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Notation and how to study these notes

Difficulty notations:
K: denotes a proof or idea that is hard or hard to reproduce.
�: denotes a proof or idea that requires partially unmotivated tools or machinery that is hard to pull
out of thin air, but the rest of the argument is easy.
♩: denotes a proof or idea that is easy to see knowing some other results that help motivate it.
�: denotes a proof or idea that is easy and no particularly clever ideas are needed. For revision pur-
poses reading it a couple times will suffice.

Other notation:
x n

1 = (x1, · · · , xn ) ∈ {0, 1}n : a message consisting of n bits xi .
A : an alphabet, finite unless otherwise specified.
X j

i = (X i , X i+1, · · · , X j ): a block of random variables with i ≤ j , of length j − i +1.
0 log 0: a weird way of writing 0.
{0, 1}∗: the set of all finite-length binary strings, i.e: {0, 1}∗ =

⋃

n≥0{0, 1}n .
{X i }⊥: a collection of independent random variables.
EX∼Q [ f (X )]: means the expectation of f (X ) where X ∼Q . Also written as

∫

Ω
f (x )dQ (x )

3



1 Introduction: What is entropy?

1.1 The Asymptotic Equipartition Property

Learning objectives:

• Definition of entropy.

• The AEP, which states the following: given a memoryless source, the probability of any
string generated by the source becomes asymptotically uniform on the set of typical strings,
which also carries all the mass. Conversely, any set that carries all the mass must be just
as large.

Definition 1.1 A sequence of random variables X = (Xn : n ≥ 1) with values on an alphabet A is
called a source. If the random variables X i are iid, the source is said to be memoryless.

Definition 1.2 Let X be a random variable taking values on A , and let P denote its probability
mass function. The entropy of X , H (X ) is defined as

H (X ) :=−
∑

x∈A
P (x ) log P (x ) = E[− log P (X )]

Remark 1.3 Note that P (X ) is a random variable, simply defined by P (X )(ω) = P(X = ω). We
will denote P n (X n

1 ) for the joint PMF of a message X n
1 .

Theorem 1.4 (Shannon’s computation �) Let X n
1 be a block of iid RVs with distribution P on a

finite alphabet A . Then
−n−1 log

�

P n (X n
1 )
�

−→H

In probability. Where H =H (X i ) is the common entropy.

Proof. Since the random variables are iid, we have

P n (X n
1 ) =

n
∏

i=1

P (X i ) = 2log(
∏n

i=1 P (X i )) = 2
∑n

i=1 log(P (X i ))
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Therefore

−n−1 log
�

P n (X n
1 )
�

= n−1
n
∑

i=1

− log P (X i )−→ E[− log P (X1)] =H

in probability by the WLLN. ♥

Remark 1.5 We have the following:

• H (X ) ∈ [0,∞] because − log P (X )≥ 0.

• H (X ) does not depend on the values of X , only on the probabilities with which it takes said
values.

• H (X ) =H ( f (X )) for any injective function f :A −→A for the same reason as the second
bulletpoint.

• H (X )≥ 0 with equality if and only if X is deterministic almost surely.

Informally speaking, what this Theorem tells us is that with a very high probability, the probability of
a typical long message P n (X n

1 ) is approximately 2−nH (X1). Or more precisely, given an error tolerance ε

P



2−n (H+ε) ≤ P n (X n
1 )≤ 2−n (H−ε)

︸ ︷︷ ︸

B ∗n (ε)



−→ 1

Definition 1.6 (Typical messages) We refer to the set B ∗n (ε) as the set of typical messages:

B ∗n (ε) =
�

x n
1 ∈A

n : 2−n (H+ε) ≤ P n (x n
1 )≤ 2−n (H−ε)	

Corollary 1.7 (Asymptotic Equipartition Property �) Let (Xn : n ≥ 0) be iid on a finite alphabet
A , with common distribution P and common entropy H =H (X i ). Then for any ε> 0, we have

• |B ∗n (ε)| ≤ 2n (H+ε) for all n ≥ 1.

• P(X n
1 ∈ B ∗n (ε))−→ 1.

And conversely, if (Bn ) is a sequence of subsets of An for n ≥ 1 with the property that P(X n
1 ∈
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Bn )−→ 1 as n −→∞, then for any ε> 0, eventually:

|Bn | ≥ (1−ε)2n (H−ε)

Main idea: To prove the convergence of the direct part is immediate from the construction before.
To prove the size bound of the direct part we use the standard size counting trick. To prove the size
bound of the converse part, we observe that since both (Bn ) and (B ∗n ) have that P(X n

1 ∈ Bn )−→ 1 and
P(X n

1 ∈ B ∗n (ε)) −→ 1 then it will be the case that P(X n
1 ∈ Bn ∩ B ∗n (ε)) −→ 1. From here we can use a

standard size bound trick.

Proof of Corollary 1.7. The fact that P(X n
1 ∈ B ∗n (ε)) −→ 1 as n −→∞ comes for free from the

construction of B ∗n (ε) and Theorem 1.4. Indeed: by the Weak Law of Large numbers we have that
for all ε> 0:

P

��

�

�

�

−
1

n
log P n (X n

1 )−H

�

�

�

�

>ε

�

−→ 0

So by rearranging:
P
�

2−n (H+ε) < P n (X n
1 )< 2−n (H−ε)�−→ 1

And the set on the inside is the set of typical strings.

To show the bound on the size, we note that

1≥P(X n
1 ∈ B ∗n (ε)) =

∑

x n
1 ∈B ∗n (ε)

P n (x n
1 )≥ |B

∗
n (ε)|2

−n (H+ε)

where in the last inequality we have used the defining property of B ∗n (ε). To show the converse,
suppose (Bn ) ⊆ An is a sequence of sets of messages with the desired property, i.e: that all the
mass is asymptotically concentrated on them. Then we start by noting that

P n (Bn ∩B ∗n (ε)) = P n (Bn ) +P n (B ∗n (ε))−P n (Bn ∪B ∗n (ε))≥ P n (Bn ) +P n (B ∗n (ε))−1

Since this right hand side converges to 1 (by hypothesis and B ∗n being the set of typical messages),
we have that

P n (Bn ∩B ∗n (ε))−→ 1.
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Therefore, for any ε> 0 it will be the case that eventually

(1−ε)≤ P n (Bn ∩B ∗n (ε))

=
∑

x n
1 ∈Bn∩B ∗n (ε)

P n (x n
1 )

︸ ︷︷ ︸

∈B ∗n (ε)

≤
�

�Bn ∩B ∗n (ε)
�

�2−n (H−ε)

≤ |Bn |2−n (H−ε)

Rearranging gives the claim. ♥

Remark 1.8 There is something to say about the indiscriminate use of the notation P n (A) that
we are using. Here, by P n we mean the measure induced by X n

1 , so whenever we say P n (A) what
we really mean is P(X n

1 ∈ A)

Let us make a few comments on the AEP. First note the format of the result. We first show the
existence of an object with a certain quantitative performance, and then show that no other object
can outperform it. This result gives an interpretation of the meaning of entropy. Indeed: it tells us
that the smallest set of strings that carry almost all the probability on A n has a size of approximately
2nH strings. As such, a higher entropy means a higher number of typical messages, which means that
RVs with high entropy are "more random".
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1.2 Fixed Rate Codes

Learning objectives: In this section we study the fundamental limitations of fixed-rate com-
pression. In particular we learn:

• Definition of fixed-rate codes, their error probability and their rate, which quantifies how
good they perform.

• The fixed-rate coding Theorem, which states that one can always achieve a performance
at least as good as the entropy, but actually one can’t do any better.

Definition 1.9 (Fixed Rate Codes) Let X = (Xn ) be a memoryless source with distribution P . A
fixed rate lossless compression code for X is a sequence of codebooks (Bn ) with Bn ⊆A n .

Let us explain what we mean by a codebook. Suppose we are trying to compress a specific message
x n

1 . What we could do is write a codebook, i.e: a list of all messages we are interested in compressing,
call it Bn . Suppose both sender and receiver agree on Bn and the ordering of the messages in Bn .
Then if Alice wants to send x n

1 to Bob, she first checks whether x n
1 ∈ Bn , and if it is, she describes the

message to Bob by writing a flag, say 1, followed by the index of x n
1 in Bn . This takes

1+
�

log2(|Bn |)
�

bits

If the message x n
1 /∈ Bn , then she indicates a 0 flag, and sends x n

1 uncompressed. This takes

1+
�

log2(|A
n |)
�

= 1+
�

n log2(|A |)
�

bits

The interplay here is that you want to make Bn large to avoid having to send an entire uncompressed
message, but then you don’t want to make Bn too large, because then otherwise this whole business
becomes redundant.

Definition 1.10 (Rate and error probability) The rate of a fixed-rate code (Bn ) for a source X is
defined as

Rn = n−1
�

1+
�

log2(|Bn |)
��

The probability of error is defined as P (n )e =P(X n
1 /∈ Bn )

The rate captures how many bits of information you need to transmit one symbol through the fixed-rate
codes. A lower rate implies a better compression. The probability of error is pretty self-explanatory.
The question we may ask now is: if we require the probability of error to be negligible asymptotically,
what is the best (i.e: the lowest) rate we can achieve? It turns out that entropy is the answer to this
problem.
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Bn

1 a b c d a a d f d

2 a f d d f d f d g
3 e e e f f d a f f

...
|Bn | e g f g d a a f

100 · · ·0011 e e e f f d a f f

Alice Bob

Figure 1: Codebook illustration

Theorem 1.11 (Fixed Rate Coding Theorem ♩) Let X= (Xn ) be a memoryless source with distri-
bution P and entropy H (X i ) =H . Then

• For any ε > 0, there exists a fixed-rate codebook (B ∗n ) with vanishing error probability and
with rate

Rn ≤H +ε+
2

n
∀n ≥ 1

• If a fixed-rate codebook (Bn ) has vanishing probability, then for any ε > 0, its rate must
eventually satisfy

Rn >H −ε

Main idea: The direct part is a corollary of the AEP: Indeed, the hinted codebook is simply the set
of typical messages, and to prove the bound on the rate we use the size upper bound given by the
AEP. The converse follows by using the lower bound given by the AEP on the size of a set that carries
asymptotically all mass.

