋂

i=1

Ei (n )

�

= 1−Pp

� 4
⋃

i=1

Ei (n )
c

�

≥ 1−
4
∑

i=1

Pp [Ei (n )
c ]≥

1

2

We have that with probability at least 1/2, the four following events occur simultaneously: there
is an open path from L1 to infinity, there is a closed path from L2 to infinity, there is an open path
from L3 to infinity, and there is a closed path from L4 to infinity. Since the percolation on ∂Λn

and outside is independent of percolation in Λn−1, we can resample on the inside, and close all
sites, so that we isolate the two open infinite clusters emanating from L1 and L3, thus creating,
with probability strictly greater than zero, two infinite disjoint open clusters. But we know that
this occurs with probability zero. Thus reaching a contradiction and we get that there is almost
surely no infinite cluster at p = 1/2.

♥

Figure 1.10: The diagram that says it all, proof of Theorem 1.26
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Chapter 2

Conformal invariance of critical
percolation on T

The main goal of this chapter will be Smirnov’s Theorem, sometimes called Smirnov’s proof of Cardy’s
formula, that determines the limit when the mesh-size goes to zero of the probability of crossing
quadrilaterals. Whenever we write Pp we mean P 1

2
. We will make a slight detour before talking about

this, and prove a tool that will be key later: the RSW bounds, which will tell us about the probability of
crossing "rectangles of k -aspect ratio", and will also be used to give a lower bound for the probability
of closed circuits around a point.

2.1 Russo-Seymour-Welsh bounds

For convenience we look at the triangular lattice rotated by 90 degrees so that an axis of symmetry lies
vertically. We define the rectangles of the triangular lattice as follows. For any a > 0 and any b > 0, we
define R (a , b ) the set of sites in the rotated triangular lattice with (x , y ) ∈ [0, a ]× [0, b ]. We denote by
H (a , b ) the event that there exists a horizontal open crossing of R (a , b ), i.e: a nearest-neighbour path
of open sites in the rectangle that joins a point with x -coordinate zero to a point with x -coordinate
a . Therefore its easy to see that the map a 7→ Pp [H (a , b )] is non-increasing in a . We want a way of
comparing the left-to-right crossing probabilities of glued domains.

Lemma 2.1 (Russo-Seymour-Welsh) One has that

Pp [H (2a , b )]≥
Pp [H (a , b )]2

4

In general, the proof will work for any symmetric domain (we will work with domains symmetric with
respect to a vertical axis since we are working with the rotated lattice). First we have the following
observation, if we have a symmetric domain D , we can divide the boundary into four pieces, and we

33
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ask the question, what is the probability that there is an open crossing from the top left boundary
to the middle right or bottom right components? Well by symmetry, and using arguments similar to
what we did before, namely using the fact that we are on a triangular lattice, it must be that there is
exactly either a top-left-bottom right open crossing, or a bottom-left-top-right closed crossing, by the
symmetry of the domain both of these things have the same probability so we have that

Lemma 2.2 Consider a symmetric domain (not necessarily two rhombus as shown in the picture),
then

P = 1
2

Proof of Russo-Seymour-Welsh bound. The key to this proof is to explore the state of the different
sites in a suitable way. Clearly, in order to cross R (2a , b ), one has to first cross the left-half rectangle
R (a , b ). One way to discover if there is a left-right open crossing of R (a , b ) is from top-to-bottom,
by looking at the interface between open and closed sites. More precisely, let L be the (random)
cluster of closed sites that are connected to the top boundary. For each possible fixed set L , the
event L = L means that the sites of L are all closed, whereas all sites that are at a distance 1

from L are open. (Note from this that the event L = L is measurable with respect to the state
of the sites in the union of L and its neighboring sites. The "lower" boundary of L contains a
random curve γ consisting of open cells only This could look something like this:

L
γ

L

γ
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On the left we see a case where there is no left-to-right open crossing, meaning that γ does touches
the bottom side, and on the right, we have a case where there is a left-to-right open crossing, as
shown by γ touching the right-hand side. Thus we have that

�

there is a left-to-right open crossing
	

=
�

γ hits the right hand side
	

.

Let’s now return to our case of the two glued rectangles. Recall that for H (2a , b ) to hold, it is
necessary that H (a , b ) holds. So suppose we have explored our left rectangle and found that the
random curve γ described above is equal to some curve g that touches the right hand-side. Then
we can artificially draw the symmetric image of g on the second rectangle, say g̃ , and now we
look at the connected component of R (2a , b ) that contains the new top boundary consisting of
g ∪ g̃ , call this domain O (g ∪ g̃ ):

γ γ̃

O
�

γ∪ γ̃
�

Now notice that O (g ) looks a lot like the preliminary warmup observation we did in Lemma 2.2,
and given that the law of the sites underneath γ is that of percolation, since we haven’t revealed
anything, we can ask, conditional on γ= g , what is the probability that there is an open path from
the top-left boundary of O (g ) to the bottom-right or right-most boundary of O (g ). By the Lemma
we know this is 1/2. Therefore, putting this all together we conclude that the probability of having
a crossing in R (2a , b ) that goes from the left-most side to the bottom-right or right-most side can
be bounded below:

P ≥
∑

g : P[γ= g ]P

Where the sum over g is taken over paths that have a right-crossing. However, by Lemma 2.2,
we know that the right-most term in this sum is 1/2, and so we have that our original probability
is greater than or equal to 1

2 Pp [H (a , b )]. This is close to our goal but not yet quite, because
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we want a crossing from our left-most side to our right-most side, we don’t want to include the
bottom-right side, this however, can be easily fixed by using the FKG Inequality, indeed: a possible
way to realise a left-to-right crossing is as follows:

P ≥ P ∩

And now we can use the FKG inequality using the fact that both of the events that are being
intersected are increasing, and we get the final result:

Pp [H (2a , b )]≥
Pp [H (a , b )2]

4

♥

From this we have an immediate corollary. Recall that in the case of the Rhombus Λn , we had seen
that the probability of a left-to-right open crossing was exactly equal to 1/2. Moreover, in this proof
we did not use any specific facts about the rectangle. The only thing we did use is that it is the union
of a set, namely R (a , b ) and its symmetric image. Therefore, we have the following

Corollary 2.3 Let k , n ∈N be given where k is a power of two and n is odd. Then there exists
a constant ak independent of n for which the probability of having a left-to-right crossing on k

glued rhombus of side-length n is bounded below by ak

P ≥ ak
· · ·

k

n

Proof. We have that the probability of a left-to-right crossing on two glued rhombus is at least
�

1/2
2

�2
= 1

16 now keep iterating the RSW bound. ♥

We already saw in Chapter 1 how we could give a proof by using the FKG inequality there was almost
surely no infinite cluster at criticality in the triangular lattice, using the RSW bound, we can give
an alternative proof. We will present the key result as a result of its own as it is of independent
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interest. Define now by Λn the hexagon centered at the origin with graph radius n (this is the natural
analog of the ball of radius n in the triangular lattice). We then define the concentric disjoint annuli
A j =Λ2 j+1 \Λ2 j .

C j =

A j

And then we define C j to be the event that there is a loop in A j formed of closed sites, thus discon-
necting the origin from infinity. Then we have the following:

Corollary 2.4 (Loops in the hexagon) Consider the events C j as defined above. Then there exists
some α> 0 such that for all j ∈N,

Pp [C j ]≥α.

Proof. The idea is to "cover" the annulus A j by four large enough glued rhombuses. Here’s a
messy picture which hopefully doesn’t confuse the reader more than need be:

As attempted to depict in this picture, one can cover the hexagon with 4 "double rhombuses"
which will overlap (I have drawn two of the double rhombuses outside the hexagon, but they should
be in the annulus, but otherwise the overlap would not allow the reader to see all the shapes). We
know regardless of the size of the rhombuses, the probability of a left-right-crossing of closed sites
on each of thse double rhombuses is at least of 1/16. Label Ri the event that there is a left-right
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⊆

c

∩

c

∩ · · ·

Figure 2.1: Alternative Proof to Theorem 1.26, the picture that says it all

crossing made of closed sites on the i th double-rhombus. Then it is clear that

Pp [C j ]≥Pp [R1 ∩ · · · ∩R4]

Indeed, if we have a closed path on each of the double-rhombuses, we can just jump from path to
path at the intersection points of the paths and create the loop. Now the point is that each Ri

is a decreasing event, because if you turn off more sites, it is more likely that you have a closed
crossing. Therefore:

Pp [C j ]≥Pp [R1]
4 ≥

�

1

16

�4

Once again, we emphasize that there is no dependence on j here because we can make the
rhombuses as big as we want. ♥

Now we can present an alternative proof for the non-existence of infinite cluster at criticality.

Alternative Proof to Theorem 1.26. Let us study the event that zero is connected to the boundary
of the hexagon of side-length 2 j+1. If this event holds, it must mean that it is not the case that
any of the j annuli has a closed loop around it. It is also clear however, that percolation in these
concentric annular regions is independent from each other, and so we deduce that, using the α of
Corollary 2.4, we have that

Pp [0↔ ∂Λn ]≤ (1−α) j

Therefore as we take n→∞ the right hand side rapidly decays to zero. ♥
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2.2 Smirnov’s proof of Cardy’s formula

Before stating the Theorem we will first provide some motivation and later review a well-known result
in Complex Analysis.

Remark 2.5 (Consequence of RSW bounds) Recall that if you take a rectangle R (k N , N ) of aspect
ratio k ∈ N, then the probability that there is a left-to-right crossing, Pp [H (k N , N )] is bounded
below by a constant ck > 0 independent of N . Similarly, by now considering the probability of a
closed top-to-bottom crossing, we also get an upper bound. That is to say, there is some ε> 0 for
which

ε<Pp [H (k N , N )]< 1−ε.

Therefore, we can find a subsequence (Nt ) along which these probabilities converge somewhere in
(0, 1). A way to interpret this statement of N →∞ is either that the rectangle gets very large, or
if on the other hand, "we move away from the plane" with the rectangle, we can interpret this as
the mesh size getting very small. In this section we will prove a formula that helps us understand
these kind of crossing probabilities as mesh sizes tend to zero.

Now let us state the following:

Theorem 2.6 (Riemann’s Mapping Theorem) Let D be a simply connected open domain in the
complex plane with D ̸=C. Let T be the unit length equilateral triangle, i.e: the equilateral triangle
with vertices A = 0, B = 1, and C = exp(iπ/3). Fix three points a , b , c ∈ ∂D . Then there exists a
unique conformal (i.e: angle preserving) map Φ : D̄ → T that is a bijection and maps the points
a , b , c to the points A, B , C respectively.

Therefore, if we pick a fourth point x ∈ ∂D , say on the arc between a and c , then the image Φ(x ) = X

is prescribe and belongs to the side AC . We call (D , a , b , c , x ) a Conformal rectangle . We can ask
then the following question: in the scaling limit where the mesh size of the triangular percolation goes
to zero, what is the crossing probability from the arc a b to the arc x c ? It turns out that there is a
very elegant answer: very simply, |X C |/|B C | where these are the conformal images onto the triangle.

P a

b

c

x
?

P

A

B

X

C

? |X C |
|B C |=

Φ
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Theorem 2.7 (Smirnov-Cardy’s Formula ) If D is conformally equivalent to the equilateral triangle
AB C , and if the four boundary points a , b , c , x are respectively mapped to A, B , C , X and X ∈ [C B ],
then if one takes a lattice approximation of (D , a , b , c , x ) and performs critical percolation on it,
as the mesh size goes to zero the probability that there exists a crossing in D from a b to c x

converges to |X C |/|B C |.

Let us give an intuitive overview of the proof. We will prove the special case of the statement for the
triangle T . We will actually consider some sort of generalisation of crossing probabilities, by moving the
"target point" to the inside of the triangle. This will yield three events, the events E δ

1 (z ), E δ
2 (z ), E δ

3 (z ),
with E δ

i (z ) corresponding to the event that there is an open crossing isolating z in the region that
contains the i th vertex from the rest of the triangle. Then the probabilities of these events will be
considered. The idea is that in the case of E2 below, if we move the point z towards the right-hand-side
of the boundary, we will actually get the probability we were interested in from the start. The outline
of the proof will be

1. Prove that the functions H δ
i (z ) have subsequential limits as δ→ 0.

2. Prove a combinatorial identity called the "colour-switching Lemma".

3. With this Lemma, we will show that if the limit δ→ 0 exists, the contour integrals of triangles
of the functions H1+H2+H3 and H1+τH2+τ2H3 vanish, thus showing they are analytic.

4. Using analyticity of these functions, we will derive some properties about the Hi ’s, namely that
they are Harmonic and some boundary conditions that will uniquely determine their structure.
In particular, we will show that

H2(z ) =Height(z )

5. In summary, we will have shown that there is only one possible accumulation point, and since
the functions are on a compact set, they do converge to the specified limit.

Tightness via RSW

Let us formalise some of what we have said above. For a face z on the triangular lattice, consider the
events E δ

i (z ) for i = 1, 2, 3, where δ is the size of the mesh, to be defined as follows:
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E δ
1 (z ) is the event that there is a line from A1A2 to A1A3 that separates z from A2A3, and the other

events are defined similarly by "rotating" the starting and ending points as well as the "blocking goal"
by 2π/3. We now define three functions, H δ

i (z ) given by H δ
i (z ) = Pp [E δ

i (z )]. These functions can be
extended to be continuous by interpolation. One of the main steps of this proof will be to show that
these functions have a limit as δ→ 0. We will now see how RSW helps us show that there will in fact
be sub-sequential limits, the final idea will be to "push out" z towards the boundary. Let us recall a
Theorem from Analysis:

Theorem 2.8 (Arzela-Ascoli (in R)) A set F of functions in C ([a , b ]) that is uniformly bounded
and satisfies a Holder condition of order β :

| f (x )− f (y )| ≤M |x − y |β

for some uniform M , is relatively compact in C ([a , b ]). In particular, every sequence { fn} ⊆ F has
a converging subsequence.

This Theorem is easily generalised to Euclidean domains such as the one we are working in. We now
have the following.

Lemma 2.9 The collection of functions {H δ
i } as defined above satisfies a Holder condition.

Proof. Let z and z ′ be two faces inside the triangle that are close (say |z − z ′| < 1/100, this is
only so that we can fit some hexagons as we will see now). Notice that if for percolation on the
triangle with mesh-size δ we have that if there exists an open (or closed) circuit inside the triangle
that surround both z and z ′, then E δ

i (z ) and E δ
i (z
′) either both hold or they both don’t hold.

Then, we have that

|H δ
i (z )−H δ

i (z
′)|= |Pp [E

δ
i (z )]−Pp [E

δ
i (z
′)]| (2.1)

≤Pp [E
δ

i (z ) \E δ
i (z
′)∪E δ

i (z
′) \E δ

i (z )] (2.2)

≤Pp [no open or closed circuit around z , z ′] (2.3)

≤ 2Pp [no open circuit in any annuli of hexagons around z , z ′] (2.4)

Recall from the RSW bound, that if you have series of hexagonal annuli of this form:
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Then there are k concentric annuli of the form discussed in Corollary 2.4, and so the probability
of not having an open loop in any of the annuli is precisely of (1−α)k . Now we think of fitting
one large hexagon of a fixed side-length, and creating concentric annuli until we circle z and z ′:
Naturally, the close z and z ′ are, the more hexagons we’ll be able to fit and so the smaller the
probability will be. Precisely, since we’ll have − log(|z−z ′|)

log(N ) such annuli and so after rearranging, we’ll
have that step (2.4) can be bounded above by M |z − z ′|β for some M and β . Thus showing the
Holder condition. ♥

Now we have shown that if δn is a sequence tending to zero, we have that the sequence of functions
H δn

i converges uniformly to some sub-sequential limit. The goal moving on will be to find the only
possible limit. Before doing that, note that we can obtain one more piece of information about this
limit. Consider for an illustrative case that we are talking about the event E2. The claim is that as z

approaches A3A1, H δ
2 (z ) goes to zero uniformly in δ. Indeed: we can consider z ′ to be the "projection"

of z down to A3A1. If there is a closed loop that contains both z and z ′, then it is not possible for
the open path to go below z and connect A2A3 with A2A1 by going below z :

However, since H δ
2 (z
′) = 0 (because z ′ is on A3A1 so you cannot go below z ′), it follows that H δ

2 (z )≤
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M |z − A3A1|β → 0. Therefore the sub-sequential limits Hi will also satisfy this property when z

approaches the corresponding sides.

Discrete exploration process and the colour-switching Lemma

Spoiler, the main technique that will allow us to understand these limits of the H δ
i ’s is that a cer-

tain combination of them will be analytic. Let us recall the following fact about complex analytic
functions:

Lemma 2.10 (Characterisation of analytic functions ) Let F : C→C be a C 1 function. Then the
following are equivalent:

1. F is analytic in an open domain D .

2. The following derivatives coincide on D , ∂(R(F ))/∂1= ∂(R(F /τ))/∂τ= ∂(R(F /τ2))/∂τ2 where
(∂F /∂η)(z ) denotes the limit

lim
h→0,h∈R

F (z +ηh )− F (z )
h

3. (Morera’s Theorem)For all triangles T in D with one side parallel to the real axis,

∮

T

F (z )d z = 0.

With this in mind, we aim to explore the "derivative" of H δ
i in these three directions. For this let us

introduce some notation.

For a face z in the triangular lattice, we call z1, z2, z3 the faces of the lattice that are in directions of
the vertices A1, A2, A3 respectively, and we call the sites s1, s2, s3 to be the sites "opposite" to z1, z2, z3

respectively. Exploring these directional derivatives is equivalent to understanding the probability of
the event E δ

1 (z1) \E δ
1 (z ). It is easy to see that this event is precisely the event that:
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1. There are two open paths, l2 and l3 from s2 and s3 that connect to A3A1 and A2A1 respectively.

2. There is a closed path from s1 to A2A3.

A way to determine if this event has occurred is by starting an exploration process at A3 by considering
the random curve γ that separates the open cluster connected to A3A1 and the closed cluster connected
to A2A3, in other words, you consider γ to be the random curve obtained if one "artificially colours"
A2A3 closed, A1A3 open, and simply follows a path that leaves closed to its left and open to its right.
The event described above will hold if and only if this exploratory process γ reaches the face z by
connecting the closed path to s1 and the open path to s2:

and there is an open path from s3 to A2A1 in the unexplored domain. The key observation is that since
the exploratory process has not revealed the state of percolation on the unexplored region, conditional
on the event that our exploration process γ yields a given curve g , i.e; conditional on {γ= g }, we have
that the probability that there is an open path from s3 to A2A1 is the same probability that there is a
closed path from s3 to A2A1. That is to say:
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But if we now average over the possible values of γ and then use the fact that p = 1/2 so we can flip
all colours, we have that:

From this, we have arrived at the following conclusion:

Lemma 2.11 (Colour-Switching Lemma ) One has the following two equalities:

Pp [E
δ

1 (z1) \E δ
1 (z )] =Pp [E

δ
2 (z2) \E δ

2 (z )] =Pp [E
δ

3 (z3) \E δ
3 (z )]

Discrete Contour Integrals

Now we will start working towards determining information about the limit Hi (z ). So assume that the
H δ

i (z ) converge to some Hi (z ). The goal will be to show, using Morera’s Theorem, that

Lemma 2.12 If the limits H1, H2, H3, exist, then the functions H1(z ) +H2(z ) +H3(z ) and H1(z ) +

τH2(z ) +τ2H3(z ) are analytic in the triangle T .

Proof. The ultimate goal will be to show that for any equilateral contour Γ inside the original
equilateral triangle T , the discrete contour integrals of H δ

j are very closely related. Define hδj (z ,η)

to be P[E δ
j (z +η) \ E δ

j (z )] where η is chosen so that z +η is one of the three neighbours of z

(loosely speaking we will say that η = i , iτ, iτ2 when z is in a triangle "pointing downwards"),
and assume that Γ is "perfectly fitted" to consist of unions of small triangular faces of our lattice
with mesh-size δ (One can do away without this assumption and then explain that one can well-
approximate Γ by a contour Γ δ that is actally fitted to be part of the triangles in the lattice, but
we don’t really care). Suppose moreover that Γ is "looking-upwards". Let D denote the set of
centres of triangular faces which are looking downwards. We have the following remarks:

1. Since P[A]−P[B ] =P[A \B ]−P[B \A], we have that

H δ
j (z +η)−H δ

j (z ) =P[E δ
j (z +η)]−P[E δ

j (z )]

=P[E δ
j (z +η) \E δ

j (z )]−P[E δ
j (z ) \E δ

j (z +η)]

= hδj (z ,η)−hδj (z +η,−η)
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2. In this language, the colour-switching Lemma takes the form:

hδ1 (z ,η) = hδ2 (z ,ητ) = hδ3 (z ,ητ2)

3. Recall that hδj (z ,η) is the probability that E δ
j (z +η) occurs but not E δ

j (z ). We saw that if
there is an open and a closed circuit surrounding both z and some other point z ′, then either
both E δ

j (z ) and E δ
j (z
′) occur, or they both don’t occur. Therefore hδj (z ,η) is at most the

probability that there is not an open circuit surrounding z +η and z or there is not a closed
circuit doing the same thing, and we saw that the probability of this occurring is precisely
M |(z +η)− z |β for some M ,β , and so since η was chosen for z +η to be a neighbour of z ,
we have that hδj (z ,η)≲δβ for some β > 0.

With these three observations, we note the following:

• For η= i , iτ, iτ2, one has that

∑

z∈D
H δ

1 (z +η)−H δ
1 (z ) =

∑

z∈D
H δ

2 (z +ητ)−H δ
2 (z ) +O (δβ−1) (2.5)

Indeed:

∑

z∈D
H δ

1 (z +η)−H δ
1 (z ) =

∑

z∈D
hδ1 (z ,η)−hδ1 (z +η,−η) (2.1)

=
∑

z∈D
hδ2 (z ,ητ)−hδ2 (z +η,−ητ) (2.2)

!=
∑

z∈D
hδ2 (z ,ητ)−hδ2 (z +ητ,−ητ) +O (δβ ·δ−1) (2.3)

=
∑

z∈D
H δ

2 (z +ητ)−H δ
2 (z ) +O (δβ ·δ−1) (2.4)

Step (2.1) comes from Remark 1 above, and step (2.2) is the colour-switching lemma as seen in
Remark 2 above. Naturally step (2.4) also comes from the same reason as (2.1) Let us explain
in detail step (2.3). The summands in step (2.1), before performing the colour-switching, look
something like this, say for η= i :
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and so after performing the colour switching, in order to end up with H δ
2 (z+ητ)−H δ

2 (z ), we would
like the same picture but with the arrows rotated by τ. However, if we draw on the diagram what
we see in step (2.2), we see something like this:

Which is clearly not what we wanted to end up with. But not all is lost, because if you think
about it, even though the top arrow is emanating from the wrong starting point, there will be
some other face in this diagram, that will "substitute" the wrong arrow:
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so actually, in the grand scheme of things (i.e: when all the sum is taken into account), step (2.2)
already gives mostly the right thing. The only problem comes from those faces that are adjacent
to the edge of the big triangular contour Γ , since they will not have other faces outside Γ to cover
up for the missing arrows. This might look something like this:

But that’s not a huge problem either, we can simply do a bit of bookkeeping and account for this
error. Each error we make costs O (δβ ) to correct, as seen by Remark 3 above, and the errors will
come from the sides of the triangle, each having length δ−1, and so our total error is O (δβ−1).
We are now ready to prove the main goal. We now consider the following expression:

• EXPRESSION 2

∑

z∈D

�

H δ
1 (z + i )−H δ

1 (z )
�

+τ
�

H δ
1 (z + iτ)−H δ

1 (z )
�

+τ2
�

H δ
1 (z + iτ2)−H δ

1 (z )
�

(2.1)

=
∑

z∈D
−H δ

1 (z )
�

1+τ+τ2
�

+H δ
1 (z + i ) +τH δ

1 (z + iτ) +τ2H δ
1 (z + iτ2) (2.2)

=
∑

z∈D
H δ

1 (z + i ) +τH δ
1 (z + iτ) +τ2H δ

1 (z + iτ2) (2.3)

The main observation to do with this expression is that actually most of this sum is equal to
zero. In fact, only the sum over the contour of Γ is left. This is because of the following fact.
Pick any face z that is "well inside" the triangle, then H δ

1 (z + i ) will manifest as H δ
1 (z1+ iτ) and

H δ
1 (z2+ iτ2) for some z1 and z2. Thus when the terms get paired up, a factor of (1+τ+τ2) will

appear in front. Thus the only surviving terms in this sum will be the sum over the faces in the
"boundary of Γ". This is an illustration of this argument
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So if we now let Ud ,Ul ,Ur , denote the set of "upwards-pointing triangles" for the down, left, and
right sides of Γ respectively, we have that our sum above really becomes

∑

z∈Ud

(τ+τ2)H δ
1 (z ) +

∑

z∈Ur

(1+τ2)H δ
1 (z ) +

∑

z∈Ul

(1+τ)H δ
1 (z )

which of course is nothing but

−

�

∑

z∈Ud

H δ
1 (z ) +

∑

z∈Ur

τH δ
1 (z ) +

∑

z∈Ul

τ2H δ
1 (z )

�

And this can now clearly be seen to be almost a discrete contour integral over Γ . Indeed, it is
summing the values of the function H δ

1 around the contour, and multiplying it by the increments
of the direction that our path around Γ is making. Therefore, as δ→ 0, assuming these functions
converge (uniformly), we have that

δ
∑

z∈D
H δ

1 (z + i ) +τH δ
1 (z + iτ) +τ2H δ

1 (z + iτ2)→−
∮

Γ

H1(z )d z

Now you might be wondering what was the point of doing all that EXPRESSION 1 business,
well, if you look back at EXPRESSION 2, we can now use 2.5 and obtain that

δ
∑

z∈D
H δ

1 (z + i ) +τH δ
1 (z + iτ) +τ2H δ

1 (z + iτ2) =δ
∑

z∈D
H δ

2 (z + iτ) +τH δ
2 (z + iτ2) +τ2H δ

2 (z + i ) +O (δβ )

=δ
1

τ

∑

z∈D
H δ

2 (z + i ) +τH δ
2 (z + iτ) +τ2H δ

2 (z + iτ2) +O (δβ )

and a similar expression with H3 can be obtained by using 2.5 once again and having a 1/τ2 instead
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of a 1/τ. By taking δ→ 0 we have that

∮

Γ

H1(z )d z =
1

τ

∮

Γ

H2(z )d z =
1

τ2

∮

Γ

H3d z

So from this we have that
∮

Γ

H1(z ) +H2(z ) +H3(z )d z =

∮

Γ

H1d z (1+τ+τ2) = 0

and similarly

∮

Γ

H1(z ) +τH2(z ) +τ
2H3(z )d z =

∮

Γ

H1+τ
2H1(z ) +τ

4H1(z )d z = 0

Thus by Morera’s Theorem we are done. ♥

Identification Of the Limit

Let us summarise what we have discovered so far. We had our functions H δ
i . We saw that they had

subsequential limits as δ→ 0, and moreover, we saw that for any subsequential limit (H1, H2, H3), the
combinations H1+H2+H3 and H1+τH2+τ2H3 are analytic on our triangle T . We will now determine
using this information that there is only one possible limit. Therefore we will have shown that there is
only one accumulation point, and since the functions take values on a compact set, the limit will be
uniquely determined. Recall that we are in a situation like this:

Then we can now state the final lemma which finishes the proof of Smirnov’s Theorem for the triangular
domain.
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Lemma 2.13 Suppose the limits H1, H2, H3 exist, then

H3(z ) =
d (z , A2A1)

d (A3, A2A1)

Proof. As we saw in the previous Lemma, the functions F =H1+H2+H3 and G =H1+τH2+τ2H3

are analytic. The first one, being real, means that it must be constant. Noticing that due to
the RSW estimates which were argued in the Tightness section, we have that H1(A1) = 1 and
H2(A1) =H3(A1) = 0, which means that H1+H2+H3 is constant and equal to one (OBS 1). On
the other hand, note that

R(G ) =H1+R(τH2) +R(τ
2H3)

=H1−
1

2
H2−

1

2
H3

=
3

2
H1−

1

2

Where in this last equality we used OBS 1. From this it can be seen that H1 is the real part of
an analytic function, and from complex analysis we know that this means that H1 is Harmonic.
Similarly we have that

R(G /τ) =
3

2
H2−

1

2
R(G /τ2) =

3

2
H3−

1

2

which by the same reasoning means that H2 and H3 are also harmonic. Moreover, we note that
G can be extended analytically to a neighbourhood of the segments of the triangle T . This is
because on the segment [A2A3], H1 is zero, so R(G ) maps the segment to −1/2. This means that
G maps the segment to −1/2+ i R, and so by Schwarz reflection principle, we have that G can be
extended to a neighbourhood of the segment, so one can make sense of the derivatives of G on
this segment. Since G is an analytic function, we have that

∂

∂1
R(G ) =

∂

∂τ
R(G /τ) =

∂

∂τ2
R(G /τ2)

With this facts, we can actually show that the horizontal derivative of H3 is zero on the sides
[A1A3] and [A2A3]. Indeed, since H1 is identically zero on the line [A2A3], its derivative must also
be zero, but since H1 = 2/3R(G ) + 1

2 , we have that

∂

∂τ
H1 =

2

3

∂

∂τ
R(G )

=
2

3

∂

∂τ
R(Gτ/τ)

=
2

3

∂

∂1
R(Gτ) =

2

3
×

3

2

∂

∂1
H3
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Therefore we have the following facts about H3:

1. H3 is equal to zero at [A1A2].

2. H3 is equal to 1 at A3.

3. The horizontal derivative of H3 is identically zero on the sides.

4. H3 is harmonic, being the real part of some analytic function G .

A clear candidate that ticks all these boxes is H3(z ) to be the normalised height of z with respect
to the base of the triangle. It turns out that using the maximum principle, we can show that
this is indeed the unique solution: Let H (z ) be the normalised height of z , and let H̃ (z ) be some
other function satisfying those same facts. In particular, we can consider the difference H − H̃ ,
which can be seen as the real part of some analytic function G − G̃ . Since H − H̃ is harmonic,
by the maximum principle, it must attain its maximum on the boundary of T , say on the side
[A2A3], then since its a maximum, the derivative of H −H̃ on the direction A2A3 must be zero, but
by one of the facts above, the horizontal derivative of H − H̃ must also be zero. Since we have
that the derivative of H − H̃ is zero in two different directions, it must mean that the complex
derivative must also be zero. By Cauchy-Riemann, if the complex derivative of the real part of
an analytic function is zero, then the derivative of the analytic function itself is also zero at that
point. Therefore, if the maximum is attained at some z0, we have that ∂/∂z (G −G̃ ) |z=z0

= 0. This
means that the power expansion of G − G̃ at z0 is something like

a + b (z − z0)
k +O

�

(z − z0)
k
�

for some k ≥ 2. But whenever one is in a situation like this, it must mean that there is some
direction pointing inside the triangle for which the directional derivative of the real part of G − G̃

is positive, contradicting our prior conclusion. As an illustration, R(z 2) = x 2− y 2, so one can easily
see that if you cut the complex plane by any half plane through the origin, there will always be a
direction pointing to either side of the plane in which the real part is increasing. ♥

Extension to general domains

Suppose now that D is a simply connected domain, with a = a1, b = a2, c = a3 three points on its
boundary. The key is that most of the proof works the same way: the tightness estimates did not rely
on the shape of a triangle, nor did the colour-switching Lemma, which was combinatorial argument
based on microscopic behavior of percolation, similarly proof that H1 +H2 +H3 and H1 +τH2 +τ2H3

were analytic only relied on computing the contour integrals of triangles inside D , so this also works.
Hence, for any converging subsequential limit, one obtains a triplet (H1, H2, H3) for which:

1. The function H1+H2+H3 is constant and equal to 1.
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2. The function G =H1+τH2+τ2H3 is analytic.