Proof. For the first part, we take the codebook consisting of typical messages (B ∗n (ε)), we already
know that this set accumulates all the mass of the messages, so P(X n

1 ∈ B ∗n (ε)) −→ 1, showing
P (n )e −→ 0. We also know that |B ∗n (ε)| ≤ 2n (H+ε) so it follows that the rate of this code is

Rn ≤
1

n
(1+ log |B ∗n |+1

︸ ︷︷ ︸

≥⌈log |B ∗n ⌉

)≤H +ε+
2

n
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Conversely, take ε> 0, without loss of generality assume ε< 1/2. Then

Rn :=
1

n
⌈log |Bn |⌉+

1

n

≥
1

n
log |Bn |+

1

n
(!)
≥

1

n
log(1−ε) + (H −ε) +

1

n

=
1

n
log(2(1−ε))+H −ε

>H −ε

Where step (!) comes from the fact that since by assumption |Bn | carries all the probability, we
then know from the AEP, (Theorem 1.7) that |Bn | ≥ (1−ε)2n (H−ε) so plugging in gives the result. I
should also mention just in case I have lost neurons when I read this in the future that the equality
after (!) comes from writing 1≡ log 2. ♥
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2 Relative Entropy

Learning Objectives: in this section we learn about

• Relative entropy �: its definition and interpretation as a "distance" between probability
distributions.

• Stein’s Lemma ♩: which states that in a hypothesis test, the best asymptotic performance
a simple hypothesis test can achieve is described by relative entropy.

• Neymann-Pearson Lemma: gives the optimal decision regions for a hypothesis test for a
finite sample size.

• An information theoretic interpretation of Neymann-Pearson Lemma.

In this section we argue that relative entropy is the answer to the question: how statistically indis-
tinguishable are two probability distributions? Suppose x n

1 ∈ A
n are observations generated by a

memoryless source X n
1 and we want to decide if X n

1 ∼ P n or X n
1 ∼Q n . At its most fundamental level,

hypothesis test is described by a decision region Bn ⊆A n . If our observation x n
1 ∈ Bn then we declare

the outcome of our test to be that X n
1 ∼ P n . Otherwise we declare the other distribution to be the

data generating mechanism. There are two associated error probabilities

Definition 2.1 (Type I and Type II error probabilities) We distinguish the probabilities

e (n )1 =PQ (x
n
1 ∈ Bn ) =Q n (Bn ) e (n )2 =PP (x

n
1 /∈ Bn ) = P n (B c

n )

That is: the probability that we declared our data as coming from P when it came form Q , and the
probability of declaring it came from Q when it came from P .

There is of course a fundamental problem in choosing our set Bn , if we try to say minimise our Type
I error, by making Bn small, then we are making B c

n big, thus potentially increasing our Type II error
probability.

Definition 2.2 (Relative Entropy) The relative entropy between two PMFs P and Q on the same
discrete alphabet A is

D (P ∥Q ) =
∑

x∈A
P (x ) log

P (x )
Q (x )

The question we aim to answer now is: if we require e (n )2 −→ 0, how small can we make e (n )1 ? It turns
out that the best we can do is e (n )1 ≈ 2−nD (P ∥Q ). Thus showing once again how the larger the relative
entropy between the two random variables, the better we will be able to tell them apart. The following
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Theorem should be seen as a version of the AEP for relative entropies. I encourage the reader to think
deeply as to why the proof Stein’s Lemma is morally the same as the proof of the AEP.

Theorem 2.3 (Stein’s Lemma ♩) Let P and Q be two distributions on a finite alphabet A , with
0<D (P ∥Q )

︸ ︷︷ ︸

D

<∞. Then

• For all ε> 0, there are decision regions B ∗n such that e (n )1 ≤ 2−n (D−ε) for all n , and e (n )2 −→ 0.

• If {Bn} is a family of decision regions with e (n )2 −→ 0, then for all ε> 0, eventually

e (n )1 ≥ 2−n(D+ε+ 1
n )

Main idea: We will essentially replicate the proof of the AEP. In the proof of the AEP, we talked
about a special region, which was defined as the region of probability-typical strings, because this
region was connected to entropy. This region was defined in terms of an upper and a lower bound
on the probability of a string, and this gave us the desired size and rate bounds. In this case, we will
talk about the region of log-likelihood-typical strings, because log-likelihood is connected to relative
entropy. Appropriate upper and lower bounds on the definition of this set of strings will also give us
the bounds we want.

Proof. We first form our decision region. To do this, we note that we have the following conver-
gence in probability:

1

n
log

�

P n (X n
1 )

Q n (X n
1 )

�

=
1

n
log

�

n
∏

i=1

P (X i )
Q (X i )

�

=
1

n

n
∑

i=1

log
�

P (X i )
Q (X i )

�

−→ EP

�

log
P (X )
Q (X )

�

=: D (P ∥Q )

Formally, for any ε> 0, we have that

PP

��

�

�

�

1

n
log

P n (X n
1 )

Q n (X n
1 )
−D (P ∥Q )

�

�

�

�

>ε

�

−→ 0

This motivates the creation of our decision region, to be the set of "log-likelihood-ratio" strings,

B ∗n (ε) =

�

x n
1 ∈ An : 2n (D−ε) ≤

P n (x n
1 )

Q n (x n
1 )
≤ 2n (D+ε)

�

By the above computation, (i.e: by the WLLN), we have that our Type II error probability,
e (n )2 =PP (A n \B ∗n )−→ 0, thus we have satisfied our asymptotically negligible error probability. We
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now show the desired bound on the decay of our Type I error probability:

e (n )1 :=PQ (X
n
1 ∈ B ∗n (ε))

:=Q n (B ∗n (ϵ))

=
∑

x n
1 ∈B ∗n (ε)

Q n (x n
1 )

(!)
≤

∑

x n
1 ∈B ∗n (ε)

2−n (D−ε)P n (x n
1 )≤ 2−n (D−ε)

Where the only non-trivial step, comes from the fact that by definition of B ∗n (ε), we have that
whenever x n

1 ∈ B ∗n (ε), then Q n (x n
1 )≤ 2n (D−ε)P n (x n

1 ). For the converse, we begin by assuming that
a decision region Bn has that e (n )2 −→ 0, in other words,

PP (B
c
n ) =: P n (B c

n )−→ 0

Since by construction of B ∗n we also have that P n (B ∗n
c )−→ 0, we obtain that

P n (Bn ∩B ∗n ) = 1−P n (B c
n ∪B ∗n

c )
(1)
≥ 1−P n (B c

n )−P n (B ∗n
c )−→ 1

Where the highlighted step comes from a trivial union bound. In particular, since it converges to
1, we must have that eventually, P n (Bn ∩ B ∗n ) ≥

1
2 , which now allows us to compute the desired

bound on e (n )1 :

1

2
≤ P n (Bn ∩B ∗n (ε)) =

∑

x n
1 ∈Bn∩B ∗n (ε)

P n (x n
1 )

,=
∑

x n
1 ∈Bn∩B ∗n (ε)

Q n (x n
1 )

P n (x n
1 )

Q n (x n
1 )

(!)
≤

∑

x n
1 ∈Bn∩B ∗n (ε)

Q n (x n
1 )2

n (D+ε)

= 2n (D+ε)Q n (Bn ∩B ∗n (ε))

≤ 2n (D+ε)Q n (Bn ) = 2n (D+ε)e (n )1

Where step ,is motivated because we want to talk about e (n )1 :=Q n (Bn ), and step (!) comes from
the construction of B ∗n (ε), which gives us the upper bound on the likelihood ratio. Rearranging
gives the desired result. ♥
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Remark 2.4 As usual, here we state that we can make our error probability as good as approxi-
mately 2−nD , and then we are showing that actually you can’t do any better than that. There are
some other comments to make

• Why is D assumed to be in (0,∞)? - If D = 0 then they are the same distribution, so nothing
to check. If D =∞, then they have disjoint support, that is to say for example, there is
some x0 ∈ A with 0 = P (x0) ̸=Q (x0). Thus if we observe some x0 come up, we determine
the source to be Q .

• This Lemma states that if one of the error probabilities is assumed to vanish, then the best
decay of the other error probability can vanish is exponential with rate D . Thus the larger
D , intuitively reflected by both distributions being "further away", the faster the decay and
the easier it is to tell both distributions apart.

• The decision regions B ∗n provided in Stein’s Lemma are asymptotically optimal, not necessarily
optimal for finite n . The exact form of those test are given by the Neymann-Pearson Lemma.