3. The function H j (x ) tends to zero when x approaches the part of the boundary between a jτ and
a jτ2

4. H j (x ) tends to one when x → a j .

Let Φ be conformal map from D onto the equilateral triangle. Then (H1 ◦Φ−1, H2 ◦Φ−1, H3 ◦Φ−1) solve
the same problem as in the equilateral triangle and since conformal maps are analytic, these functions
are the "heights" of the triangle, and so the claim for the general domain follows.



54 CHAPTER 2. CONFORMAL INVARIANCE OF CRITICAL PERCOLATION ON T



Chapter 3

The Ising Model

3.1 Introduction

We now discuss a model whose roots lie in the natural phenomenon of magnetism and thermodynamics.
It will be the first example of the models we will see that exhibit interaction between the sites.

Definition 3.1 (The Ising Model ) Let G be a finite graph, and let {−1, 1}V (G ) be the set of
possible states for the sites of G . Fix a β > 0, the Ising Model is a probability measure Pβ on
{−1, 1}V (G ) defined as follows:

Pβ [(sx )x∈V ] =
1

Zβ
exp

 

−β
∑

{x ,y }:x∼y

1{sx ̸= sy }

!

The normalising constant Zβ is called the partition function and in the physical literature, the
parameter β is known as the inverse temperature.

Remark 3.2 (Motivation) The motivation behind this model, is that we want some sort of
"percolation-type" model, where each site on the graph decides to have one of two states, but
now, as opposed to percolation, we don’t want the decisions to be independent, we want to favour
alignment between neighbours, therefore, whenever two neighbours have differing opinions, we
make the model pay a price in the probability, and this price comes by dividing the probability by
a factor. The natural choice is to encode this in the exponential above. Of course, when β is
very high, we give a high importance to interactions, and a difference between neighbours carries
a high penalty to the probability. If β is zero, then there is no interaction and we are back to a
percolation-type model.

55
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Remark 3.3 (Alternative phrasing) With our choice of states being ±1, it is clear that we can
express the model as the following sum over all states:

Pβ [s ] =
1

Zβ
exp

�

β

2

∑

x∼y

sx sy

�

Glauber Dynamics

The reason why models like this are of physical relevance is that the Ising measure Pβ is nothing
but the stationary measure of a simple "local" Markov chain on the state space, meaning that the
transition of the chain is decided only by local interactions at a point. Let us now define the Markov
chain of interest, and we will later state some of its properties.

1. The chain starts at some X0 ∈ {−1, 1}V .

2. To decide Xn+1, we choose a site x ∈ V at random and "forget its state". Xn+1 will be equal
to Xn at all sites except at x . We will resample the state of x in the most natural way. The
resulting state could be r+, where x obtains the value +1, or r−, where x obtains the value −1.
Then Xn+1(x ) is chosen to be

Xn+1(x ) =







r+ with probability Pβ [r+]/(Pβ [r+] +Pβ [r−])

r− with probability Pβ [r−]/(Pβ [r+] +Pβ [r−])

If we wanted to be explicit we could just say that r+ is chosen with probability

exp
�

β
∑

y∼x sy

�

2 cosh
�

β
∑

y∼x sy

�

and r− is chosen with an analogous expression but with a −β on the numerator. It is clear that this chain
is irreducible, as one can get to any state in {−1, 1}V given enough steps with non-zero probability, it
is aperiodic, for there is a non-zero probability of staying in the same state, and moreover, it is trivially
reversible with respect to Pβ (I say it is a triviality because of the way the transition probabilities have
been chosen, indeed if s and s ′ are two states that differ only at one coordinate, say sx =−s ′x , and we
label by Q the transition matrix of the chain, then by definition

Pβ [s ]/Pβ [s
′] =Q (s , s )/Q (s , s ′)

It follows that the law of Xn will converge in total variation to Pβ .
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We now derive an FKG-type result for the Ising model.

Proposition 3.4 (FKG Inequality) Let A and B be two increasing events in {−1, 1}V , then

Pβ [A ∩B ]≥Pβ [A]Pβ [B ]

Proof. We will use a similar proof as the one we used for the case of percolation. We will construct
two coupled Markov chains (Xn )n and (Yn )n living in a common probability space with probability
measure Q. The goal will be to have L (Yn ) to converge to Pβ [· | B ] and to have Xn ≤ Yn for all
n . Then the increasing property of A will finish off the proof. Let us describe how the coupling is
constructed: construct two sequences (Xn )n and (Un )n , the first one will be vertices of the graph
chosen uniformly at random, and the second sequence will be independent uniform [0, 1] random
variables.

1. The two chains start at X0 = Y0 = (+1, · · · ,+1). This way both X0 and Y0 belong to B .

2. At time n , observe the randomly chosen vertex xn , we will update Xn and Yn as follows: all
vertices distinct from xn remain the same, and as for xn ,

(a) We update Xn (xn ) to be +1 if Un ≤Pβ [X +n ]/(Pβ [X
+
n ] +Pβ [X −n ]), otherwise we update it

to be -1, this way we are following the transition rules of the “natural" Markov chain.

(b) Similarly, we update Yn (xn ) to be +1 if Un ≤Pβ [Y +n ]/(Pβ [Y
+

n ]+Pβ [Y −n ]) and −1 otherwise,
but we only do this step IF doing update results in Yn still being in B , otherwise Yn

stays put.

It is then clear to see by induction, that Xn ≤ Yn for all n . Indeed, the case holds for n = 0. Now
the only case where "X could start to overtake Y " is if X flips a spin to +1 but Y doesn’t. Let
us show that this cannot happen. Our inductive hypothesis is that Xn ≤ Yn . Then if X flips the
spin at xn+1 to +1, this means that Un ≤ exp

�

β
∑

y∼xn
Xn (y )

�

/2 cosh
�

∑

y∼xn
Xn (y )

�

but the key
observation is that the map x 7→ exp(x )/2 cosh(x ) is increasing, and so the inductive hypothesis
will give that if X flips xn to be +1, then so will Y . All other cases won’t affect the "hierarchy
of X and Y ". Now we simply note that Y is reversible with respect to the conditioned measure
Pβ [· | B ], (to check this one does the exact same procedure as we did in the proof of FKG for
percolation). We also note that (Yn ) is irreducible on the state space {−1, 1} because one has
non-zero probability to get to any state from any other state.

♥
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Phases of the Ising Model in Zd

In this limited amount of time, we will not be able to explore many interesting questions about the
Ising model. We will we interested in its phase transition for very large graphs, but first of all, let’s try
to explain what phase transition we are after. Let Λn = [−n , n ]d be the box, and consider the three
following probability measures:

1. Pβ ,n , the Ising measure restricted to Λn .

2. P+β ,n , the Ising measure restricted to Λn , conditioned on the event that all spins are +1 on ∂Λn .

3. P−β ,n , the Ising measure restricted to Λn , conditioned on the event that all spins are −1 on ∂Λn .

Remark 3.5 From this it is clear, that for any increasing event A ⊆ {−1, 1}Λn , one has that
P−β ,n [A]≤Pβ ,n [A]≤P+β ,n [A].

Let us now introduce the observable that we will be interested in studying and analysing whether it
presents a phase transition:

Definition 3.6 (Magnetisation ) We define m+
n (β ) (respectively m−n (β )) to be

m+
n (β ) := E+β ,n [σ(0)] = 2P+β ,n [{σ(0) = 1}]−1

We can note some a priori things:

1. m+
n (β )≥ 0. This is because as mentioned, P+β ,n [A]≥Pβ ,n [A] for increasing events, and Pβ ,n [{σ(0) = 1}] = 1/2.

Naturally {σ(0) = 1} is an increasing event.

2. If an event A depends only on the sites in Λn , then P+n [A] = Pn+1[A |σ(x ) = 1 for x ∈ ∂Λn−1], so
by the FKG Inequality we proved earlier, we have that

P+n+1[σ(0) = 1]≤P+n [σ(0) = 1]

This is intuitive, since the further away the square of +1’s gets, the less influence the spin at
zero will feel from it, so its magnetisation will get closer to zero.

From these two observations we get that m+
n is a bounded from below, decreasing sequence, so it has

a limit, m+(β ). The goal of studying the phase transition will be to see for which values of β one has
that m+(β ) = 0 and when one has that this quantity is positive. These questions are essentially related
to knowing how much does the outer boundary of the box in the Ising model influence the decision of
the spins on the inside, i.e: we want to understand the correlation properties.
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3.2 The Random Cluster representation of the Ising Model

The goal of this section will be to show a way of coupling the Ising Model Pβ with another model called
the Random Cluster Model, PRC

p . This connection will allow us to explore the correlation properties of
the Ising Model through the connectivity properties of a "percolation-type" model on the edges of the
graph. Let us first give a definition of the Random Cluster Model

Definition 3.7 (Random Cluster Model ) Let G = (V , E ) be a finite graph. The Random Cluster
Model is a measure on {0, 1}E . For an ω ∈ {0, 1}E Letting o (ω), c (ω), and k (ω) be the number of
open edges of ω, number of closed edges, and number of open connected components respectively
(including single sites). Then for each p ∈ [0, 1], we define the Random Cluster Model measure as

PRC
p (ω) =

1

Z RC
p

p o (ω)(1−p )c (ω)2k (ω)

Remark 3.8 The Random Cluster model is simply a percolation model with parameter p with the
modification that configurations with more connected components are favoured.

The goal is to construct a coupling µ of the two models, i.e. a measure on {−1, 1}V ×{0, 1}E such that

∑

σ∈{−1,1}V
µ(σ,ω) =PRC

p (ω)
∑

ω∈{0,1}E
µ(σ,ω) =Pβ (σ)

Moreover, we want do this in a way that the two models "talk to each other". We will now describe
how this coupling is achieved. We will actually construct two couplings, µ1 and µ2.

1. For µ1, proceed as follows. Construct some probability space (Ω,F , P), in which we have an Ising
model σ and a Bernoulli random variable (for example, just construct a probability space where
you have an Ising model and a Lebesgue [0, 1] random variable and then sample the Bernoulli
as usual), i.e: the law of the random variable σ is precisely Pβ . Now construct a random bond
configuration as follows: for an edge e = (x , y ) ∈ E , if σ(x ) ̸= σ(y ), then ω(e ) = 0. If the two
endpoints agree however, we toss a Bernoulli(p ) random variable, where p = 1− exp(−β ), and
then decide whether to open or close the edge. Then we let µ1 be the joint law of (σ,ω), i.e:
µ1 is a measure on {0, 1}E ×{−1, 1}V . Then from the way we have constructed this:

µ1(s , v ) =P[ω= v |σ= s ]P[σ= s ]

=
1C

Zβ

�

p o (v )(1−p )c (v )−
∑

x∼y 1(sx ̸=sy )×exp

�

−β
∑

x∼y

1(sx ̸= sy )

��

=
1C p o (v )(1−p )c (v )

Zβ
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Where C is the subset of pairs of (s , v ) that are compatible, i.e: that v could have arised from
s , or more specifically, that if s (x ) ̸= s (y ) for an edge (x , y ), then v (x , y ) = 0. Naturally, we have
that the Marginal (marginalising over ω), is the Ising Model.

2. For µ2 we proceed as follows. As before, construct some probability space (Ω′,F ′, P′) where one
has a Random Cluster Model ω with parameter p = 1− exp(−β )and a Bernoulli 1/2 random
variable defined. First sample ω, and then construct the following random spin configuration
σ: for each open connected cluster of the configuration ω, assign the spin +1 or −1 with equal
probability (i.e: paint all the cluster with the same colour). Then letting µ2(s , v ) be the joint law
of (σ,ω), we now have that

µ2(s , v ) =P′[σ= s |ω= v ]P′[ω= v ] (3.1)

=
1C

Z RC

�

p o (v )(1−p )c (v )2k (v )
�

×2−k (v ) (3.2)

=
1C

Z RC
p o (v )(1−p )c (v ) (3.3)

We have therefore seen that actually µ1 =µ2 on events of the form (s , v ), but therefore they agree on
the whole space as this is a generating π-system. We therefore have that µ = µ1 = µ2 is a coupling
of the Ising Model and the Random Cluster Model (indeed, its easy to see that marginalising µ over
spins and using 3.1 gives random cluster measure, and vice-versa), and moreover, the way that these
two models are coupled is done in a way that one can easily translate between "Ising events" to
"connectivity events" and vice-versa. Let us see an example of this mechanism. If we look at the
correlation of the spins at two sites x and y , it turns out that we can relate beautifully the expectation
of this quantity to the probability that x and y are connected in the Random Cluster Model.

Proposition 3.9 (Relationship between correlation and connectivity) Let x , y ∈ V . Then with
p = 1−exp(−β )

Eβ [σ(x )σ(y )] =PRC
p [x↔ y ]

where the expectation on the left corresponds to the expectation under the Ising measure.

And the proof really is quite simple thanks to this coupling:
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Proof. Let (Ω,F , P) be a probability space with the Ising-Random Cluster coupling (σ,ω), then:

Eβ [σ(x )σ(y )] =
∑

s∈{−1,1}V
s (x )s (y )Pβ [s ]

=
∑

v∈{0,1}E

∑

s∈{−1,1}V
s (x )s (y )µ(s , v )

=
∑

v∈{0,1}E

∑

s∈{−1,1}V
s (x )s (y )P[σ= s |ω= v ]PRC

p [v ]

=
∑

v

E[σ(x )σ(y ) |ω= v ]PRC
p [v ]

Now the key is to observe that in this last step, this expectation is precisely 1(x
v
↔ y ). This is

because of the way that the coupling was constructed. If we condition on the bond configuration
looking like v , then if the sites are connected, the spins take the same value, either −1 or +1, and
so the product equals one. If the sites are not connected in v , then the spins at x and y were
coloured at random with probability 1/2 and so the expectation will be zero. Formally,

E[σ(x )σ(y ) |ω= v ] = E[σ(x )σ(y )1(x
v
↔ y ) |ω= v ] +E[σ(x )σ(y )1({x

v
↔ y }c ) |ω= v ].