Theorem 2.5 (Neymann-Pearson Lemma �) For a hypothesis test between two distributions P

and Q , based on n data samples, then for T ≥ 0, the decision regions

BNP(T ) =

�

x n
1 ∈A

n :
P n (x n

1 )
Q n (x n

1 )
≥ T

�

are are optimal, that is to say, if any other decision region Bn has that e (n )2 (Bn )≤ e (n )2 (BNP(T )), then
it must be that e (n )1 (Bn )≥ e (n )1 (BNP(T )).

Main idea: The proof follows immediately after considering the quantity

�

1(BNP)(x
n
1 )−1(Bn )(x

n
1 )
� �

P n (x n
1 )−T Q n (x n

1 )
�

Proof. For x n
1 ∈A

n , consider the quantity

�

1(BNP)(x
n
1 )−1(Bn )(x

n
1 )
� �

P n (x n
1 )−T Q n (x n

1 )
� (!)
≥ 0

The key to the proof is that this quantity is greater than or equal to zero. To see this, we note
that if the right hand side were to be strictly less than zero, then x n

1 /∈ BNP(T ), and so the left
hand size is less than or equal to zero. If the right hand side is however greater than or equal
to zero, then the left hand side is also greater than or equal to zero. With this in mind, we may

14



multiply the expression out, and if we sum over all x n
1 ∈A

n , the indicators will restrict each sum
to happen on the specified regions which means that we have

P n (BNP)−T Q n (BNP)−P n (Bn ) +T Q n (Bn )≥ 0

Rewriting this in terms of e (n )1 and e (n )2 we have that

T
�

e (n )1 (Bn )− e (n )1 (BNP)
�

−
�

e (n )2 (BNP)− e (n )2 (Bn )
�

≥ 0

And now we may carry out a similar observation as before. If the region Bn has a performance at
least as good as BNP, i.e: e (n )1 (Bn )≤ e (n )1 (BNP), so that the first summand is negative, it must also
be that the second summand is negative, which means that e (n )2 (BNP) ≤ e (n )2 (Bn ), establishing the
claim. ♥

As it turns out, the Neymann-Pearson Lemma also has an information theoretic interpretation. To
define it we first need to take a look at the empirical distribution function of our sample data X1, · · · , Xn

dPX n
1
(a ) =

1

n

n
∑

i=1

1(X i = a )

This function simply counts the proportion of our sample data that attains this value a . Of course
this is a random quantity as currently formulated, but we can also use this idea to induce a probability
distribution on A given some observation x n

1 ∈A
n . Simply by replacing the X i with xi . We are now

ready to state the alternative interpretation

Proposition 2.6 (Information Theoretic Neymann-Pearson Lemma �) The Neymann-Pearson
decision region BNP is equivalent to

BNP =
�

x n
1 ∈A

n : D (cPn∥Q )>D (cPn∥P ) +T ′
	

where T ′ corresponds to 1
n log T with T as in the Neymann-Pearson Lemma

Main idea: Stare at the definition of BNP, stare at this claim. We have to show that we can
express log-likelihood-ratio as a difference of "distances". More precisely, the idea is to show that the
log-likelihood is large if bPx n

1
is closer to P than to Q :

log
P n (x n

1 )
Q n (x n

1 )
= n

�

D ( bPx n
1
∥Q )−D ( bPx n

1
∥P )

�
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P (A n )

P

Q

P̂x n
1

{µ : D (µ∥Q )≥D (µ∥P ) +T ′}

Figure 2: Log-likelihood ratio admits a geometric interpretation: normalised log-likelihood ratio is how
much closer the empirical distribution is from P than from Q .

Proof. We have the following computation

log
P n (x n

1 )
Q n (x n

1 )
= log

n
∏

i=1

P (xi )
Q (xi )

=
n
∑

i=1

log
P (xi )
Q (xi )

=
n
∑

i=1

∑

a∈A n

1({xi })(a ) log
P (a )
Q (a )

= n
∑

a∈A n

�

1

n

n
∑

i=1

1({x n
1 })(a )

�

log
P (a ) bPx n

1
(a )

Q (a ) bPx n
1
(a )

= n
�

D ( bPx n
1
∥Q )−D ( bPx n

1
∥P )

�

Now we simply note that

P (x n
1 )

Q (x n
1 )
≥ T ⇐⇒

1

n
log

P (x n
1 )

Q (x n
1 )
≥

1

n
log T

which finishes the claim. ♥

This gives a very elegant interpretation: our decision region of acceptance of P is the set of datapoints
whose empirical distribution cPn is closer to P that to Q by some slack tolerance. We finish this section
by talking about some elementary bounds on the entropy.

Theorem 2.7 (Bounds on Entropy �) Let X be a random variable taking values in A . Then

16



1. 0≤H (X )≤ log(|A |). With equality at 0 if and only if X is constant, and equality at log(|A |)
if and only if X is uniform on A.

2. If P and Q are two PMFs on A then

D (P ∥Q )≥ 0

with equality if and only if P and Q are the same distribution.

Main idea: It’s better to prove first the second part of the claim. This follows immediately by the
log-sum inequality. To prove the first claim, use Q =Unif(A) and compute D (P ∥Q ).

Proof. We begin by proving the second part of the claim, but by the log-sum inequality:

D (P ∥Q ) =
∑

a∈A n

P (a ) log
P (a )
Q (a )
≥

�

∑

a∈A n

P (a )

�

log

�∑

a∈A n P (a )
�

�∑

a∈A n (Q (a )
� = 0

And we have equality if and only if for each a , P (a ) =Q (a ).
We now prove the second part, we consider the distribution Q =Unif(A), i.e: Q (a ) = 1/|A| for all
a . Then

D (P ∥Q ) =
∑

a∈A n

P (a ) log
P (a )
1/|A|

= log |A| −H (X )

Then we get that
H (X ) = log |A| −D (P ∥Q )≤ log |A|

which occurs with equality if and only if P and Q are the same distribution, i.e: P is uniform. ♥

This solidifies our intuition of using entropy as a measure of how much we can compress a random
variable. Indeed, we saw that using fixed-rate codes, the best rate we could achieve in terms of bits
needed per symbol was H (X ), so if X is deterministic, then there is no need to compress anything,
and if X is uniformly random, then we cannot take advantage of any structure in X to compress the
information, and we need the maximum amount of log(|A |) bits to express our message. In terms
of the relative entropy, this result solidifies our intuition as to why it is a (pseudo) distance between
probability distributions.
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3 Properties of Entropy and relative entropy

3.0.1 Properties of Entropy

In this section we learn:

• Definition of joint and conditional entropies.

• The chain rule for joint (and conditional) entropy (example sheet).

• Giving information cannot increase entropy.

• Data processing inequalities, for entropy and relative entropy.

• Fano’s inequality.

We have so far talked about H (X ) for a single discrete random variable X , but there is nothing morally
stopping us from thinking of a random vector (X1, · · · , Xn ) of discrete random variables as a single
discrete random variables taking values in a Cartesian product of countable sets.

Definition 3.1 Let (X , Y ) be a discrete random vector taking values in A ×B with joint PMF
PX Y (x , y ). The joint entropy of X and Y is defined as

H (X , Y ) =−
∑

(x ,y )∈A×B

PX Y (x , y ) log PX Y (x , y ) = EX Y [− log PX Y (X , Y )]

Above I denote by EX Y an expectation taken with respect to the probability measure PX Y of course.
Let us examine some preliminary ideas relating to joint entropies:

Proposition 3.2 (Joint entropy of independent random variables, �) Let X , Y be as above. Then
if X and Y are independent, then

H (X , Y ) =H (X ) +H (Y )

Main idea: Use definition of independence.

Proof. Elementary calculation

H (X , Y ) = E[− log PX Y (X , Y )] = E[− log PX (X )]+E[− log PY (Y )]

♥

18



If we don’t have independence however, we cannot write the result above, but we can achieve something
similar.

Definition 3.3 (Conditional entropy) Let X and Y be random variables. The conditional entropy
H (Y | X ) is defined as

H (Y | X ) = EX Y [− log PY |X (Y | X )]

Remark 3.4 The conditional entropy is not an entropy as we have defined it above so far, but
can be interpreted as an average of entropies. Indeed:

H (X | Y ) =−
∑

(x ,y )∈A×B

PX Y (x , y ) log PX |Y (x | y )

=−
∑

(x ,y )∈A×B

PX |Y (x | y )PY (y ) log PX |Y (x | y )

=
∑

y ∈B
PY (y )EX |Y =y [− log PX |Y =y ]

︸ ︷︷ ︸

H (X |Y =y )

And H (Y | X = x ) does make sense as an entropy! Because PY |X=x is a probability measure on B .

The point is that this definition leads to a nice interpretation

Theorem 3.5 (Chain rule for entropy, �) Let X and Y be two random variables. Then

H (X , Y ) =H (X ) +H (Y | X )

Main idea: Use definition of conditional probability.

Proof.

H (X , Y ) = E[− log PX Y (X , Y )]

= E[− log PX (X )]+E[− log PY |X (Y | X )]
︸ ︷︷ ︸

H (Y |X )

and now noting that all these expectations are with respect to PX Y , we simply observe that

−E[log PX (X )] =
∑

x

log PX (x )
∑

y

PX Y (x , y )

︸ ︷︷ ︸

PX (x )

=H (X )
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♥

The chain rule for entropy may be generalised as follows

Theorem 3.6 (Chain rule for entropy II, �) Let X n
1 be a finite collection of discrete random

variables. Then

H (X n
1 ) =

n
∑

i=1

H (X i | X i−1
1 )

Main idea: Induct the elementary version.