In summary, we have that

Eβ [σ(x )σ(y )] =
∑

v

1(x
v
↔ y )PRC

p [v ] =PRC
p [x↔ y ]

♥

Now we can use this same proof technique to understand our original question of the magnetisation
of the origin. Suppose we have our box Λn , we can consider the "glued graph" obtained by identifying
the boundary as one point, "morally, the graph Λn/∂Λn". Call this new boundary point ∂n . Then
m+

n (β ) = Eβ [σ(0)|{σ(x ) = 1 on ∂n}]. Let A be this conditioning event for simplicity. This expectation
can now be in turn computed as follows:

Eβ [σ(0)|A] = bE[bE[σ(0)|A,ω]]

= bE
�

1{0 ω↔ ∂n}bE[σ(0)|A,ω]
�

+ bE
�

1{0 ω↮ ∂n}bE[σ(0)|A,ω]
�

Now we know that conditional on the bond configuration ω, σ assigns the same values to the clusters.
On the event that 0↔ ∂n , conditioned on σ(∂n ) = 1, it will follow therefore that σ(0) = 1. Similarly,
if we are on the event that 0 is not connected to ∂n , then conditional on ω, σ(0) will receive colour
±1 with equal probability so the second expectation is zero. Therefore we are left with E+β [σ(0)] =

PRC
p [0↔ ∂n ]. This is the real punchline of the coupling, we have effectively translated our question

about magnetisation, to a question about large-scale connectivity properties of the Random Cluster.
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3.3 The Phase Transition of the Ising Model

The heart of the proof of the phase transition will be two results: firstly, that we can couple the
Random Cluster Model with two Bernoulli Percolation models, and secondly, that Random Cluster
models are monotone in their parameter. The latter will prove there is a transition, and the former will
prove the critical temperature is non-trivial. Let us prove these statements and then combine them for
the final punchline of the chapter.

Proposition 3.10 (Random-Cluster and Percolation coupling) Let ωRC
p denote a realisation of

the Random Cluster Model, i.e: a random variable on some probability space (Ω,F , Q) such that
Q[ωRC

p ∈ ·] = PRC
p [·]. Then we can find two realisations of Bernoulli bond percolations ωp and ωp ′

for some p ′ < p , such that
ωp ′ ≤ωRC

p ≤ωp

almost surely.

Proof. The proof goes by a Markov Chain coupling argument. The key will be to describe a Markov
Chain Xn whose invariant measure is PRC

p , then the coupling with the Bernoulli Percolation will be
evident. As usual, the way it goes is that at time n , one chooses an edge e = (x , y ) uniformly at
random, and forgets its state, then we carefully define the resampling rules so that the detailed-
balance equation is satisfied. Due to the fact that the Random Cluster Model penalises having a
low number of connected components, we will define two kinds of resampling mechanisms.

• Case 1: suppose that the sites x and y are already connected in the graph regardless of
the outcome of the resampling (this could be thought of as if there are two arms that loop
around and connect x and y without making use of e . Then regardless of the outcome, no
cluster will be created or destroyed, so we just need to respect p/1−p rule, in particular,
set

Xn (e ) =







1 with probability p

0 with probability 1−p

Let us verify the detailed balance equation, let Q be the transition matrix of this chain, and
let η1 denote the resulting configuration after setting Xn (e ) = 1 and define η0 analogously.
We verify that

PRC
p [η

1]

PRC
p [η0]

=
p

1−p
=

Q [η0,η1]
Q [η1,η0]

so the detail-balance equation is satisfied in this case of the dynamics.

• Case 2: suppose that the sites x and y are connected only through edge e . This means that
if e is open, the connected components Cx and Cy will merge into one larger component,
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reducing k by one. Therefore one can now account for this by setting in this case

Xn (e ) =







1 with probability p
p+2(1−p )

0 with probability 2(1−p )
p+2(1−p )

Once again, let us verify that the detailed-balance equation holds true:

PRC
p [η

1]

PRC
p [η0]

=
p

2(1−p )
=

Q [η0,η1]
Q [η1,η0]

as required.

Now we make the following observation,

p

p +2(1−p )
=

p

2−p
≤ p .

So by inspecting the update dynamics of this Markov chain we have just described, we see that in
both cases, the edge opens with probability at most p . Therefore, we can couple this chain (using
the same coins, etc.) with a chain Yn whose law converges to a Bernoulli p percolation, ωp , and
we will almost surely have that Xn ≤ Yn . Similarly, we can couple this to another chain Zn whose
law tends to that of Bernoulli percolation, now with parameter p ′ = p

2−p and we will have that
Zn ≤ Xn almost surely. Therefore in the limit, by Strassen’s Monotone Coupling Theorem we will
have the desired realisations. ♥

Proposition 3.11 (Monotonicity of Random Cluster Measure) Let 0 ≤ p1 < p2 ≤ 1. It is possible
to couple two realisations ωRC

p1
and ωRC

p2
of the Random Cluster Model in a way that ωRC

p1
≤ωRC

p2

almost surely.

Proof. Consider the Markov Chain dynamics described the proof above, to obtain W 1 and W 2,
chains that use the parameters p1 and p2 respectively. If we start both of them at the same state,
then we obviously have that W 1

0 ≤ W 2
0 . Now by induction, one can easily check the different

update cases, and since we are using the same uniform random variables to "sample the coins", as
well as the fact that p1 ≤ p2, p ′1 ≤ p ′2, and p ′1 ≤ p2, as well as the fact that the inductive hypothesis
forbids W1 from updating with the coin p1 and W2 updating with the coin p ′2, we are done. (This
last comment I have done means that it cannot be the case that after choosing an edge e = (x , y )

to update, x and y are connected without using e in W 1
n but not in W 2

n ). In the limit we get the
desired inequality for the laws. ♥

We are now ready to prove the "punchline" of this chapter.
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Figure 3.1: A simulation of the average magnetisation at the origin, thanks to some guy on Physics
StackExchange for the image

Theorem 3.12 (Phase transition of the Ising model) There exists some βc ∈ (0,∞), such that
whenever β <βc one has that m+(β ) = 0, and whenever β >βc , we have that m+(β )> 0.

Proof. Let us recall the fundamental ingredient:

m+
n (β ) =PRC

p [0↔ ∂n ]

First of all, we have that at β = 0, p = 0, and obviously PRC
0 [0↔ ∂n ] = 0, so taking the limit

n→∞, we have that m+(0) = 0. Now take formally β =+∞, i.e. p = 1, it is also clear now that
in this case the magnetization will be +1. By monotonicity, we therefore conclude that there is
some critical βc ∈ [0,+∞] for which there is a phase transition. We now show that βc is neither
of these two values. The idea is as follows: by the Markov chain coupling we have seen before,
m+

n (β ) = limn→∞Q[Xn ∈ {0↔ ∂n}]. But due to the Bernoulli Percolation couplings we have seen,

Q[Zn ∈ {0↔ ∂n}]≤Q[Xn ∈ {0↔ ∂n}]≤Q[Yn ∈ {0↔ ∂n}]

Taking limits we have that (recall that Pp denotes the Percolation law)

Pp ′[0↔∞]≤PRC
p [0↔∞]≤Pp [0↔∞]

and now we are done, because we know that if p < pc (Zd ), PRC
p [0↔∞] = 0 and so m+(β ) = 0,

and if p ′ > pc (Zd ), we have that Pp ′[0↔∞]> 0, and so m+(β )> 0. This finishes off the proof. ♥
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3.4 Appendix: Infinite Ising Measures

3.4.1 Extending the Ising measures to infinite volumes

When we defined the Ising measure, we always worked with finite graphs, usually on the box Λn . One
can however extend this to the infinite case.

• Recall that P+n is the Ising measure (we drop the dependency on β for convenience) with plus
boundary conditions on the box Λn . We denote by σ+n a random variable whose law is P+n , and
we define σ+n (x ) = +1 for all x ∈Λc

n by convention and all of this in the same way for minus signs.
The first step to extend these measures to the whole of Zd is to show that one can couple all
the processes (σ+n )n≥1 in such a way that σ+n+1 ≤σ

+
n . This argument is very similar to the one we

used for the FKG inequality but is slightly more subtle:

1. By Kolmogorov’s Extension Theorem, if we can couple any finite number of these processes,
that is to say, for any N , find a probability space (Ω,F , P) on which there are σ+n for
n = 1, · · · , N such that P-almost surely σ+n+1(x )≤σ

+
n (x ) for all x ∈ Zd , then we will be done.

2. Define Markov chains (X (n )m ) where m ≥ 0 and n = 1, · · · , N that all start at (+1, · · · ,+1) ∈
{−1, 1}ΛN . Then we will run these processes simultaneously with Glauber dynamics to couple
them.

3. Suppose without loss of generality that on this space we have a collection (Um )m of i.i.d
Uniform [0, 1] random variables, and a collection (xm )m of i.i.d Uniform random variables
on ΛN . Then for each m , we update X (n )m for all n at the uniformly chosen vertex x . If x

is outside Λn , then X (n )m remains the same, otherwise, we use the toss of the Um random
variable to update X (n )m as described earlier in these notes.

4. This procedure gives immediately that X (N )m ≤ X (N−1)
m ≤ · · · ≤ X (1)m for all m , and by the Markov

chain convergence Theorem, the laws of these chains will converge to their respective P+n
measures. Therefore by Strassen’s Monotone Coupling Theorem, there exists a probability
space on which there are random variables (σ+n )n with σ+n+1(x ) ≤σ

+
n (x ) for all x ∈ Zd such

that σ+n ∼P+n .

• With this coupling in mind, we now note that for each x , σ+n (x ) is a sequence that is bounded
and almost surely non-increasing, from which we get that σ+(x ) = limn→∞σ

+
n (x ) is almost surely

well defined. Then we denote P+ the measure on {−1, 1}Zd given by the law of σ+. We define
P− in a similar way.

With this coupling and measures, we can now make some initial observations, for example:
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Proposition 3.13 Let (σ+(x ))x∈Zd be the random variables defined above. Then P[σ+(x ) = +1]

does not depend on x .

Proof. For this we simply note that if e denotes a unit vector on Zd , then we have the following
inclusion of boxes:

Λn ⊆Λn+1+ e ⊆Λn+2.

Now let S be a finite set, and define the event

AS = {s (x ) = +1 on all x ∈ S} ⊆ {−1,+1}Z
d

.

Events of this form are a generating π-system, and we have that by our monotone coupling, we
can obtain processes σ+n ,σ+,e

n+1,σ+n+2 to be Ising models with plus boundary conditions on the boxes
above with the monotonicity property. We therefore have that

P[σ+n ∈ A]≥P[σ+,e
n+1 ∈ A]≥P[σ+n+2 ∈ A],

and so taking limits and noting that (σ+,e
n+1(x ) : x ∈Λn+1+e ) has the same distribution as (σ+n+1(x +

e ) : x ∈Λn+1), the claim follows. ♥

Another consequence of the coupling is the following proposition:

Proposition 3.14 Letting P+ and P− be defined as above, we have that P+ = P− if and only if
P+[s (0) = +1] = 1/2.

Proof. Suppose that the two measures are indeed equal, then we have that

1=P+[s (0) = +1] +P+[s (0) =−1]
︸ ︷︷ ︸

=P−[s (0)=+1]

but by hypothesis we now have that 1 = 2P+[s (0) = +1]. The converse is slightly more tricky: let
A ⊆ Zd be any finite subset. Then by π-system arguments, if P+[{s (x ) = +1 : x ∈ A}] = P−[{s (x ) =
−1 : x ∈ A}], we will deduce that the two measures are equal. The trick to this proposition is to
consider the function

FA(s ) =
∑

x∈A

1{s (x ) = +1}−
∏

x∈A

1{s (x ) = +1}.

We make two preliminary observations:

1. FA(s ) is an increasing function in s . Therefore, if we let (σ+(x ) : x ∈ Zd ) and (σ−(x ) : x ∈ Zd ) be
the monotone coupling described in this section, we have that almost surely, FA(σ+)≥ FA(σ−),
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from which we deduce that

E

�

∑

x∈A

1{σ+(x ) = +1}

�

−E

�

∑

x∈A

1{σ−(x ) = +1}

�

≥ E

�

∏

x∈A

1{σ+(x ) = +1}

�

−E

�

∏

x∈A

1{σ−(x ) = +1}

�

.

(3.4)

2. the function s 7→
∏

x∈A 1{s (x ) = +1} is also increasing in s . Therefore the right-most side of
3.4 is bounded below by 0.

3. By assumption of P+[s (0) = +1] = 1/2, we incidentally also have that P−[s (0) = +1] = 1/2,
and by the translation invariance we proved earlier, we indeed have that the left-most side
of 3.4 is equal to zero. Therefore we deduce that

E

�

∏

x∈A

1{σ+(x ) = +1}

�

= E

�

∏

x∈A

1{σ−(x ) = +1}

�

Which means that

P+ [{s (x ) = +1 : x ∈ A}] =P− [{s (x ) = +1 : x ∈ A}] ,

as required.

♥

3.4.2 Infinite Ising measures

Definition 3.15 (Ising model with boundary conditions) Let ξ : ∂Λn → {−1, 1}. We define the
Ising model on Λn with boundary conditions ξ and parameter β to be the Ising measure on Λn ,
conditioned on being equal to ξ on ∂Λn . Formally, we denote

Pξn [s ] =Pn [s | {(x ) = ξ(x ) for all x ∈ ∂Λn}]

Definition 3.16 (Infinite Ising measure) We say that the law of a collection (σ(x ) : x ∈ Zd )

of random variables is an Infinite Ising Measure, if for any n , the conditional distribution of
(σ(x ) : x ∈ Λn ) given (σ(x ) : x ∈ Λc

n−1) is Pξn , where ξ = σ on ∂Λn . That is to say, for any
measurable A ⊆ {−1, 1}Λn :

P[(σ(x ) : x ∈Λn ) ∈ A |σ(x ) : x ∈Λc
n−1] =Pσ|∂Λn

n [A].
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Remark 3.17 The definition of an Infinite Ising measure is simply introducing this sort of Spatial
Markov Property: the conditional distribution of the spin configurations inside a box Λn given what
happens on the entire outside, is the same as if we had an Ising measure on Λn with the given
boundary conditions. In other words, given the value of the boundary, the outside of the box has
no impact on the interactions inside of the box. Intuitively it makes sense that this property should
hold in our usual infinite volume Ising measures P+ and P−, since the interactions they see are
local, i.e: only are affected one neighbour away, thus we see that if we condition on the boundary,
then the outside will not interact with the inside. In fact this is exactly the method of proof of the
following proposition:

Proposition 3.18 The measure P+ (and P−) are infinite Ising measures.

Proof. For a finite set S ⊆ Zd , let us denote by FS the sigma algebra generated by all the spins
in S . Let σ be a random variable distributed according to P+, let n be given, and let f be a Fn

measurable function. We wish to show that

E
�

f ((σ|Λn ) | FΛc
n−1

�

= Eσ|∂Λn
Λn−1

[ f ],

where σ|Λn denotes σ restricted to Λn . Hence we need to show that for any set E ∈FΛc
n−1

, one
has

E
�

f (σ|Λn )1E

�

= E
�

Eσ|∂Λn
n−1 [ f ]1E

�

.

By a π-system argument, it suffices to show the claim for any set E ∈FΛN \Λn−1
, where N is some

given integer. They key here is that the Hamiltonian of the Ising model separates nicely, indeed:

PN [s ] :=
1

ZN
exp

�

−β
¦

HΛN \Λn−1
(s ) +H s |∂Λn

Λn−1
(s )
©�

.