Proof. We prove by induction on n . The first non-trivial case was proven in Theorem Chain rule
for entropy, now assume the claim holds for a message of length n −1. Then we have that

H (X n
1 ) = E[− log PX n−1

1
(X n−1

1 )] +E[− log PXn |X n−1
1
(Xn | X n−1

1 )]

=H (X n−1
1 ) +H (Xn | X n−1

1 )

(!)
=

n−1
∑

i=1

H (X i | X i−1
1 ) +H (Xn | X n−1

1 ) =
n
∑

i=1

H (X i | X i−1
1 )

Where in step (!) we used the inductive hypothesis. ♥

We saw that strictly speaking H (X | Y ) is not an entropy per se, but it has natural links with the
entropy we have seen so far. Indeed: conditioning on some random variable can be interpreted as
observing information. Intuitively, if we add more information to what we already know, we could not
become less certain. This is formalised by the following result:

Theorem 3.7 (Giving information never increases entropy, ♩) Let X and Y be two random vari-
ables. Then

H (Y | X )≤H (Y )

with equality if and only if X and Y are independent.

Main idea: H (Y )−H (Y | X ) can be shown to be a D (PX Y ∥PX PY ).

Proof.

H (Y )−H (Y | X ) = E log
PY |X (Y | X )

PY (Y )

= E log
PY |X PX (X )

PY (Y )PX (X )
=D (PY X ∥PX PY )≥ 0.
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With equality if and only if the relative entropy is zero which we know is equivalent to saying that
PY X and PY PX are the same distribution, i.e: the random variables are independent. ♥

Corollary 3.8 (Subadditivity of entropy) For any finite collection X n
1 of discrete random variables,

we have that H (X n
1 )≤

∑n
i=1 H (X i )

Proof. Immediate from the (generalised) chain rule as well as conditioning doesn’t increase entropy.
♥

Theorem 3.9 (Bounds on conditional entropy) For X and Y random variables, we have that

0≤H (Y | X )≤ log |B|

Where B is the alphabet in which Y takes values.

Main idea: Write H (Y | X ) as an expectation of an entropy.

Proof. This follows easily from the observation that

H (Y | X ) = EX [H (Y | X = x )]

and H (Y | X = x )≤ log |B| as we know, and is non-negative. Monotonicity of expectation finishes
the claim. ♥

We now present two important results regarding conditional entropies: the data processing inequality
and Fano’s inequality.

Theorem 3.10 (Data processing inequality for entropy, ♩) Let X be a discrete random variable
on the alphabet A , and f :A −→R be a function. Then

• H ( f (X ))≤H (X ), with equality if and only if f is injective.

• H ( f (X ) | X ) = 0

Main idea: Entropy is preserved under injective maps, noting that X 7→ (X , f (X )) is injective allows
us to apply the chain rule in two different ways.
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Proof. For the first part, we note that the map Φ(X ) = (X , f (X )) is trivially injective, and we
know that for an injective map Φ, H (Φ(X )) =H (X ), this is because entropy depends solely on the
probabilities assigned to values and not the values that the random variable takes per se. Therefore
we conclude by the chain rule that

H (X ) =H (X , f (X )) =H (X ) +H ( f (X ) | X )

This can only be possible if H ( f (X ) | X ) = 0.

For the second part, we note that we could have also concluded, by the symmetric application of
the chain rule, that

H (X ) =H ( f (X ))+H (X | f (X ))

since entropy non-negative so automatically we get that

H ( f (X ))≤H (X )

and we know that equality holds if and only if H (X | f (X )) = 0, that is to say, X is a deterministic
function of f (X ), i.e: f is in particular invertible. ♥

Theorem 3.11 (Fano’s Inequality, �) Let (X , Y ) be an arbitrary pair of discrete RVs taking values
in finite alphabets A and B . Let ÒX = f (Y ) for some function f : A −→ B , and write the
probability of error Pe =P(ÒX ̸= X ). Then

H (X | Y )≤ h (Pe ) +Pe log(|A |−1)

Where h (p ) denotes the binary entropy.

The interpretation of this is as follows. Suppose we are trying to estimate a random variable X , but
we are only allowed to observe a possibly correlated random variable Y . Fano’s inequality says that
if the probability of error is small, i.e: we can do a good job at estimating X from Y , then once we
condition on Y , there is little information left on X , that is to say H (X | Y ) is small.
Main idea: Consider E ∼ Ber(Pe ). We want to study the quantity H (X | Y ) so apply chain rule in
both directions to H (X , E | Y ), as well as data processing.

Proof. Let E ∼ Ber(Pe ). Clearly H (E ) = h (Pe ). From the chain rule for conditional entropy we
have that

H (X , E | Y ) =H (X | Y ) +H (E | X , Y )
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Since E is a function of X and Y , by the Data processing inequality for entropy, we have that
H (E | X , Y ) = 0, so we deduce on the one hand that H (X , E | Y ) =H (X | Y ). On the other hand,
we can use the chain rule in reverse:

H (X , E | Y ) =H (E | Y ) +H (X | E , Y )≤H (E ) +H (X | E , Y ) = h (Pe ) +H (X | E , Y )

where in this calculation we have used the fact that conditioning does not increase entropy. All in
all we have that

H (X | Y )≤ h (Pe ) +H (X | E , Y )

But E being bernoulli means it is very easy to compute H (X | E , Y ). Indeed:

H (X | E , Y ) = Pe H (X | E = 1, Y ) + (1−Pe )H (X | E = 0, Y )

If E = 0, then it means that X = f (Y ) and as such H (X | E = 0, Y ) = 0, and if E = 1, then it
means that given Y , we can discard one of the values that X could take, so X can take |A |− 1

values, and since entropy is upper bounded by the logarithm of the alphabet size, we have that
H (X | E = 1, Y )≤ log(|A |−1). This finishes the claim. ♥

3.1 Examples

Let us see a few questions with interesting techniques:

Example 3.12 Let A be a finite alphabet and let B ⊆A n be a collection of strings of length n .
In this question we will find an interesting bound for |B |. As we will see later on these notes, for
a string x n

1 ∈A
n , we define its type bPx n

1
to the empirical distribution on A induced by the string,

meaning:

bPx n
1
(a ) =

1

n

n
∑

i=1

1{xi = a }.

Let us now define the following probability measure on B :

PB (a ) =
1

|B |

∑

x n
1 ∈B

bPx n
1
(a ).

Show that
|B | ≤ 2nH (PB ).

Proof. The hint is to consider random variables X n
1 and J that are uniform on B and {1, · · · , n}
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respectively. We see that PB (a ) =P(X J = a ). Therefore,

−H (PB ) =
∑

a∈A
P(X J = a ) log(P[X J = a ])

=
∑

a∈A

�

n
∑

i=1

1

n
P[X i = a ]

�

log

�

n
∑

i=1

1

n
P[X i = a ]

�

≤
∑

a∈A

n
∑

i=1

1

n
P[X i = a ] log(P[X i = a ])

=
1

n

n
∑

i=1

−H (X i )

and so nH (PB )≥
∑n

i=1 H (X i )≥H (X ) by subadditivity of entropy. But since X is uniform on B , we
have that H (X ) = log |B | and so we get the claim. ♥
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3.2 Properties of relative entropy

Returning to the question of hypothesis testing, we saw that if we wish to perform a hypothesis test
between two distributions P and Q , and we impose the probability of a Type II error approaching zero
asymptotically, then the best decay exponent of the Type I error probability we could have was D (P ∥Q ).
A natural question would be, if we process our observations x n

1 , say by applying some function f (x n
1 ),

can we make our distributions more statistically distinguishable? The answer to this is no, and its
given by the data processing inequality for relative entropy.

Theorem 3.13 (Data processing inequality for relative entropy) Let X and Y be two random
variables with distributions PX and QY taking values in the same alphabet A . Let f :A −→B be
a function to some other alphabet B . Then, writing Pf (X ) and Q f (Y ) for the distributions of f (X )

and f (Y ) gives that
D (Pf (X )∥Q f (Y ))≤D (PX ∥QY )

Main idea: Use the fact that for a general function f :A −→B , we can write

A =
⋃

y ∈ f (A )
f −1({y }) =

⋃

y ∈ f (A )

⋃

x∈ f −1({y })
{x }

Proof.

D (PX ∥QX ) =
∑

y ∈ f (A )

∑

x∈ f −1({y })

PX (x ) log
PX (x )
QX (x )

≥
∑

y ∈ f (A )

 

∑

x∈ f −1({y })

PX (x )

!

log

�

∑

x∈ f −1({y })PX (x )
�

�

∑

x∈ f −1({y })QX (x )
�

Where we have used log-sum. Now we note that

∑

x∈ f −1({y })

PX (x ) = Pf (X )(y )

Indeed: the probability that f (X ) takes the value y is precisely the probability that X takes some
value x that gets mapped to y under f . Since the singletons {x } are disjoint, we turn the
probability of the union into the sum of the probabilities. This finishes the proof. ♥

We have spoken of D (P ∥Q ) so far as an informal distance between probability measures. Indeed:
we have seen that P = Q if and only if D (P ∥Q ) = 0, but we are going to see how we can also get
quantitative bounds on the actual difference of the probabilities. First we need to introduce a genuine
distance between probability measures:
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Definition 3.14 (Total Variation) Let P and Q be two probability measures on A . The Total
Variation distance is defined by

∥P −Q∥TV =
∑

x∈A
|P (x )−Q (x )|

Note that sometimes the convention is to write a 1/2 in front. If you have suffered through mixing
times of Markov chains you will know. Recall also that TV distance has a convenient alternative
characterisation: letting B = {x : P (x )>Q (x )} gives

∥P −Q∥TV =
∑

x∈B

P (x )−Q (x ) +
∑

x∈B c

Q (x )−P (x )

= P (B )−Q (B ) +Q (B c )−P (B c )

= 2(P (B )−Q (B ))

We now have the result that quantifies the relation between relative entropy and an actual distance
between probability measures:

Theorem 3.15 (Pinsker’s inequality)

∥P −Q∥2TV ≤ (2 loge 2)D (P ∥Q )≡ 2De (P ∥Q )

Main idea: There are two steps:

1. Show the inequality for the binary case P ∼Ber(p ) and Q ∼Ber(q ). We may assume WLOG that
q ≤ p to do this compute everything explicitly, and letting ∆(p , q ) = 2De (P ∥Q )−∥P −Q∥2TV, and
noting that ∆(p , p ) = 0 and ∂q∆(p , q )≤ 0 we get that ∆(p , q )≥ 0.