Therefore we can now start computing (for notational convenience, sometimes we’ll write s ∈Λk to
indicate that s is a configuration of spins for Λk , so that in reality we should be writing s ∈ {−1, 1}Λk :

E
�

f (σ)1E

�

=
1

ZN

∑

s∈ΛN

f (s |Λn )exp
�

−β
¦

HΛN \Λn−1
(s ) +H s |∂Λn

Λn−1
(s )
©�

1E (s )

=
1

ZN

∑

s∈ΛN \Λn−1

exp
�

−βHΛN \Λn−1
(s )
�

1E (s )

�

∑

w∈Λn−1

f (w )exp
�

−βH s |∂Λn
Λn−1

(w )
�

�

=
1

ZN

∑

s∈ΛN \Λn−1

exp
�

−βHΛN \Λn−1
(s )
�

1E (s )E
s |∂Λn
Λn−1
[ f ]

�

∑

w∈Λn−1

exp
�

−βH s |∂Λn
Λn−1

(w )
�

�

= E
�

Eσ|∂Λn
n−1 [ f ]1E

�

.
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On the penultimate line, on the right-most side we have the sum over w ∈Λn−1 corresponding to
the partition function from Eσ|∂Λn

n−1 [ f ]. ♥

We have one last proposition:

Proposition 3.19 P+ =P− if and only if there exists a unique Ising measure.

Proof. The key is that if we let P be an infinite Ising measure, then for any cylindrical event
A ∈FΛn

, we have that
P−[A]≤P[A]≤P+[A],

this is because P[A] = E[Pσ|∂Λn
n [A]], and by the monotone coupling argument, P−n [A] ≤ Pσ|∂Λn

n [A] ≤
P+n [A]. ♥



70 CHAPTER 3. THE ISING MODEL



Chapter 4

The Discrete Gaussian Free Field

4.1 Introduction

The Discrete Gaussian Free Field (DGFF) is a model that can be thought of as a "generalisation" of
the Ising model, to the case where each vertex of the graph, instead of adopting either a zero or a
one, adopts a real number, which can be interpreted as a "height". Just as the Ising Model favoured
configurations in which the opinions of neighbouring vertices didn’t differ by much, the DGFF will favour
configurations in which the heights of adjacent vertices don’t differ by much. A nice interpretation
of this is that each vertex is connected to its neighbours by a spring with quadratic energy, and the
boundary of the graph is held in place at height zero. Let us introduce some notation:

• Let d ≥ 1, for a subset D ⊆ Zd , we define ∂D , to be ∂D = {x ∈ Zd : dist(x , D ) = 1}.

• We will denote F(D ) to be the set of functions from Zd to R that are equal to zero outside of D .

• We define E(D ) to be the set of edges with at least one endpoint in D .

• For an edge e ∈ E(D ), and a function F ∈ F(D ), we define |∇F (e )|= |F (x )− F (y )|, where x , y are
the endpoints of e .

• Finally, we define for a function F ∈ E(D ), its Dirichlet Energy

ED (F ) =
∑

e∈E(D )

|∇F (e )|2

Naturally the Dirichlet Energy measures the total "heigh disagreement" of our vertices. We may now
define the DGFF via its density function.

71



72 CHAPTER 4. THE DISCRETE GAUSSIAN FREE FIELD

Definition 4.1 (The Discrete Gaussian Free Field ) The DGFF in D with zero boundary conditions
on ∂D is a random vector (Γx )x∈D whose density function on RD at (γx )x∈D with respect to the
Lebesgue measure is given by a constant multiple of

exp
�

−
1

2
×
ED (γ)

2d

�

with the convention that γx = 0 for all x ∈ ∂D .

Remark 4.2 (Gaussian vector) Note that we can think of the energy ED (γ) as actually ED (γ,γ)

where
ED (F,G ) =

∑

e∈E(D )

(F (x )− F (y ))(G (x )−G (y ))

so that ED is actually a symmetric bilinear form on RD ×RD . Moreover, it is positive definite
because if ED (γ) = 0, then |∇γ(e )|= 0 for all edges e , and since we have that on the boundary the
value of γ is zero, it must be that γ is zero everywhere. Therefore we have that the density of our
random vector is proportional to exp

�

− 1
2 × (symmetric bilinear form)

�

it follows that the random
vector has the density function of a centered Gaussian random vector. (This is because we can
express a symmetric bilinear, and positive definite form H on RD ×RD as H (x ) = x T Ax for some
symmetric positive definite matrix, now we can directly compare with the Gaussian vector density,
in fact this A will be the inverse of our covariance matrix σ). Recall moreover, that the law of a
centered Gaussian random vector is uniquely determined by its covariance matrix σ. As we will
see soon, the covariance matrix has a nice interpretation.

Remark 4.3 (No phase transition) We could introduce a parameter β much like we did for the
Ising model, so that our density now looks like some

exp
�

−
1

2
×
βED (γ)

2d

�

heuristically, this parameter would control the "stiffness" of the springs, but if we inspect this
expression, we could just introduce this β as a

p

β into the energy, and so the law of this new

Gaussian Free Field (Γ βx )x∈D is nothing but the law of
�

1p
β
Γx

�

x∈D
, where Γx is the original field, so

all that the introduction of this parameter does, is rescale the field. From this we see that there
will be no qualitative phase transition.
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4.2 Green’s Function and ∆D

Let us begin this section by giving some notation

• For a function f : Zd →R, we define f̄ (x ) to be the average of the neighbours of x , i.e:

f̄ (x ) =
1

2d

∑

y :y∼x

f (y )

• We also define the discrete Laplacian ∆ f (x ) to be the difference between the average of the
neighbours and f (this definition makes sense when compared to the usual definition of Laplacian
because ∆ f = 0 means that the value of the function is equal to the average of its neighbours),
i.e.

∆ f (x ) = f̄ (x )− f (x )

• For our domain D , we may define ∆D f to be the function equal to ∆ f (x ) for all x ∈D and zero
otherwise.

Remark 4.4 (Inverse of ∆D ) Notice the following ∆D can be seen as a linear operator F(D )→ F(D ),
and it is easy to check that it is injective: let x0 ∈ D be such that |F (x0)| = maxx∈D |F (x )|. If
∆D F = 0, then F̄ (x0) = F (x0), which means that for all neighbours y of x0, the value of F (y )

is equal to the value of x0. Repeating this argument we can find a sequence of neighbours
x0, x1, x2, · · · , y that lead to some point y on the boundary of D , and F (x0) = F (x1) = · · ·= F (y ) = 0.
Therefore the function F is identically zero. From this it follows that actually ∆D is invertible.

It turns out that this inverse has a name:

Definition 4.5 (Green’s Function) Let X be a simple random walk on Zd , with law denoted by
Px when it is started at x . Let τD := inf{t > 0 : X t /∈ D }, i.e: the first exit time. Then Green’s
function GD (x , y ) is a function D ×D → R defined by the expected number of visits to y by the
random walk before leaving D when started from x , i.e:

GD (x , y ) = Ex

�

τD−1
∑

k=0

1{Xk = y }

�

.
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Proposition 4.6 (Green’s function and ∆D ) Green’s function GD is the inverse of −∆D .

Proof. If we label D = {x1, · · · , xn}, then we can treat GD ,∆D and σ as n×n matrices. In particular,
note that ∆D in matrix form has the following description: (∆D )i i =−1 and for i ̸= j , (∆D )i j =

1
2d

if xi is a neighbouring vertex of x j and zero otherwise. From this, it is immediate that the matrix
I +∆D is the transition matrix of a simple random walk on Zd but restricted to D . Let us refer
with PD to this matrix. Then, since this random walk occurs restricted to D , we have that for all
k ,

Px [Xk = y , k <τD ] = (PD )
k (x , y )

Now we can note that Green’s function can be rewritten as

GD (x , y ) =
∑

k≥0

Px [Xk = y , k <τD ]

and so we have that
GD (x , y ) =

∑

k≥0

(PD )
k (x , y )

From this, it is clear that GD (I −PD ) = I and hence the claim is proven. ♥

4.3 The resampling procedure and its consequences

In previous models, we discussed a natural dynamics that gave rise to an invariant distribution which
was the model itself. In the case of the Gaussian Free Field, the same techniques will not work since the
relevant dynamics would be on uncountable state space, but nonetheless we can discuss some natural
resampling dynamics (which can be proven to converge to the Gaussian Free Field) and explore some
of its consequences. Let us begin by stating the following fact:

Proposition 4.7 For any x ∈D , one has that Γ (x )−Γ̄ (x )∼N (0, 1) and is independent of {Γ (y )}y ̸=x .

Proof. We begin by exploring the conditional distribution of Γ (x ) given the state of all other
vertices. I.e: what’s the conditional density of Γ (x ) given {Γ (y )}y ̸=x = {h (y )}y ̸=x ? Well we know
by elementary conditional probability that if f is the density of a random vector (X1, · · · , Xn ), then
the conditional density of say X1 given (X2, · · · , Xn ) = (y2, · · · , yn ) is precisely

f (x1, y2, · · · , yn )
∫

f (x1, y2, · · · , yn )dx1

in our case, thanks to the fact that the density function f comes as a product of exponentials,
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this expression heavily simplifies to saying that the conditional density of Γ (x ) conditioned on
{Γ (y )}y ̸=x = {h (y )}y ̸=x is

1

c
exp

�

−
1

2
×

1

2d

∑

y :y∼x

|γ(x )−h (y )|2|

�

dγ

where c is a normalising constant, and we wrote the dγ to emphasise that γ is the value to be
taken by Γ (x ) and the density is with respect to Lebesgue measure. Now if one expands the bracket
one sees that it is actually equal to

1

c ′
exp

�

−
1

2
(γ(x )− h̄ (x ))2

�

dγ

Indeed:

1

c
exp

�

−
1

2

1

2d

∑

y∼x

(γ(x )−h (y ))2
�

=
1

c
exp

�

−
1

2

�

γ(x )2−2γ(x )h̄ (x ) + something2�
�

=
1

c
exp

�

−
1

2

�

γ(x )2−2γ(x )h̄ (x ) + h̄ (x )2+ (−h̄ (x )2+ something2)
�

�

=
1

c ′
exp

�

−
1

2
(γ(x )−h (x ))2

�

which means that the conditional distribution of Γ (x ) is that of a N (h̄ (x ), 1) random variable.
From this we immediately have that Γ (x )− h̄ (x ) is independent of the remaining values and has a
N (0, 1) distribution and so Γ (x )− Γ̄ (x ) is independent of {Γ (y )}y ̸=x and moreover, its distribution
is that of a N (0, 1). ♥

Remark 4.8 (Resampling dynamics) We can make the following heuristic note on a resampling
mechanism whose law tends to that of the Gaussian Free Field. Given a function h ∈ Rd , choose
one of the coordinates x at random, and resample the value at x by setting it equal to h̄ (x ) +N

where N is an iid realisation of a standard Gaussian. It can be proven, although we will not show
it here, that these dynamics converge to the DGFF law.

A more important consequence of the proposition above, is that it can be used to show that the
covariance matrix of the DGFF is actually Green’s function. This is quite a strong result, because
since the law of a centered Gaussian random vector is fully determined by its covariance, this is saying
that there is a direct relationship between the Gaussian Free Field on a graph G and a simple random
walk on G .



76 CHAPTER 4. THE DISCRETE GAUSSIAN FREE FIELD

Proposition 4.9 (Covariance matrix of DGFF) The covariance matrix σ =σ(x , y ) of the DGFF
is equal to Green’s Function.

Proof. By definition, the covariance matrix has the form σ(x , y ) = E[Γ (x )Γ (y )]. We can momen-
tarily treat this as a function, for a fixed x , y 7→σx (y ) = E[Γ (x )Γ (y )], which is a function in F(D ).
Now we can make the following computation:

• If y ̸= x , then

σx (y ) = E[Γ (x )Γ (y )]

= E[Γ (x )Γ̄ (y )]+E[Γ (x )(Γ (y )− Γ̄ (y ))]
(!)
= E[Γ (x )Γ̄ (y )]

=
1

2d

∑

z :z∼y

E[Γ (x )Γ (z )] = σ̄x (y )

Where in step (!) we used Proposition 4.7 to split the second expectation as a product and
moreover used the fact that Γ (y )− Γ̄ (y ) is a centered Gaussian independent of Γ (x ). This
shows that whenever x ̸= y , (∆σ)(x , y ) = 0.

• Otherwise:

σx (x ) = E[Γ (x )Γ (x )]

= E[Γ (x )Γ̄ (x )]+E[Γ (x )(Γ (x )− Γ̄ (x ))]

= E[Γ (x )Γ̄ (x )]+E[(Γ (x )− Γ̄ (x ))2] +E[(Γ (x )− Γ̄ (x ))Γ̄ (x )]
(!)
= E[Γ (x )Γ̄ (x )]+1+0

=
1

2d

∑

y :y∼x

E[Γ (x )Γ (y )] = σ̄x (x ) +1

Where step (!) comes from the fact that since Γ̄ (x ) is really just a sum of Γ (y ) for vertices y

different to x , we can still use the fact that Γ (x )− Γ̄ (x ) is independent of all other Γ (y )’s, and
so we can split the expectation as before. This shows us that (∆σ)(x , x ) = −1, this means
that (−∆D )−1 =σ, but by Proposition 4.6, it now follows that σ=GD .

♥

Thus we can phrase this discovery as the following equivalent characterisation of the Gaussian Free
Field
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Corollary 4.10 The DGFF in D with zero boundary conditions on ∂D is the centered Gaussian
random vector (Γ (x ))x∈D with covariance matrix GD on D ×D .

Remark 4.11 Not only does this provide a very interesting point of view on what the Discrete
Gaussian Free Field is doing, but it allows one to extend the definition to infinite (proper) subsets
D of Zd as long as d ≥ 3, because by transience, the walk will eventually exit D .

4.4 The Spatial Markov Property

When we talked about percolation, a tool we often used was the fact that if we revealed the state of
some sites, the distribution of what remained was independent Bernoulli percolation. This property is
some sort of Markov property but in the spatial sense, much like how in a random walk, if we condition
on the value of the walk at a given time, the distribution of what’s to come is simply a shifted random
walk. Can we find some analogue of this property for the Discrete Gaussian Free Field? Before doing
anything else, we note that we can extend the definition of the Gaussian Free Field to any setting of
boundary conditions

Definition 4.12 (Discrete Gaussian Free Field, non-zero boundary conditions) The Discrete Gaus-
sian Free Field on a domain D with boundary conditions f , where f : ∂D →R is a function, is the
random vector {Γ (x )}x∈D with density function proportional to

exp
�

−
1

2
×

1

2d
E (γ)

�

dγ

with the convention that γ= f on ∂D .

Remark 4.13 We have some remarks about this definition:

• First of all, we note that the values of f are indeed used in calculating the above density,
as they are used when computing the term |∇γ(e )| when e is an edge in D̄ that contains an
endpoint in ∂D .

• Secondly, we note that this will still be a Gaussian random vector, just that it may not be a
centered one.

• If f = c identically for some constant c , then since translating does not affect the covariance
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structure, {Γ (x )− c }x is still a Discrete Gaussian Free Field, but now with zero boundary
conditions.

We now have our first version of the Markov Property

Proposition 4.14 (Spatial Markov Property V1) Let O ⊆D be a subset of our domain. Let Γ be
a DGFF on D . Then conditional on the event that Γ (x ) = f (x ) for all x /∈ O , the distribution of
{Γ (x )}x∈O is that of a Gaussian Free Field with boundary conditions f .

Proof. We once again recall that the density of the DGFF is given by

ρ(γ) =
1

c

∏

e∈ED̄

exp
§

−
1

4d
|∇γ(e )|

ª

it is precisely this multiplicative form that will give us the behaviour we want. Suppose that
we enumerate D = {x1, · · · , xk , xk+1, · · · , xn} and without loss of generality, we can enumerate our
domain O the points xk+1 onwards. If we condition on Γ (x ) = f (x ) for x = x1, · · · , xk , we can easily
see that the conditional density will be

ρ|O c (γ)∝

∏

e∈ED̄
exp

�

− 1
4d |∇γ(e )|

	

∫ ∏

e∈ED̄
exp

�

− 1
4d |∇γ(e )|

	

dxk+1 · · ·dxn

Where it is understood that γ(x ) = f (x ) for all x ∈O . The multiplicative structure of the integral
downstairs makes it so that whenever an edge e has both endpoints that are outside O , i.e:
none of xk+1, · · · , xn , we can take the corresponding exponential out and it will cancel with the
corresponding exponential in the numerator, which means that the only edges in the numerator
will be those whose both endpoints are in O or one of the endpoints is in ∂O . From this, it follows
directly, that this density is simply that of a DGFF in O , with boundary conditions f . ♥

This is already a step in the right direction to a Spatial Markov Property, but ideally, we would like
that the resulting conditional distribution was not that of a DGFF with altered boundary conditions,
but rather simply that of a "standard" DGFF. Of course morally this cannot be true, but it turns out
that we can achieve a close result: as we have just shown, after we reveal (or condition on) the state
of the (standard = zero boundary conditions) Gaussian Free Field on some subset O c , we are left with
a DGFF on O that has boundary conditions f , on ∂O given by the values that we conditioned our
original field to take on ∂O . As we will now see, we may decompose this field we have just obtained
as a sum of the Harmonic extension to O of f , plus a standard Gaussian Free Field.

Theorem 4.15 (The Spatial Markov Property) If {Γ (x )}x∈D is a DGFF in a domain D with
boundary conditions f , then letting F be the Harmonic extension of f to D , we have that
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{Γ (x )− F (x )}x∈D is a standard DGFF.

Proof. We will first prove some sort of "opposite fact": if Γ has Dirichlet (zero) boundary condi-
tions, and F is the Harmonic extension of f to D , then Γ +F is a DGFF with boundary conditions
equal to f . For reasons that will become clear in a moment, let us define the following inner
product on functions Zd →R with finite support:

〈F1, F2〉=
1

2
×

1

2d

∑

x∈Zd

∑

y :y∼x

�

F1(y )− F1(x )
� �

F2(y )− F2(x )
�

Then the first thing to notice is that we can think of Γ having a density on RD̄ (including the
boundary) of

ρΓ (γ) =
1

c
exp

�

−



γ,γ
��

1{γ= 0 on ∂D }

(The reason why I’m including this last indicator term is to really emphasize that I am now thinking
of the density as a density on configurations including potentially different values than f on ∂D ,
so to fix this, instead of asking a priori that this density is valid for γ that have value f on the
boundary, I can allow this density on all γ and then just include an indicator function, this will
make our life easier later). Now suppose that I introduce eΓ = Γ +F . Now we set off to investigate
the density function of eΓ :Recall that if a random variable X has density f (x ), then the random
variable X + c has density f (x − c )

ρ
eΓ (γ) =

1

c ′
exp

�

−



γ− F,γ− F
��

1{γ− F = 0 on ∂D }. (4.1)

Let us now investigate what we have obtained in this inner product. A key step is to realise that
we may rewrite the inner product, using symmetry, as follows:

〈F1, F2〉 :=
1

4d

∑

x∈Zd

∑

y :y∼x

�

F1(y )− F1(x )
� �

F2(y )− F2(x )
�

=
1

4d

∑

x∈Zd

∑

y :y∼x

−F1(y )
�

F2(x )− F2(y )
�

− F1(x )
�

F2(y )− F2(x )
�

=
1

2d

∑

x∈Zd

∑

y :y∼x

−F1(x )
�

F2(y )− F2(x )
�

=
∑

x∈Zd

F1(x )∆F2(x ).

(Here these sums I’m writing as over Zd but in reality we are only summing over D̄ ) In particular,
since we are working with Γ having Dirichlet Boundary conditions, we have that γ = 0 on ∂D ,
and since F is Harmonic on D , we have that for any x , regardless if x belongs to D or ∂D ,
γ(x )∆F (x ) = 0, which means that




γ, F
�

= 0. Now we can use bilinearity of the inner product on
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Equation 4.1 and see that in fact

ρ
eΓ (γ) =

1

c ′′
exp

�

−



γ,γ
��

1{γ= F on ∂D }.

From which we immediately read that eΓ is a DGFF with boundary conditions F (and in particular
f , as F is its extension). The Theorem follows now by a change of variable. ♥

In summary, we can reach the final observation now: Suppose Γ is a DGFF with Dirichlet boundary
conditions on a domain D . Suppose that we condition on {Γ (x ) = f (x ) : x ∈ O c } for some subset
O ⊆D , then the conditional distribution of the remaining part is simply that of {Γ ′(x )+F (x )}x∈O where
Γ ′ is an independent DGFF on O with Dirichlet boundary conditions, and F is the Harmonic extension
of f to O .

Figure 4.1: My best attempt at depicting the Spatial Markov Property

4.5 Brief comments: partition function and discovery pro-

cedure

Throughout this discussion of the Discrete Gaussian Free Field, we have been somewhat ignoring the
normalising constant that makes the density exp

�

− 1
4d E (γ)

�

a density, if we are working in the Dirichlet
boundary conditions case, it is easy to see that the normalising constant (the partition function in
physics) is nothing but the density of the point γ = (0, · · · , 0). We will now describe an exploratory
procedure of the Gaussian Free Field, that relies on the Spatial Markov Property discussed earlier,
and will eventually give us a combinatorial result that will become of relevance in the later chapter of
Uniform Spanning Trees.

Proposition 4.16 (Partition Function) The partition function of the Gaussian Free Field, i.e: the
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density evaluated at zero, is equal to

1

(2π)n/2

n
∏

k=1

G{xk ,··· ,xn }(xk , xk )
−1/2

in particular, the product is independent of the labelling of D .

Proof. In order for us to evaluate the density of the GFF at zero, we are going to need to study
the quantity

P

� n
⋂

i=1

{Γ (xi ) ∈ [0,ε]}
�

as ε→ 0. To do this we simply note that the above quantity can be expressed as

n
∏

i=1

P[Γ (xi ) ∈ [0,ε] | {Γ (x1) ∈ [0,ε]}∩ · · · ∩ {Γ (xi−1) ∈ [0,ε]}]

and to compute this quantity, we will proceed by induction, exploring each vertex one by one.
Firstly, since we know that {Γ (x )}x∈D is a Gaussian vector with covariance matrix equal to Green’s

function, we have that Γ (x1)∼N (0,GD (x1, x1)). So indeed P[Γ (x1) ∈ [0,ε]] =P
�

N (0, 1) ∈
�

0, εp
GD (x1,x1)

��

.

Next one considers the quantity

P
�

Γ (x2) ∈ [0,ε]
�

�Γ (x1) = γ1 ∈ [0,ε]
�

We know from our discussion of the Spatial Markov Property, conditioned on the event above,
Γ (x2) =Hγ1

(x2) +N2 where N2 ∼N (0,G{x2,··· ,xn }(x2, x2)). This is once again, because conditional on
the value of the field on some subset of points (in this case, the subset of points would be x1,
and we condition the field to take the value γ1 there), the field on the remaining part has the
distribution of a Dirichlet Gaussian free field plus the Harmonic Extension of the function that
takes the value γ1 on x1 and zero on the boundary. Thus in effect,

P
�

Γ (x2) ∈ [0,ε]
�

�Γ (x1) = γ1 ∈ [0,ε]
�

=P
�

N2 ∈
�

−Hγ1
,−Hγ1

+ε
��

.

The key to estimate this, is to note that Hγ1
being a harmonic extension of a function that takes

the values γ1 and zero on some boundary points, must not be any greater than ε (since γ1 ≤ ε),
so that [−Hγ1

,−Hγ1
+ε] ⊆ [−ε,ε] (imagine a sliding window of width ε within the larger frame of

[−ε,ε]). From this it is clear (say by looking at the shape of the bell curve) that

P [N2 ∈ [0,ε]]≤P
�

Γ (x2) ∈ [0,ε]
�

�Γ (x1) = γ1 ∈ [0,ε]
�

≤P [N2 ∈ [−ε/2,ε/2]]

The upper bound can be in turn upper bounded by ε× 1p
2πG{x2,··· ,xn }(x2,x2)

, where the ε comes from
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the width of the window, and the second terms comes from the highest value of the curve, namely

the value at zero. The lower bounded can be lower bounded by ε×
exp

�

− 1
2

ε2

G{x2,··· ,xn }(x2,x2)

�

p
2πG{x2,··· ,xn }(x2,x2)

, as this

is once again, the width of the window multiplied by the smallest value of the density on that
window. The key is to realise that since the numerator of this lower bound in fact goes to one as
ε→ 0, we have that

P
�

Γ (x2) ∈ [0,ε]
�

�Γ (x1) = γ1 ∈ [0,ε]
� ε→0∼

ε
Æ

2πG{x2,··· ,xn }(x2, x2)

A similar argument on the computation of P[Γ (x1) ∈ [0,ε]] and induction gives that

P

� n
⋂

i=1

{Γ (xi ) ∈ [0,ε]}
�

ε→0∼ εn
n
∏

i=1

1
Æ

2πG{xi ,··· ,xn }(xi , xi )

This means that the density at zero is in fact the product on the right hand side. Since the density
of the Gaussian Free Field is of course independent of the way we label the domain D , it follows
that the product is independent of the ordering of the xi ’s. ♥



Chapter 5

Uniform Spanning Trees

In this short chapter, we will touch on the topic of spanning trees, and show how one can sample
uniformly among the set of spanning trees. This model is of a very different nature to those we have
explored until now, but has many connections with other models.

Definition 5.1 (Spanning Tree ) Let G = (V , E ) be a connected graph. A spanning tree T is a
subgraph of G , that is spanning (meaning its vertex set is the entirety of V ), and is a tree (meaning
it has no cycles)

We will focus on the case where G is a subset of Zd . For convenience, we will once again work with
the graph obtained by identifying the boundary ∂G with one single boundary point ∂. We will often
refer to this point as the root. We will now describe an algorithm that produces a randomly chosen
spanning tree T . The main result of this section will be that the law of T is actually uniform on the
set of all spanning trees and in doing so, we will showcase a connection with the DGFF.

5.1 Wilson’s Algorithm

We now describe Wilson’s Algorithm. For this, we need to introduce the concept of a loop erasure of
a path:

Definition 5.2 (Loop erasure ) Let Z = (x0, · · · , xm ) be a path in Zd , i.e: Z ∈ (Zd )m+1, such that
dist(xi , xi+1) = 1. We define the loop-erasure L of Z to be the path

L (Z ) = (L0, L1, · · · , Lσ)

where the points L i are define inductively as follows: L0 = x0, and then ri =max{r ≤m : xr = L i−1},
and L i = xri+1 and σ=min{i : L i = xm}.

83
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Figure 5.1: A loop erased path

Remark 5.3 (In plain English please) In plain English L i is nothing but the point of the path Z

that comes immediately after the time that the point L i−1 was visited for the very last time. There
are many ways to perform loop erasure, but the one we have described above is the chronological
loop erasure: you follow the path and whenever you encounter that you have finished making a
loop, you erase the loop and keep moving.

We can now present the Algorithm.

1. Choose an ordering {a1, · · · , am} of your graph G .

2. Define x1 = a1.

3. Start a simple random walk on G at x1, and run it until it hits ∂. This gives a path Z =

{x1, x2, · · · , xk ,∂}, perform loop erasure on Z , and call the resulting self avoiding walk S1.

4. Now look at a2. If a2 ∈ S1, then just set S2 = S1, then move on to a3, otherwise, run a simple
random walk on G started at a2, and stop it until it hits S1. Performing loop erasure on this new
path gives a self-avoiding path S2.

5. Generally, look at an , if an ∈
⋃n−1

i=1 Si , then move on to an+1, otherwise run a simple random walk
started at an until it hits

⋃n−1
i=1 Si . Perform loop erasure on the obtained path to get the self

avoiding path Sn .

(I’ve been a bit careless here defining the indices that label each Si , because the way I’ve written it
I have made it so that there are S1, · · · ,Sm . In reality, many of these will be the same set, so we will
effectively have less, and we should use some more careful labelling to avoid this silly over counting,
in the next proof, I will assume that I did the labelling properly, so that if out of S1, · · · ,Sm there are
only j unique sets, then have the labels S1, · · · ,Sj )

Remark 5.4 It is clear that once the algorithm has run through all a1, · · · , am , we obtain a subgraph
⋃m

i=1 Sm that is spanning, (indeed, ai ∈ Si ), and is a tree. This is because of the loop erasure,
which ensures there are no cycles, as well as the fact that we stop upon hitting the previous known
structure.



5.1. WILSON’S ALGORITHM 85

a1 = x1

∂

s1

x2

x3

xk

xk+1 = ai2

xk+2

xk+l

xk+l+1

xk+l+2

Figure 5.2: An illustration of the proof

Theorem 5.5 (Law of Wilson’s Algorithm) Let T be the random tree obtained by performing
Wilson’s Algorithm on a graph G . Then L (T ) is uniform among the set of all spanning trees on
G .

Proof. For clarity, let (Ω,F , P) be the probability space on which the random walks used in Wilson’s
Algorithm are defined. Let moreover t be a spanning tree for G . We are going to compute P[T = t ].

For this, assume that t is labelled as t = {a1, a2, · · · , am}. Then we will start by doing as follows:
let labelling x1 = a1, we define s1 = {x1, x2, · · · , xk} to be the branch of the tree t that connects a1

to ∂. We then look amongst the list t = {a1, a2 · · · , am} and look for the next element in this list
that is not in s1. We may call for illustration purposes in order to match the figure ai2

. Then once
again, we look at the set of points {xk+1, xk+2, · · · , xk+l } that define the branch s2, that connects
ai2

to s1. We now repeat this until we have found the branches s1, s2, · · · , s j . The key of doing this
is that we have found exactly the self avoiding paths that Wilson’s Algorithm should produce at
each step in order for T to equal t . It is thus, that we see

P [T = t ] =P

�

j
⋂

i=1

{Si = si }

�

=
j
∏

i=1

P

�

Si = si

�

�

�

�

i−1
⋂

l=1

Sl = sl

�

.