2. To reduce the general case to the binary case we consider functions of P and Q where P ′ =

L (1(X ∈ B )) where X ∼ P and similarly for Q ′, where B is the "special TV set". Then by
employing the binary case and some explicit TV computations the claim follows.

Proof. To show the binary case first: let P and Q be the distributions of a Ber(p ) and a Ber(q )
random variable respectively. To compute D (P ∥Q ), we assume that p ≥ q . This assumption is
justified because even though D (P ∥Q ) is not symmetric, noting that for the binary case

D (Ber(p )∥Ber(q )) = p log
p

q
+ (1−p ) log

1−p

1−q
=D (Ber(1−p )∥Ber(1−q ))

So if p were not greater than or equal to q , we could just swap p↔ 1−p and q↔ 1− q and
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preserve D (P ∥Q ). Now the goal is to show that the quantity

∆(p , q ) = 2De (P ∥Q )−∥P −Q∥2TV ≥ 0

We think of p as being fixed, and since ∆(p , p ) is clearly zero, and we have assumed q ≤ p , it
is sufficient for us to show that ∂∆(p ,q )

∂q ≤ 0 (see the graph to convince yourself). Since the binary
case is easy, we can explicitly compute ∆(p , q ) and get

∆(p , q ) = 2p ln
p

q
+2(1−p ) ln

1−p

1−q
− (2(p −q ))2

The derivative gives
∂∆(p , q )
∂q

= (p −q )
�

4−
1

q (1−q )

�

≥ 0

Where this last inequality (and hence the desired result) follows because f (x ) = x (1− x ) is a
downward parabola with height at most 1/4, so the difference 4− 1

q (1−q ) ≥ 0.

Now that we have established the validity of Pinsker’s inequality for the binary case, we can
reduce the general case to this one by the data processing inequality. Indeed: let P and Q now
take values in a general alphabet A , and let B = {x : P (x ) >Q (x )}. Then define P ′ and Q ′ be
the mass functions of Bernoulli’s P (B ) and Q (B ) respectively. P ′ and Q ′ can be thought of as the
mass functions of 1(X ∈ B ) and 1(Y ∈ B ) respectively for X ∼ P and Y ∼Q . So

2De (P ∥Q )≥ 2De (P
′∥Q ′) (Data processing)

≥


P ′−Q ′




2

TV (Binary case)

= (2(P (B )−Q (B )))2 (Explicit computation of TV for binary RVs)

= ∥P −Q∥2TV (Alternative expression for TV)

♥
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∆(p , q )

q
p

∂q∆(p , q )≤ 0

Figure 3: Idea for the proof of the binary case of Pinsker’s inequality

4 Poisson approximation

It is a fact in elementary probability that if (X i : 1≤ i ≤ n ) is a collection of iid Bernoulli λ/n , and we
let

Sn =
n
∑

i=1

X i

I.e: Sn ∼Bin(n ,λ/n ), then we have that

Sn
d−→Poi(λ)

It turns out that statements that are both stronger and more general are possible.

Theorem 4.1 (Entropic Poisson approximation) Let X1, · · · , Xn be not necessarily independent
Bernoulli random variables with X i ∼ Ber(pi ). Let λ =

∑n
i=1 pi and Sn =

∑n
i=1 X i . Then we have

that

De (PSn
∥Poi(λ))≤

n
∑

i=1

p 2
i +

�

n
∑

i=1

H (X i )−H (X n
1 )

�

Before we prove the Theorem we disect the conclusion: if we want convergence (for example in TV),
we want to make the right hand side small. The first sum can be killed by having the (pi )s close to
being all the same, i.e: not having a single pi dominating the others. In fact, if we use all pi = λ/n ,
then

∑n
i=1 p 2

i −→ 0, and if we moreover assume independence, then the second sum disappears and
we recover the usual Poisson convergence result. This Theorem is very nice because it very clearly
quantifies the distance in terms of "how identically distributed the X i s are", and "how independent"
they are.
Main idea: Express Tn ∼Poi(λ) as a function of Z n

1 where Zi ∼Poi(pi ) and then apply data processing.
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Proof. We use the fact that if A ∼Poi(α) and B ∼Poi(β ) are independent, then A+B ∼Poi(α+β ).
Then if we let Tn ∼Poi(λ), we can write

Tn
d=

n
∑

i=1

Zi

Where each Zi ∼Poi(pi ) is independent. Similarly we have that Sn =
∑n

i=1 X i , so we have expressed
Sn = f (X n

1 ) and Tn = f (Z n
1 ). By data processing:

D (PSn
∥Poi(λ))≤D (PX n

1
∥PZ n

1
)

=
∑

x∈A n

PX n
1
(x ) log

PX n
1
(x )

PZ n
1
(x )

=
∑

x∈A n

PX n
1
(x ) log

�

PX n
1
(x )

PZ n
1
(x )
·
∏n

i=1 PX i
(xi )

∏n
i=1 PX i

(xi )

�

=
∑

x∈A n

PX n
1
(x ) log

�

PX n
1
(x )

∏n
i=1 PZi

(xi )
·
∏n

i=1 PX i
(xi )

∏n
i=1 PX i

(xi )

�

(Each Zi is independent)

=
∑

x∈A n

PX n
1
(x ) log PX n

1
(x ) +

∑

x∈A n

PX n
1
(x ) log

1
∏n

i=1 PX i
(xi )
+
∑

x∈A n

PX n
1
(x ) log

�

n
∏

i=1

PX i (xi )

PZi
(xi )

�

=−H (X n
1 ) +

n
∑

i=1

H (X i ) +
n
∑

i=1

D (PX i
∥PZi
)

In this last computation we have used the Marginal trick (A.3). Now we only need to use the
Lemma we will prove later, that says that D (Ber(p )∥Poi(p )) ≤ p 2, and since Zi ∼ Poi(pi ) and
X i ∼Ber(pi ) we apply this and we are done. ♥

Lemma 4.2
D (Ber(p )∥Poi(p ))≤ p 2

Proof. If we compute the quantity explicitly, we see that

D (Ber(p )∥Poi(p )) = p log(e p ) + (1−p ) log
�

(1−p )e p
�

and we now claim that (1− p )e p ∈ [0, 1] whenever p ∈ [0, 1], which means that the log will be
negative and as such the claim will follow. To prove this last step, we simply note that when
p = 0, (1−p )e p = 1, when p = 1, (1−p )e p = 0 and the derivative

d

d p
(1−p )e p =−p e p ≤ 0
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♥

We have now some immediate corollaries to the Entropic Poisson Approximation Theorem

Corollary 4.3 If X1, · · · , Xn are independent Bernoulli’s pi , then

De (PSn
∥Poi(λ))≤

n
∑

i=1

p 2
i

And moreover, this results strengthen the elementary result we talked about at the start of this section,
because if in addition to independence, we assume that pi =λ/n , then we have that

De (PSn
∥Poi(λ))≤

λ2

n

Which even more amazingly gives you explicit bounds on the distance between PSn
(x ) and the respective

probability of x under Poisson for a given n . Indeed, if Pλ denotes the probability measure of the Poisson
with parameter λ. Then

|PSn
(x )−Pλ(x )| ≤



PSn
−Pλ





TV ≤
p

2λ
p

n

4.1 Poisson distribution as a maximal entropy result

Here is a motivating question: suppose that we are trying to count the number of events that occur
during a given time interval, say [0, 1], with the only information known to us its the mean number
of events, λ. A natural construction is to partition the interval [0, 1] into n bins, say Ii =

�

i−1
n , i

n

�

for
1≤ i ≤ n . And we let X i be a random variable that denotes if an event has occurred on the interval Ii .
If we assume that the events occur maximally at random throughout [0, 1], then X i ∼ Ber(λ/n ), and
so the number of occurrences is given by

Sn =
n
∑

i=1

X i ∼Bin(n ,λ/n )
d−→Poi(λ)

We will now show a result that gives an information theoretic interpretation for the Poisson distribution
as a "maximally random" distribution. Suppose we are once again interested in counting the number
of occurrences of some discrete events that happen independently of each other. If each event, of
say n total events occurs with probability pi , we can simply model whether the event has occurred by
X i ∼ Ber(pi ), and the total count of events is given by Sn =

∑n
i=1 X i , subject to the assumption that

we know the average number of events, E[Sn ] =:λ, the following Theorem tells us that the maximally
random distribution that can be achieved by any such Sn is that of a Poisson random variable.
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Theorem 4.4 (Poisson maximum entropy)

sup

¨

He (Sn ) : Sn =
n
∑

i=1

X i for independent X i ∼Ber(pi ), with
n
∑

i=1

pi =λ, n ≥ 1

«

=He (Poi(λ))

We require the following Lemma:

Lemma 4.5 (Binomial as maximum entropy) Let

Bn (λ) =

¨

L (Sn ) : Sn =
n
∑

i=1

X i , {X i }⊥ =Ber(pi ),λ=
∑

i

pi

«

Be the set of distributions that arise as sums of independent Bernoulli pi ’s where the pi ’s sum to
λ. Then

sup{H (P ) : P ∈ Bn (λ)}=H (Bin(n ,λ/n ))

That is to say, if you have n events, and each occur with a probability pi , with λ =
∑

pi the most
random way in which they can occur is described by a Binomial Bin(n ,λ/n ). With this Lemma we
may approach the Poisson maximum entropy Theorem.

Proof. We start by noting that of course, the supremum in the Theorem is just H ∗ = supn sup{H (P ) :
P ∈ Bn (λ)}, and since Bn (λ)⊆ Bn+1(λ), indeed, if L (Sn ) ∈ Bn (λ), then L (Sn ) =L (Sn +Xn+1) where
Xn+1 ∼Ber(0). So by this monotonicity, we have that

sup
n

sup{H (P ) : P ∈ Bn (λ)}= lim
n−→∞

sup{H (P ) : P ∈ Bn (λ)}
(!)
= lim

n−→∞
H (Pn )

Where Pn =L (Bin(n ,λ/n )), and step (!) is due to the Binomial as maximum entropy Lemma. We
therefore just need to show that we can in some sense pass the limit inside the entropy symbol.
The way we go about this is as follows:

H (Pn ) =−
∑

x∈N

Pn (x ) log(Pn (x ))

=−
∑

x∈N

Pn (x ) log
�

Pn (x )
Q (x )

Q (x )
�

=−
∑

x∈N

Pn (x ) log(Q (x ))−D (Pn∥Q )

From the entropy convergence of Pn to Q (Theorem 4.1) we already know that limn−→∞D (Pn∥Q ) =
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0, so all that’s left for us to determine is whether

− lim
n−→∞

∑

x∈N

Pn (x ) log(Q (x )) =H (Q )

The way we go about this is by treating this sum as an expectation with respect to the discrete
counting measure, and then we will show two things: that H (Q ) is finite, and that Pn (x )≲Q (x ),
then it will follow that Pn (x ) logQ (x ) is bounded above (up to constant) by Q (x ) logQ (x ) which
is integrable (with respect to the counting measure, indeed, it will be equal to the entropy which
we will have shown to be finite).

• H (Q )<∞:

H (Q ) :=
∑

x

Q (x ) log
x !

e −λλx

=
∑

x

Q (x )λ− logλ
∑

x

xQ (x ) +
∑

x

Q (x ) log(x !)

There’s no doubt that the first two sums are finite, indeed the first one is finite by nor-
malisation of Q and the second one is finite because it equals the expectation of a Poisson
random variable which is just λ. So all we need to show is that the last sum is also finite.
To do so we will employ the following bound: x !≤ x x = exp(x log x )≤ exp(x 2).

∑

x

Q (x ) log(x !)≤
∑

x

Q (x ) log(exp(x 2)) =
∑

x

Q (x )x 2

which is finite because the Poisson distribution has finite variance.

• Pn (x )≲Q (x ):

Pn (x ) =

�

n

x

�

�

λ

n

�x �

1−
λ

n

�n−x

(1)
≤
�

n

x

�

�

λ

n

�x

=
n !λx

x !(n − x )!n x

(2)
≤
λx

x !
≤ exp(λ)Q (x )

Where step (1) comes from the fact that the thing that disappeared is at most one, and step
(2) comes from the fact that n !≤ n ×n × · · ·×n

︸ ︷︷ ︸

x times

×(n − x )!.

This finishes the proof. ♥
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5 Mutual Information

Suppose X and Y are two random variables, we would like to now study how much information the
two random variables share, i.e: how much does knowing about one random variable tell you about
the other.

Definition 5.1 (Mutual information) Let X and Y be two random variables. Their mutual infor-
mation I (X ; Y ) is given by any of the following equivalent characterisations

I (X ; Y ) =H (X )−H (X | Y ) =H (Y )−H (Y | X )

=H (X ) +H (Y )−H (X , Y )

=D (PX Y ∥PX PY )

It is a straightforward application of the chain rule to verify that these are indeed equivalent definitions,
and each tells us slightly different implications to the nature of mutual information. The first one tells
us that I (X ; Y ) is the uncertainty in X minus the uncertainty left in X after observing Y , i.e: precisely
how much information Y told you about X . The second characterisation tells you that I (X ; Y ) is the
difference between the sum of the individual uncertainties of X and Y and the uncertainty that they
contain as a joint random variable, this definition is perhaps not very enlightening but it tells you that
I (X ; Y ) = I (Y ; X ). Perhaps more illustrative is definition three, that tells you that I (X ; Y ) is quantified
by "how far away" in the sense of relative entropy, X and Y are from being independent. In light of
Stein’s Lemma, if we wanted to carry out a test to detect whether X and Y are independent, the best
decay of error probability we can hope for is I (X ; Y ).

Definition 5.2 (Conditional mutual information) Let X , Y , Z be random variables, their conditional
mutual information I (X ; Y | Z ) is given by

I (X ; Y | Z ) =H (X | Z )−H (X | Y , Z )

=H (Y | Z )−H (Y | X , Z )

=H (X | Z ) +H (Y | Z )−H (X , Y | Z )

We now present some basic properties of mutual information.

Proposition 5.3 (Basic properties of mutual information) Let X , Y , Z be random variables. Then

• I (X ; Y )≥ 0 with equality if and only if X and Y are independent.

• I (X ; Y | Z )≥ 0 with equality if and only if X −Z −Y forms a Markov chain.
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Main idea: The first bulletpoint is obvious when looking at (an equivalent) definition I (X ; Y ) =

D (PX Y ∥PX PY ). The second bulletpoint comes from the fact that we can express

I (X ; Y | Z ) =
∑

z

p (z )D
�

PX Y |{Z=z }∥PX |{Z=z }PY |{Z=z }
�

Proof. The first part is clear from the fact that I (X ; Y ) =D (PX Y ∥PX PY ) and this quantity obviosuly
satisfies the desirede property. To show the second part, we simply note that

I (X ; Y | Z ) =H (X | Z ) +H (Y | Z )−H (X , Y | Z )

= EZ

�

E
�

− log PX |Z (X | z )− log PY |Z (Y | z ) + log PX Y |Z (X , Y | z )
��

= EZ

�

D (PX Y |Z (X , Y | z )∥PX |Z (X | z )PY |Z (Y | z ))
�

Since relative entropy is non-negative, non-negativity follows. For the equality claim it is easy to
see that we must have that for each z , D (PX Y |Z (X , Y | z )∥PX |Z (X | z )PY |Z (Y | z )) = 0, which means
that X and Y are conditionally independent given Z . ♥

Proposition 5.4 (Chain rule for mutual information) For a sequence X n
1 of random variables and

another random variable Y , we have that

I (X n
1 ; Y ) =

n
∑

i=1

I (X i ; Y | X i−1
1 )

Main idea: Definition of mutual information and use the chain rules for entropy and conditional
entropy.

Proof.

I (X n
1 ; Y ) =H (X n

1 )−H (X n
1 | Y )

=
n
∑

i=1

H (X i | X i−1
1 )−H (X i | X i−1

1 , Y )

=
n
∑

i=1

I (X i ; Y | X i−1
1 ).

♥
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Recall that whenever we talk about random variables being conditionally independent, or we say about
X −Y −Z forming a Markov chain, what we mean is that

PX Z |Y (x , z | y ) :=P(X = x , Z = z | Y = y )
!= P (X = x | Y = y )P (Z = z | Y = y )

=: PX |Y (x | y )PZ |Y (z | y )

An important class of said Markov chains is when we have X − Y − F (Y ). Clearly, given the value of
Y , X and F (Y ) are independent, and this can be interpreted as having two random variables X , Y

(possibly correlated), and then receiving a noisy observation of Y . It is unsurprising then that we have
the following result

Theorem 5.5 (Data processing for mutual information) Let X −Y −Z form a Markov chain, then:

• I (X ; Z )≤ I (X ; Y )

• I (X ; Y | Z )≤ I (X ; Y )

The first statement should be immediately intuitive, specially when we think of the chain X −Y −F (Y )

observing a noisy version of Y will give no more information of X than observing Y directly. The
second statement tells us that by observing the value of a random variable Z that is "downstream",
one cannot all of a sudden increase the amount of information that observing Y tells us about X , i.e:
observing a Z cannot add more dependencies, it can only remove already existing dependencies, hence
reducing the information.
Main idea: Use the chain rule to expand I (X ; Y , Z ) in two different ways.

Proof. By the chain rule, we have that

I (Y , Z ; X ) = I (Y ; X ) + I (Z ; X | Y )

But also
I (Y , Z ; X ) = I (Z ; X ) + I (Y ; X | Z )

However, I (Z ; X | Y ) = 0 because of the assumption that conditional on Y , Z and X are indepen-
dent, so we have that

I (X ; Y ) = I (X ; Z ) + I (X ; Y | Z )

and since mutual information is non-negative, from here both inequalities follow. In fact, we get
conditions for the equalities:

• I (X ; Y ) = I (X ; Z ) if and only if X and Y are conditionally independent given Z .
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• I (X ; Y ) = I (X ; Y | Z ) if X and Z are independent.