Let us compute say P[S1 = s1]. This corresponds to the probability that the random walk started
at a1 produces a walk whose loop erasure gives s1 = {x1, · · · , xk}. This can be calculated as follows.
First the random walk, let’s call it X (1) starts at a1, it might then decide to do a few loops without
exiting the graph (i.e: without hitting ∂) before jumping, with probability 1/deg(a1) (since we
assume that this is Zd we can just replace this by 1/2d ) on to x2. Once at x2, the walk might
decide to make a few loops at x2, but without hitting either ∂ or x1, as we have assumed that
X (1) did already all the loops at x1. And so on. Since the walk is a simple random walk we can
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multiply all the probabilities and see that

P[S1 = s1] =

�

∑

n≥0

P n (x1, x1)

�

×
1

2d
× · · ·

=GD (x1, x1)×
1

2d
×GD \{x1}(x2, x2)×

1

2d
· · ·

=
1

(2d )k

k
∏

i=1

GD \{x1,··· ,xi−1}(xi , xi )

Then we can ask, what about the probability that S2 = s2 given that S1 = s1? Well its going to be
essentially the same calculation, except that when we allow the walk to make loops, we will have
to enforce that not only do they not exit D or hit the previously visited points, but we also have
to constrain the walk to not hit s1. From this we get that (using the Figure)

P [S2 = s2|S1 = s1] =GD \{x1,··· ,xk }(xk+1, xk+1)×
1

2d
× · · ·

combining all this inductively, we get that (recall that t = {a1, · · · , am}):

P [T = t ] =
1

(2d )m

m
∏

j=1

GD \{x1,··· ,x j−1}(x j , x j )

Now, as we saw in the discussion of the density of the Gaussian Free Field at zero, we have that
this product is independent of the ordering of the xi ’s, from which we get that this is a number
π, and so

P[T = t ] =
π

(2d )m

and so the Law is uniform. ♥



Chapter 6

A glimpse into the continuum

6.1 A conformal Haar measure on self-avoiding planar loops

In this section, we will briefly discuss in an informal manner how "conformal invariance" can be used
to characterise the law of random curves, using the example of self-avoiding loops. This is the starting
ingredient to a longer story, which we will not explain here, that allows one to connect the shape of
the boundary of the clusters in critical percolation in the scaling limit to properties of planar Brownian
motion. Let us denote L for the set of self-avoiding loops that surround the origin in the (complex)
plane. Since loops are nothing but compact sets, we can endow L with the Hausdorff topology, where
for two loops K and K ′, we had

d (K , K ′) =max
§

max
x∈K

d (x , K ′), max
y ∈K ′

d (y , K )
ª

and then turn this into a measurable space by considering the Borel sigma algebra generated by the
open sets with respect to this topology. Now we can start talking about measures on L. The goal of
this section will be to discuss how imposing that the measure satisfies a simple "conformal invariance"
property leads to the fact that there is exactly one such measure. Let us indicate what this property
is:

Definition 6.1 (Conformal restriction ) A measure ν on L satisfies conformal restriction if for
any two conformally equivalent domains D and D ′ that contain the origin of the plain, and any
conformal map Φ : D →D ′ with Φ(0) = 0, we have that

Φ∗
�

ν
�

�

L(D )

�

= ν
�

�

L(D ′)

(where f∗µ=µ ◦ f −1)

87
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Figure 6.1: An illustration of the pushforward business

Remark 6.2 (Scale-invariance) Since we can in particular pick our domain D ′ to be a "blowup" of
D , the conformal restriction property implies that ν is in fact scale-invariant, and so if our measure
is non-trivial, meaning that there exists some 0 < δ <∆ such that ν{γ : diam(γ) ∈ (δ,∆)} = c > 0,
then we can simply apply scale invariance, and see that for any k ∈N, ν{γ : diam(γ) ∈ (kδ, k∆)}= c ,
and so if we pick a sequence {rk} of stretching factors such that the annuli of inner radius rkδ and
outer radius rk∆ are all disjoint, then we have found an infinite sequence of disjoint Borel sets, all
with positive mass. Therefore ν must be of infinite mass.

As mentioned before, the goal of this section will be to outline the proof of the following Theorem:

Theorem 6.3 (Lawler, Werner) Up to multiplication by a positive constant, there exists a unique
non-trivial measure ν on L that satisfies conformal restriction.

Remark 6.4 (Heuristics of proof) The steps of the proof are the following:

1. Show that if a non-trivial measure ν on L satisfies conformal restriction, then there exists
c > 0 such that for any bounded simply connected D ′ ⊆ D on the plane that contain the
origin, that are conformally equivalent via Φ, where Φ(0) = 0 and Φ′(0) ∈R+, then

ν{γ : γ⊆D ,γ ̸⊆D ′}= c logΦ′(0) (6.1)

2. One then shows that for each c > 0, there is at most one non-trivial measure on self-avoiding
loops surrounding the origin that satisfies 6.1. This step is of a similar flavour as the "π-
system uniqueness Lemma".

3. Finally, one shows that there is a way to construct a measure that satisfies conformal restric-
tion by considering the outer boundaries of Brownian loops on the plain restricted to return
to zero.
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Step 1

Sketch of proof of step 1. Let ν be a non-trivial measure on L that satisfies conformal restriction,
to show that 6.1 holds, we first need to show an additivity result. First of all, by the conformal
restriction property, we can just consider the case where D =U (U is defined to be the unit disk
U= {z ∈C : |z | ≤ 1}), and D ′ is just some subset of U. In addition, for a subset U ⊆U, we define
ΦU : U → U to be the conformal map with ΦU (0) = 0, Φ′U (0) > 0, and as U ⊆ U, we have that
Φ′U (0)≥ 1. Finally we define

A(ΦU ) = ν
�

γ : γ⊆U,γ ̸⊆U
	

The first claim is that
A(ΦV ◦ΦU ) = A(ΦV ) +A(ΦU ) (6.2)

To make sense of this expression, one quickly notes that ΦV ◦ΦU = Φ(ΦV ◦ΦU )−1(U), indeed, one can
see this from the following diagram

If we start on the right hand side with U, we can go backwards one step to V by applying Φ−1
V ,

and then we can go one step further and apply Φ−1
U to v and we obtain the red region on the left

hand side. By reading this in the forward direction now, we see that indeed, the conformal map
that sends Φ−1

U

�

Φ−1
V (U)

�

is the composition of ΦV with ΦU . Therefore we can make sense of the
left-hand side of equation 6.2. In fact 6.2 follows quite easily now from the diagram and conformal
restriction: if a loop η containing the origin stays in U but leaves Φ−1

U (V ), then it is exactly of one
of the following classes (1): η ∈

�

γ : γ⊆U ,γ ̸⊆Φ−1
U (V )

	

or (2) η ∈
�

γ : γ⊆U,γ ̸⊆U
	

. Visually:
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The key is that these two sets of loops are disjoint by definition, so we have that

A(ΦV ◦ΦU ) = A(ΦU ) +ν
�

γ : γ⊆U ,γ ̸⊆Φ−1
U (V )

	

But of course, we can just apply our conformal restriction property to this second term with the
conformal map ΦU , and conclude that in fact this second term is equal to A(ΦV ) and so 6.2 holds.
The goal is to now deduce 6.1 from this additivity property. The first step is to consider a special
family (Ut )t≥0 of domains contained in U: for each positive t , we define Ut = U \ [rt , 1], which
corresponds to nothing but U with a tiny slit cut as in the following diagram

it can be shown (hence why this is a proof sketch) that rt can be chosen in a way that Φ′Ut
(0) =

exp(t ). Heuristically, it makes sense that this can be done, because the derivative at zero in some
sense indicates how much the domain Ut must be stretched to be deformed into U, in fact one
may visualise this conformal map as the following stretching procedure:

Now we note the following two important observations:
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1. The family of conformal maps
�

ΦUt

�

t≥0
is in fact a semi-group, meaning that

ΦUt
◦ΦUs

=ΦUr

for some r . This can be seen by the following diagrams:

if we start with Ut and apply ΦUt
we are sent to U middle one, and if on this new U we

further slice a slit of width rs , and then apply ΦUs
we get sent further to U (the one on the

right), in particular, since the rs in the middle picture is on the real axis, we can apply Φ−1
Ut

to it, and we will go back to the left-most picture and obtain some point Φ−1
Ut
(rs ) on the real

axis, from this we see that the composition ΦUs
◦ΦUt

does indeed correspond to ΦUr
for some

r =Φ−1
Ut
(rs ).

2. A priori, we don’t know what the value of r we have just introduced actually is, but we
have the important fact (from Complex Analysis) that the derivative of the composition of
two conformal maps corresponds to the multiplication of their derivatives, so that in fact
�

ΦUr

�′
(0) = Φ′Ut

(0)Φ′Us
(0) = exp(t + s ). From this, we deduce that in fact r = t + s , so in

particular, we have that ΦUs
◦ΦUt

=ΦUs+t
. Combining this with the additive equation 6.2, one

reaches the conclusion that

A
�

ΦUt+s

�

= A
�

ΦUt

�

+A
�

ΦUs

�

.

3. Another observation is that A
�

ΦUt

�

is in fact non-decreasing. This is because if t increases,
the slit creeps further into the disk, and so there are more possible loops η that cross the
slit (recall that crossing the slit indeed means that η stays in U but leaves Ut ).
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4. The final observation is that A
�

ΦU0

�

, which is equal to A (Id) = 0, because there are no loops
that stay within U but exit U.

Let us summarise our observations. We have found a function of t , At = A
�

ΦUt

�

that has the
following properties:

1. A
�

ΦUt+s

�

= A
�

ΦUt

�

+A
�

ΦUs

�

, i.e: At+s = At +As

2. t 7→ At is non-decreasing,

3. A0 = 0.

The only functions that satisfy this are indeed linear functions, so that At = c t for some c . Now
since Φ′Ut

(0) = exp(t ), rearranging gives that in fact

A
�

ΦUt

�

= c logΦ′Ut
(0)

Which after plugging back into our definition of A, gives us that

ν
�

γ : γ⊆U,γ ̸⊆Ut

	

= c logΦ′Ut
(0) (6.3)

as promised. Of course we have just shown that formula 6.1 holds for these kinds of domains
(Ut )t≥0, we must now attempt to explain why this generalises to all kinds of domains U ⊆U. A
first observation to make is that since ν satisfies conformal restriction, equation 6.3 immediately
implies, (by using the conformal map ϕ(z ) = exp(−iθ z )), that formula 6.1 also holds for domains
Ut that are not just a straight cut along the real axis, but also a straight cut from any point on
the circumference of the disk inwards:

Formally, if eUt is such a "tilted cut", then by conformal restriction

ν
�

γ⊆U,γ ̸⊆ eUt

	

= ν
�

ϕ{γ⊆U,γ ̸⊆ eUt }
�

= ν
�

γ⊆U,γ ̸⊆Ut

	

= c logΦ′Ut
(0) = c logΦ′

eUt
(0)

where the very last step is because Φ
eUt
= exp(iθ )◦ΦIt

◦exp(−iθ ), and since the derivative of com-
positions is the multiplication of the derivatives, and the derivative of exp(iθ ) = iθ , we have indeed
that Φ′

eUt
= Φ′Ut

. For more clarity, let us call the domains eUt we have just described by U θ
t . Now,
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if we let S be the semi-group of conformal maps generated by the maps
�

ΦU θ
t

: t > 0,θ ∈ [0, 2π)
	

and we let U be the corresponding family of domains, the idea is to argue that S is "sufficiently
dense" in the class of all conformal maps ΦU from simply connected domains U containing the
origin to the unit disk U, so that by a limiting argument, we see that 6.1 indeed holds for all
such domains U ⊆ U. The formal proof will be ommited, but follows from the classical theory
developed by Loewner in the early 20th century. The main idea is that we are going to be able
to well-approximate any such domain by a series of compositions of maps in S . Notice that the
formula 6.1 also holds for composition of such maps because of the following business:

A
�

Φ
U
θ1

t1

◦Φ
U
θ1

t1

�

= A
�

Φ
U
θ1

t1

�

+A
�

Φ
U
θ2

t2

�

= c log
�

Φ′
U
θ1

t1

(0)×Φ′
U
θ2

t2

(0)
�

= c log
�

Φ
U
θ1

t1

◦Φ
U
θ2

t2

�′
(0)

where the last equality is once again because the derivative of a composition is the product of the
derivatives. Now we sketch how a domain could be approximated by such compositions:

informally speaking, suppose one starts with several disks V1, · · · , VN (three of them have been
depicted in the middle) and makes one "tilted cut" on each disk. We have the conformal maps
ΦV1

, · · · ,ΦVN
that send each Vi onto U in our "conformal manner". What we can consider is com-

posing all of these inverse maps, so for example, if we start with (look at the diagram) Φ−1
VN
(U) we

get the picture with one blue cut in the diagram. We can then apply the next map and consider
Φ−1

VN−1
◦Φ−1

VN
(U) and we would get the picture with the straight orange cut, and a perhaps "twisted"

blue line, we can keep going and we will eventually reach a final shape, which consists of many
"twisted cuts". The idea of the so called Loewner Chains, is that in fact, by choosing the cuts
on each Vi appropriately, i.e: for an appropriate lenght, and an appropriate tilted angle, we can in
fact well-approximate any domain U ⊆U that we are interested in. To be a bit more precise, we
can state (excuse the terminology)

Morally Speaking: for any simply connected U ⊆U containing the origin, there exists a sequence
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of conformal maps {Φn}n≥0 in S , such that the corresponding sequence of "composed preimages"
(Dn )n≥0, has that Dn is an increasing family of sets, Dn ⊆U and

⋃

n Dn =U .

(the way I have written this here is not precisely a true statement, but we are only attempting to
sketch the main ideas). If one has this, then in the limit, since the sequence is increasing, we have
that

A(ΦU ) = lim
n→∞

A(ΦDn
) = c lim

n→∞
logΦ′Dn

(0) = c logΦ′U (0)

(We have also not justified this last equality) and so, hopefully the reader is convinced that Step
1 is "proven". ♥

Step 2

Let us recall that now the goal is to show that any two measures on L that agree on sets of the shape
{γ : γ ⊆ U,γ ̸⊆U } will in fact be equal on the whole of L. If we combine this with step one, it will
follow that there is at most one measure that satisfies conformal restriction, since we have shown that
any measure that satisfies conformal restriction must have values uniquely determined on these kinds
of sets. (Up to choice of a scaling constant) This part will involve some simple measure-theoretic
considerations, but most technicalities will be swept under the rug.

Sketch of proof of step 2. The main idea of this step is to show that if for two measures µ and
ν, we have that for all domains U ′ ⊆U , (for clarity, recall that bounded and simply connected is
baked into the definition of domain) the masses

µ{γ⊆U ,γ ̸⊆U ′}= ν{γ⊆U ,γ ̸⊆U ′}

then the measures agree everywhere on L. We will do so by showing that this property actually
forces the measures µ and ν to agree on the generating sets of the Borel sigma-algebra which we
endowed L with. The first thing to note, i.e: we need to show they agree on the open ball about
a path η. Recall that we are working with Hausdorff distance, so that the open ball of η looks
something like this:

The idea now is that one may discretize this "blue boundary" and obtain something like"
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where the "discrete tube" is some set A ⊆ 2−n Z2 for some n . We are then naturally interested in
studying the measure of the sets UA defined by

UA =
�

γ : γ stays in the "annular region" A
	

.

The first thing to notice, is that the sets of the form UA are indeed stable under intersections, the
loops will just have to stay inside the intersection of the outer boundaries and the union of the
inner boundaries. It could very well be that the intersection is the empty set. It is clear that any
Hausdorff ball can be expressed as the countable intersection of these kinds of objects, and so it
follows that the family of sets of the shape UA (we now take n to be varying too) is a π-system
generating the Borel sigma algebra. And so now we turn our attention to showing that the mass
of the events UA can indeed be determined using our events of the form

�

γ⊆U ,γ ̸⊆U ′
	

.