♥

5.1 Synergy

Note that I (X ; Y1, Y2) can be greater than/equal/less than I (X ; Y1)+I (X ; Y2). As a toy example, suppose
that X represents some "health condition" which can be "at risk" or "not at risk", and Y1 represents
whether a person exercises regularly, and Y2 represents whether the person has a balanced diet. Clearly
knowing Y1 will give some information about X , and Y2 will also give some information about X , but
the information that you gain from knowing both at once is intuitively larger than the sum of the
informations you gain from knowing each independently, this is because knowing only Y1 or Y2 actually
doesn’t tell you that much about the health of the patient: it could be the case that the patient
exercises 3 times a week but also drank 40 liters of vodka last year 1, or it could be that the patient
eats a healthy diet, but hasn’t exercised since middle school. In this case, (Y1, Y2) provide synergystic
information about X .

Definition 5.6 (Synergy) We define the synergy of (Y1, Y2) about X as:

S (X ; Y1, Y2) = I (X ; Y1, Y2)− [I (X ; Y1) + I (X ; Y2)]

Remark 5.7 We can use the chain rule to re-express synergy as

S (X ; Y1, Y2) = I (X ; Y2 | Y1)− I (X ; Y2)

And asking whether the right hand side is positive or negative admits the following interpretation:
Does knowing Y1 make Y2 more or less useful in determining X .

Definition 5.8 If S (X ; Y1, Y2) is:

• Positive: we say (Y1, Y2) are synergystic. (They say different things about X and the pieces of
information complement each other. They are independent and build on each other)

• Zero: we say (Y1, Y2) are orthogonal. (They say different things about X but the two pieces of
information they give don’t complement each other. They are just independent)

• Negative: we say (Y1, Y2) are redundant. (They say roughly the same things about X )

1If you think this is too specific for me to have made it up, you are right
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Example 5.9 (Are independent samples better?) Suppose we are allowed to observe two equally
noisy versions of some signal X , where the level of noise if fixed, i.e: this corresponds to observing
some Y = f (X ). What is better: to observe two independent noisy versions of X , say Y1 and Y2,
or two correlated ones?

X X

Y1 Y2 Y1

Z1 Z2 W1 W2

For X being our variable of interest, let PY |X and QZ |Y be the collections of conditional PMFs. In
the first scenario of independent observations, we have that Y1 and Y2 are conditionally indepen-
dent given X , i.e: PY1,Y2|X = PY1|X PY2|X . And both distributed according to PY |X (· | X ) And let Z1

and Z2 be distributed according to QZ |Y (· | Y1) and QZ |Y (· | Y2) respectively. In the second scenario
of correlated observations, we have that Y ∼ PY |X (· | X ), and then W1 and W2 are conditionally
independent given Y and are distributed according to QZ |Y (· | Y ).

It is easy to check that the joint distributions of (X , Z1) and (X , W1) are the same, indeed:

P(X = x , Z1 = z ) =P(Z1 = z | Y = y )P(Y = y | X = x )P(X = x )

=QZ |Y (z , y )PY |X (x , y )PX (x )

=P(W1 = z | Y = y )P(Y = y | X = x )P(X = x )

=P(X = x , W1 = z )

However, the joint distributions (X , Z1, Z2) and (X , W1, W2) are different. To answer the question
as to which observation we should pick, we have the following result.

Proposition 5.10 In the same setting as the above example, if the synergy S (X ; W1, W2) is positive,
then correlated observations are better, in the sense that

I (X ; W1, W2)> I (X ; Z1, Z2)

Main idea: Start by noting that S (X ; W1, W2) > 0 if and only if I (X ; W2 |W1) > I (X ; W2) and due to
the setup, since (X , W2)

(d )
= (X , Z2) that is equal to I (X ; Z2), then use data processing and Z1 − X −Z2
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form a Markov chain.

Proof. Recall that since S (X ; Y1, Y2) := I (X ; Y1, Y2)− I (X ; Y1)− I (X ; Y2), we can use the chain rule
and express this simply as

S (X ; Y1, Y2) = I (X ; Y2 | Y1)− I (X ; Y2)

So if S (X ; W1, W2) > 0, then we have that I (X ; W2 | W1) > I (X ; W2) = I (X ; Z2). But due to the
assumption of Z1 and Z2 being conditionally independent given X , the data processing property
implies that I (X ; Z2)≥ I (X ; Z2 | Z1), so putting it all together:

I (X ; W2 |W1)> I (X ; Z2 | Z1)

Now we can add I (X ; Z1) = I (X ; W1) to both sides of the equation and deduce that

I (X ; W1, W2)> I (X ; Z1, Z2)

♥
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6 Entropy and additive combinatorics

In this section we will show some entropy bounds that are inspired from ideas in additive combinatorics.
First we note that if A and B are subsets of the integers, then it is obvious that

max{|A|, |B |} ≤ |A+B | ≤ |A||B |

Proposition 6.1 (Simple sumset entropy bounds) If X and Y are independent integer-valued
RVs, then

max{H (X ), H (Y )} ≤H (X +Y )≤H (X ) +H (Y )

Proof. It’s a rather simple calculation

H (X ) +H (Y )
(1)
=H (X , Y )
(2)
=H (X , X +Y )
(3)
=H (X +Y ) +H (X | X +Y )
(4)
≤H (X +Y ) +H (X )

And so H (Y )≤H (X +Y ). By symmetry the lower bound follows. What happened here was, in step
(1) we used independence of X and Y , in step (2) we used the fact that the map (x , y ) 7→ (x , x + y )

is 1− 1. Step (3) follows from the chain rule, and step (4) comes from Conditioning Reduces
Entropy. Incidentally this also shows the upper bound, indeed, looking at equation (3) and using
the fact that H (X | X +Y )≥ 0 also shows the upper bound. ♥

Another inequality from additive combinatorics is Rusza’s triangle inequality, that says

|A−C | ≤
|A−B ||B −C |
|B |

This also admits an entropic version:

Theorem 6.2 (Rusza triangle ienquality for entropy) If X , Y , Z are independent integer-valued
Random Variables, we have that

H (X −Z )≤H (X −Y ) +H (Y −Z )−H (Y )

Main idea: First show that I (X ; (X − Y , Y − Z )) ≥ I (X ; X − Z ). Showing inequalities for mutual
information is best done with the data processing property. Then re-express each side of the inequality
in terms of entropies.
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Proof. Note that since X −Z = (X −Y )+(Y −Z ), given (X −Y , Y −Z ), X −Z is a constant and so
X and X −Z are conditionally independent given (X −Y , Y −Z ). Therefore by the data processing
inequality for mutual information, we have that

I (X ; X −Z )≤ I (X ; (X −Y , Y −Z ))

However, note that

I (X ; X −Z ) :=H (X −Z )−H (X −Z | X )
(1)
=H (X −Z )−H (Z | X )
(2)
=H (X −Z )−H (Z )

Where (1) comes from the fact that given X = x , the map x − z 7→ z is injective. Step (2) comes
from the independence of X and Z . We can now also inspect

I (X ; (X −Y , Y −Z )) :=H (X ) +H (X −Y , Y −Z )−H (X , X −Y , Y −Z )
(1)
=H (X ) +H (X −Y , Y −Z )−H (X , Y , , Z )
(2)
=H (X −Y , Y −Z )−H (Y )−H (Z )

Where step (1) comes from the fact that the map (x , x − y , y − z ) 7→ (x , y , z ) is injective, and step
(2) comes from the fact that X , Y , Z are independent. Combining everything we have that

H (X −Z )≤H (X −Y , Y −Z )−H (Y )

≤H (X −Y ) +H (Y −Z )−H (Y )

Where in the last step we have used the subadditivity of entropy proven in the Theorem "Simple
Sumset Entropy Bounds". ♥

The next and final inequality of this chapter is based on the following observation. If X1, X2 are IID
RV.s, then we know from Simple Sumset Bounds, that H (X1)≤H (X1+X2) and similarly, by swapping
X2 7→ −X2, we also have that H (X1)≤H (X1−X2). The question we ask now is, which - the sum or the
difference of two IID RVs - increases the entropy more? The next Theorem asserts that the ratio of
the differences lies between 1/2 and 2.
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Theorem 6.3 (Doubling-difference inequality) If X1 and X2 are IID integer-valued RVs, then

1

2
≤

H (X1+X2)−H (X1)
H (X1−X2)−H (X1)

≤ 2

We need the following lemma

Lemma 6.4 Let X , Y , Z be independent, integer valued, then

I (X +Y +Z ; X )≤ I (X +Y ; X ).

(This intuitively makes sense, because since Z is independent of everything else, the information
X says about X + Y is going to be greater than or equal than than the information that X tells
you about X +Y +Z , since adding Z adds more randomness to the sum, and X can’t tell anything
about that randomness) As an immediate corollary:

H (X +Y +Z )≤H (X +Y ) +H (Y +Z )−H (Y )

Main idea: To show the first inequality, use data processing on a smartly selected Markov Chain and
then use the chain rule as well as independence. To show the second result express both sides of the
mutual information inequality in terms of entropies.