Then we will be done, modulo proving all of these claims rigorously. The idea is that for any set
A like the ones above, i.e: A ⊆ 2−n Z2 a "discrete tubular region", we can express γ ∈UA exactly
as γ crossing all "slits" or crosscuts:

Let us now focus momentarily on the event that γ crosses one of these crosscuts, this is precisely
of the shape that {γ⊆U ,γ ̸⊆U ′} for some U and U ′!, in our particular diagram, U would be the
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outer square, and U ′ would be the outer square with one such slit removed. The last problem
however, is that the events {γ⊆U ,γ ̸⊆U ′} are sadly not closed under intersections, so even if we
know the value of each event, we cannot know the value of the intersection, for it will not be
in the shape of {γ ⊆ V ,γ ̸⊆ V ′} for some V and V ′. However, this is not the end of the world,
because these events indeed are closed under countable unions, since

{γ⊆U ,γ ̸⊆ A}∪ {γ⊆U ,γ ̸⊆ B }= {γ⊆U ,γ ̸⊆ A ∪B }

and we know the value of these events. Therefore by inclusion exclusion, we can know the value
of intersections, and we are done!

♥

Remark 6.5 (Summary of Step 2) The summary of the steps were:

1. We can look at the Hausdorff Ball of a loop.

2. We can discretize the Hausdorff Ball.

3. Events of the type UA, i.e: loops that stay inside a tubular region A, are indeed a π-system
generating the Borel sigma-algebra.

4. These events UA can be expressed as the countable intersection of the event that the path
hits a slit.

5. Using inclusion-exclusion, this intersection can be calculating by performing addition and
subtraction, if we know the measure of the unions of events that the paths hit one of the
slits.

6. Since events of the form {γ ⊆U ,γ ̸⊆U ′} are indeed closed under unions, we can figure out
the value of the measure of these unions and so work upwards again.
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Step 3

So far, we have proven that there exists at most one measure ν on L that satisfies the conformal
restriction property. However, we haven’t shown at all, that even such a measure should exist! For
all we know, we could come up with a contradiction if we start exploring consequences of conformal
restriction, but as it turns out, it is possible to construct one, and the main idea is to consider Brownian
loops. The idea is to launch a Brownian Motion
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6.2 The continuum Gaussian Free Field

In this last section, we will attempt to generalise the "random height function" we saw in our discussion
of the discrete Gaussian Free Field to Rd . Recall that in the discrete case, we ended up with the
conclusion that the DGFF on a domain D ⊆ Zd was the centered Gaussian vector whose covariance
structure was given by the Harmonic function GD . This gives a "seemingly straightforward" roadmap
to define the GFF in the continuum, but a problem quickly arises! As we will discuss in a minute, if
we want to discuss the Gaussian Free Field on Rd , the only choice we’ll have for the Green’s function
will not actually be well-defined on the diagonal, i.e: “GD (x , x ) = +∞”! This unfortunately means
that the naive approach to define {Γ (x )}x∈Rd will not work. Intuitively, what happens is that the GFF
will be a mess of +∞ and −∞ everywhere, and defining pointwise will prove impossible. The fix we
will see, is that instead of "probing" the field at a point x and obtaining a random variable, we will
probe the field by averaging its value with respect to certain measures. Thus in some sense, defining
the GFF as what you would observe if you averaged out the field around some region. What we will
have, morally speaking, is a random function

“Γ (µ) =

∫

Rd

Γ (x )dµ(x )”.

That, will be the continuum Gaussian Free Field, not defined pointwise, defined in terms of its integrals.

Recap on stochastic processes

Definition 6.6 (Stochastic process) A stochastic process indexed by a set A is a collection of
random variables {Xa : a ∈A } defined on the same probability space.

Remark 6.7 (Law of the process) The law of the process is the corresponding measure on RA

endowed with the product sigma-algebra, and it is uniquely determined by its finite-dimensional
distributions, meaning that laws of the random vectors (Xa1

, · · · , Aak
) for each a1, · · · , ak ∈A .

We also have an important "converse" to this fact.

Theorem 6.8 (Kolmogorov’s Extension Theorem ) Suppose T is some interval and n ∈N. Con-
sider a family of compatible finite dimensional distributions, that is to say: for each finite sequence
of index times t1, · · · , tk , we have a measure νt1,··· ,tk

on (Rn )k that satisfy:

1. For any permutation σ ∈Sk and measurable sets Fi ⊆Rn , we have that

νt1,··· ,tk
(F1× · · ·× Fk ) = νtσ(1),··· ,tσ(k )(Fσ(1)× · · ·× Fσ(k )).
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2. For all measurable sets F1 ⊆Rn and any m ∈N

νt1,··· ,tk ,tk+1,···tm
(F1× · · ·× Fk ×Rn × · · ·×Rn ) = νt1,··· ,tk

(F1× · · ·× Fk )

Then there exists a probability space (Ω,F , P) and a stochastic process X = {X t : t ∈ T } such that
the finite dimensional distributions of X are the νt1,··· ,tk

’s

We have stated the Theorem above for the index set being an interval, but it still holds for general
index sets. Let us recall another concept, which we already implicitly used in defining the DGFF

Definition 6.9 (Gaussian process) A stochastic process (Xa )a∈A is a (centred) Gaussian process
if its finite dimensional distributions are those of (centred) Gaussian vectors, meaning, that for any
a1, · · · , ak ∈A , and any λ1, · · · ,λk real constants, the random variable

k
∑

i=1

λi Xai

is a (centred) Normal random variable.

Remark 6.10 (Covariance structure) The law of a centred Gaussian process (Xa )a∈A is uniquely
determined by its covariance structure σ :A ×A →R:

σ(x , y ) = E[X x X y ]

Remark 6.11 (Constructing a Gaussian process) Combining the previous fact, Kolmogorov’s
Theorem, and the definition, it can be shown that if σ :A×A →R is a real-valued symmetric that
is positive-definite, meaning that for all a1, · · · , an ∈A and all λ1, · · · ,λn ∈R

∑

i , j≤n λiλ jσ(ai , a j )≥
0, then it is possible to construct a probability space with a process X = {Xa : a ∈ A } that is a
Gaussian process whose covariance function is σ.

Remark 6.12 (Remark on independence) As a reminder, if X is a Gaussian process, it can be
easily checked, by using the characteristic function, that if A1 and A2 are two subsets of the index
set A of the process, for which whenever a1 and a2 belong to A1 and A2 respectively, one has
that E[Xa1

Xa2
] = 0, it follows that the processes (Xa1

)a1∈A1
and (Xa2

)a2∈A2
are in fact independent.
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Remark 6.13 (A remark on measurability) Kolmogorov’s Extension Theorem can be alternatively
viewed as the fact that on the space (Rn )T , we can find a measure µ on the product sigma alge-
bra, for which the marginals of µ coincide with the finite-dimensional distributions we prescribed.
However, a limitation of this, is that we "are stuck" with the product sigma algebra, and so we
can only make sense of events of the form {Xa1

∈ A1, · · · , Xak
∈ Ak} for measurable sets A1, · · · , Ak ,

that is to say, we can only "observe" at most a countable collection of the random variables Xa .
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Basics on the Green’s Function in the continuum

As mentioned at the start of this chapter, we will attempt to define the GFF on the continuum by
borrowing ideas from what we saw in the discrete case. In the discrete case, we saw that the GFF was
nothing but the centred Gaussian vector whose covariance structure was given by Green’s function.
We also saw that the function y 7→GD (x , y ) was harmonic at all y ̸= x , and that GD (x , y ) = 0 on all
y ∈ ∂D . As it turns out, there is one unique function (up to multiplicative factors) in Rd that satisfies
this properties, so this will be our candidate for Green’s function.

Definition 6.14 (Green’s function on the continuum) For Rd with d ≥ 3, Green’s function is
defined to be

(x , y ) 7→
cd

|x − y |d−2

Remark 6.15 It can be proved that this is indeed the only function that satisfies these properties
on Rd . If we want to consider only bounded simply connected domains D of Rd , then the only
function that satisfies harmonicity at y ̸= x and is zero in the boundary ∂D , would be

GD (x , y ) =
cd

|x − y |d−2
︸ ︷︷ ︸

Hx (y )

−Ey [Hx (BT )]

where B is Brownian Motion and T is the hitting time of the boundary of D .

In particular, we have that if D = R3, Green’s function takes the familiar form c3
|x−y | , (Newtonian

potential!). Now we find ourselves with a problem, we cannot simply define our GFF Γ to have
covariance structure GD (x , y ) because E[Γ (x )2] = +∞. However, the following formal manipulation
guides us onto where to go next: suppose that Γ could indeed be well-defined using this procedure,
then we could define

I =

∫

B(0;1)

Γ (x )dx

and look at E[I 2]:

E[I 2] = E

�∫

Γ (x )dx

∫

Γ (y )dy

�

=

∫ ∫

E[Γ (x )Γ (y )]dxdy

= c3

∫ ∫

dxdy

|x − y |

where the second equality came from Fubini’s Theorem. Now note that since we are in Rd d ≥ 3,
this last integral is indeed finite, so perhaps this formal manipulation gives us a hint as to what the
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GFF should be. Perhaps we cannot define Γ pointwise, but we can define its integral with respect to
the Lebesgue measure or with respect to some other measures (these kind of objects are known as
distribution functions)

Construction of the GFF

In light of the above comments, we have the following

Definition 6.16 Let

M +
D =

�

µ≥ a measure on Rd with supp(µ)⊆D , such that
∫ ∫

GD (x , y )dµ(x )dµ(y )<∞
�

and then take
M =

�

µ :µ=µ+−µ−, where µ+,µ− ∈M
	

since we will illustrate most of our discussion on R3, we will sometimes ommit the D in the subscript.
We are now ready to define the Gaussian Free Field

Definition 6.17 (Continuum Gaussian Free Field ) We say that Γ = (Γ (µ))µ∈MD
is the Gaussian

Free Field on D if it is a centered Gaussian process with covariance function

σ(µ,ν) =

∫ ∫

GD (x , y )dµ(x )dν(y )

Remark 6.18 This definition makes sense, as it can be checked that this does indeed provide a
valid covariance structure. It is clearly symmetric, and one can show that σ(µ,µ)≥ 0, from which
one can further show that for any µ1, · · · ,µn and λ1, · · · ,λn , we have that

∑

i , j≤n

λiλ jσ(µi ,µ j )≥ 0.

Indeed, this just follows by taking µ=
∑

i λiµi and using the fact that σ(µ,µ)≥ 0.

Hence, we have defined the Gaussian free field, not directly on Rd as we would have hoped, but in
light of the formal computation we did for illustrative purposes, we "defined the GFF for each value
of µ as the integral of the GFF with respect to µ" (I appreciate that I am talking in circles here, but
hopefully the reader sees where this is coming from). As an example of what this is saying, suppose ν
is the uniform measure on some box, then what we have is a random variable Γ (ν), and each realisation
of this random variable, is what you would get as the average of the Gaussian Free Field on that box
for a given realisation of the Gaussian Free Field.
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Spherical averages

We now focus on the case where D = R3 so that Green’s function is G (x , y ) = c3/|x − y |. Let us
denote by λz ,r the uniform Lebesgue measure on on the boundary of the ball B(z , r ) then we call
γ(z , r ) := Γ (λz ,r ) the spherical average about z of radius r , which is a well-defined random variable
since λz ,r ∈M .

Remark 6.19 (Preliminary remarks) Recall the fact that the average value of the map y 7→
1/|x − y | over the ball B(z0, r ) for any r < |z0 − x | is equal to 1/|x − z0|. This is just what
y 7→ 1/|x − y | being harmonic in R3 \ {x } means. In fact, one can also show, since the "blowing
up" of the function is too slow in d = 3, that one can extend the radius to be actually r ≤ |x − z0|.

Recall that γ(z , r ) should be thought as the average of a random realisation of the Gaussian free field
over the boundary of the ball of radius r about z , this quantity being in itself a random variable. We
can try to explore some facts about these spherical averages about a point z0 now. In particular, we
will be interested in the behavior of the value of these spherical averages as the radius decreases. The
first thing we will showcase, is that if we fix a radius r0, the process of averages (γ(z0, r )−γ(z0, r0))r∈(0,r0]

is indeed independent of the average of the field on some region different to the ball of radius r0. More
precisely:

Proposition 6.20 Let µ ∈ M be a measure with supp(µ) ∩ B̄(z0, r0) = ∅. Then the process
(γ(z0, r )−γ(z0, r0))r∈(0,r0] is independent to Γ (µ).

Proof. By the harmonicity of Green’s function:

E
�

γ(z0, r )Γ (µ)
�

=

∫ ∫

dµ(x )G (x , y )dλz0,r (y )

=

∫

dµ(x )
�∫

G (x , y )dλz0,r (y )

�

=

∫

dµ(x )G (x , z0)

we used in this last equality that the support of µ and λz0,r are disjoint, therefore by Remark 6.19,
the average of G (x , y ) when taking y over the boundary of the sphere centered at z0 does indeed
give us G (x , z0) (if the supports overlapped, then we could lose this averaging property due to the
singularity at x ) and this last quantity is independent of r , therefore: E

��

γ(z0, r )−γ(z , r0)
�

Γ (µ)
�

= 0.

Since the processes are Gaussian then zero covariance implies independence. ♥
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Remark 6.21 In particular, (γ(z0, r ) − γ(z0, r0))r∈(0,r0] will be independent of the sigma-algebra
generated by Γ (µ) for µ supported away from B(z0, r0).

This shows some kind of spatial Markov property, although we will return later to what we really mean
by the Spatial Markov property. Next on the roadmap is to look at the process (γ(z0, r )) itself, and see
what we can say about it. It turns out that it is a familiar friend:

Proposition 6.22 Let Bz0
(t ) = 1p

c3
γ(z0, 1/t ) with Bz0

(0) := 0. Then Bz0
is a one dimensional

Brownian Motion.

Proof. Take r ≤ r ′, then

E[γ(z0, r )γ(z0, r ′)] =

∫

dλz0,r ′(x )

�∫

dλz0,r (y )G (x , y )

�

=

∫

dλz0,r ′(x )G (x , z0) =
c3

r ′

the second equality is once again using Remark 6.19 and the fact that r ≤ r ′ so that the averaging
property does indeed hold. Then the last equality is due to the fact that for any x ∈ ∂B(z0, r ′),
G (x , z0) = c3/r ′. What we learn from this is that E[B (z0, t )B (z0, s )] = t ∧ s . From this it quickly
follows that in fact E[(Bt −Bs )2] = t − s . Using the covariance property we can now check that the
increments are uncorrelated, and so we have a Gaussian Process with stationarity of increments,
and whose increments are independent. That is to say, Bz0

(t ) does indeed have the law of a
Brownian Motion. Just as like in the proof of Wiener’s Theorem, we will now use Kolmogorov’s
Continuity Criterion to justify that this process admits a modification that makes it continuous,
hence showing that Bz0

(t ) (admits a version) that makes it a true Brownian Motion. Recall
Kolmogorov’s Continuity Criterion for the Gaussian case: if (Xa )a∈A is a Gaussian Process for
which there exists positive ε> 0 and C > 0 such that

E[(Xa −Xa ′)
2]≤C |a −a ′|ε,

then X admits a continuous modification. Since we have shown that E[(Bt −Bs )2] = t − s , we are
done. ♥

Remark 6.23 Similar considerations can be used to show that one may vary z as well, and still
have a continuous modification, showing that there exists a continuous modification of the process
(z , r ) 7→ γ(z , r ) on Rd × (0,∞)
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The Spatial Markov Property

Maybe I finish this one day when I have energy.
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