Proof. Since X + Y + Z = (X + Y ) + Z , if we are given the value of the vector (X + Y , Z ), then
X + Y +Z is constant and so X − (X + Y , Z )− (X + Y +Z ) forms a Markov chain, so we have the
following:

I (X +Y +Z ; X )
(1)
≤ I (X +Y , Z ; X )
(2)
= I (X +Y ; X ) + I (Z ; X | X +Y )
(3)
= I (X +Y ; X )

Where step (1) comes from the data processing inequality and the observation that X −(X +Y , Z )−
(X + Y +Z ) forms a Markov chain. Step (2) comes from the chain rule, and step (3) comes from
the fact that Z and X are independent, so no information about Z is gained upon observing X ,
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given the value of X +Y . To show the second claim, we simply note that

I (X +Y +Z ; X ) :=H (X +Y +Z )−H (X +Y +Z | X )
(1)
=H (X +Y +Z )−H (Y +Z | X )
(2)
=H (X +Y +Z )−H (Y +Z )

Where step (1) comes from the fact that given that X = x , the map X +Y +Z 7→ Y +Z is injective,
and step (2) comes from the fact that X is independent to Y +Z . Now finally we take a look at
the other side of the main inequality:

I (X +Y ; X ) :=H (X +Y )−H (X +Y | X )
(1)
=H (X +Y )−H (Y | X )
(2)
=H (X +Y )−H (Y )

Where step (1) comes as always, because given X = x , the map X +Y 7→ Y is injective, and step (2)
comes from the fact that X and Y are independent. Now combining everything gives the second
inequality. ♥
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7 Entropy rates of a stochastic process

If we have a sequence of n random variables, a natural question is to ask how does the entropy of the
sequence grow with n? This growth rate is what we call the entropy rate:

Definition 7.1 (Entropy rate) The entropy rate of a stochastic process X= (Xn : n ≥ 0) is given by

H (X) = lim
n−→∞

1

n
H (X1, · · · , Xn )

Example 7.2 (Memoryless source) Let X = (Xn : n ≥ 0) be a memoryless source. Then we have
that H (X1, · · · , Xn ) =

∑n
i=1 H (X i ) by independence, but each of these summands is the same, say

H (X ) because of identical distributions. Therefore H (X) =H (X )

Example 7.3 (Ergodic Markov chain) Recall that a Markov chain X = (Xn ) is ergodic if its irre-
ducible and aperiodic. Let P be the transition matrix of the chain: P (x , y ) =P(Xn+1 = y | Xn = x ).
Suppose X0 ∼ PX0

is the initial distribution of the chain, and let π be the unique stationary distri-
bution. Then we can compute

H (X n
1 ) =H (X1) +

n
∑

i=2

H (X i | X i−1
1 ) (Chain rule)

=H (X1) +
n
∑

i=2

H (X i | X i−1) (Markov property)

=H (X1)−H (Xn+1 | Xn ) +
n
∑

i=1

H (X i+1 | X i ) (Relabelling indices)

Now note that since H (X | Y ) is a continuous function of the PMFs of X and Y , we have that
H (Xn | Xn−1) −→H (X̄1 | X̄0) where X̄0 ∼ π and X̄1 has the conditional distribution P(X̄1 = y | X̄0 =

x ) = P (x , y ). Therefore we have that

H (X1)−H (Xn+1 | Xn )
n

+
1

n

n
∑

i=1

H (X i+1 | X i )−→H (X̄1 | X̄0)

Due to the fact that the first term clearly goes to zero, and the second term converges by the
Cesáro Lemma.

A general class of sources for which we can tell the entropy rate is that of Stationary Processes.
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Definition 7.4 (Stationary process) A stochastic process is said to be stationary if the joint distri-
bution of any subset of the sequence of random variables is invariant with respect to shifts in the
time index, i.e:

P(X1 = x1, X2 = x2, · · · , Xn = xn )

=P(X1+l = x1, X2+l = x2, · · · , Xn+l = xn )

For every n and every shift index l ≥ 0.

Theorem 7.5 (Stationary sources have entropy rate) Let X be a stationary source on A . Then
the entropy rate exists and is equal to

H (X) = lim
n−→∞

H (Xn | X n−1
1 )

Main idea: Use Cesáro Lemma to show that the entropy rate converges if and only if an =H (Xn | X n−1
1 )

converges, and then show this is a non-increasing sequence bounded below to show it converges.

Proof. We first note that by the chain rule:

1

n
H (X n

1 ) =
1

n

n
∑

i=1

H (X i | X i−1
1 )

So in light of the Cesáro Lemma, if we understand the convergence of an =H (Xn | X n−1
1 ), then we

will be done. First note obviously an is bounded below by zero, and intuitively, for progressively
larger n , we are conditioning on more and more random variables, so somehow it makes sense
that an would decrease. This is indeed what happens:

an+1 =H (Xn+1 | X n
1 )≤H (Xn+1 | X n

2 ) (Conditioning decreases H )

=H (Xn | X n−1
1 ) (Stationarity)

= an

Thus (an ) is non-increasing and bounded below, so it converges. ♥

We have shown that for a stationary source X, its entropy rate is

H (X) = lim
n−→∞

H (Xn | X n−1
1 )

There turns out to be another interesting characterisation of this rate, which should seem true at an
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intuitive level due to stationarity. Suppose now that our source is indexed both in the present and
past: X= (Xn : n ∈ Z). Then

Theorem 7.6 (Entropy rate and infinite past) For a stationary source X, we have that

H (X) =H (X0 | X −1
−∞)

The proof is skipped as it uses some big measure theoretic guns.

7.1 Shannon-McMillan-Breiman Theorem

We now present a general statement of the Asymptotic Equipartition Property for discrete stationary
sources.

Definition 7.7 (Ergodic source) Let X = (Xn : n ∈ Z) on a finite alphabet A be stationary. Let
T :A Z −→A Z be the left shift operator:

(T x)n = xn+1

The source X is said to be ergodic if all T -invariant measurable sets are trivial, i.e: if T −1B = B

implies that P(X ∈ B ) = 0 or 1.

Morally, a source is ergodic if if satisfies a general form of a Law of Large Numbers. This is made
precise by the following Theorem:

Theorem 7.8 (Birkhoff’s Ergodic Theorem) Let X = (Xn : n ∈ Z) be a stationary and ergodic
source on a finite alphabet A . Then for any measurable function f :A Z −→R with E[| f (X)|]<∞,
one has that almost surely:

1

n

n
∑

i=1

f (T i X)−→ E[ f (X)]

With this Theorem, of which we omit the proof, we are ready to state and prove the general version
of the AEP:

Theorem 7.9 (Shannon-McMillan-Breiman) Let X be a stationary and ergodic source on a finite
alphabet A with entropy rate H =H (X), then

1

n
log Pn (X

n
1 )−→H a .s
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8 Types and large deviations

We now study a powerful tool in large deviation theory to calculate the possibility of rare events. In the
AEP, we focused our attention on the small set of typical sequences, and this gave us some interesting
results. Now we will focus on sets of sequences that have the same empirical distribution, and with
this restriction, obtain bounds on the number of sequences in with a particular empirical distribution,
and the probability of each of these sequences.

8.1 Method of types

For a fixed finite alphabet A , let P (A ) denote the set of all PMFs of A , i.e:

P (A ) =

¨

P ∈ [0, 1]A :
∑

x∈A
P (x ) = 1

«

The set P (A ) can be identified with the probability simplex.

Definition 8.1 (Type) For a message X n
1 , we define its type to be its empirical PMF on the alphabet

A :
bPn (a ) =

1

n

n
∑

i=1

1(X i = a )

Remark 8.2 Note that the type is indeed a PMF on the alphabet A , indeed:

∑

a∈A

1

n

n
∑

i=1

1(xi = a ) =
1

n

n
∑

i=1

∑

a∈A
1{xi = a }

︸ ︷︷ ︸

=1

= 1.

Proposition 8.3 (Probability of an IID string, ♩) For any x n
1 ∈A

n with type bPn and any PMF Q ,
we have that

Q n (x n
1 ) = 2−n[H ( bPn )+D ( bPn∥Q )]

Moreover, if bPn =Q , then clearly
Q n (x n

1 ) = 2−nH (Q )

Main idea: It is clear that logQ n (x n
1 ) =

∑n
i=1 logQ (xi ). The trick is that it is now possible to introduce

out of this air the empirical PMF, by notnig that for any function H , H (xi ) =
∑

a∈A 1(a = xi )H (a ),
and so, by multiplying and dividing by n , we can turn this into something that looks like an empirical
PMF.
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Remark 8.4 The reason why this Proposition is called Probability of an IID string, is that we are
essentially saying that if {X i } ∼Q are IID, then P[X n

1 = x n
1 ] = 2−n [H ( bPn )+D ( bPn∥Q )]. This is remarkable

as it says that the probability of an IID string depends only through the type of the string!

Proof. We start by writing

logQ n (x n
1 ) = log

n
∏

i=1

Q (xi )

=
n
∑

i=1

logQ (xi )

=
n
∑

i=1

∑

a∈A
1({xi })(a ) logQ (a )

= n
∑

a∈A

1

n

n
∑

i=1

1({xi })(a )
︸ ︷︷ ︸

bPn (a )

log

�

Q (a ) bPn (a )
bPn (a )

�

=−n
�

H ( bPn ) +D ( bPn∥Q )
�

♥

Definition 8.5 (n-types) For a finite alphabet A , the set of n-types, Pn (A ) is defined to be

Pn (A ) = {P ∈P (A ) : nP (a ) ∈ Z, ∀a ∈A }

i.e: the set of empirical distributions with denominator n . Of course the type of a string x n
1 is an

n-type.

Remark 8.6 (Size of Pn) I.e: the set of n-types consists of PMFs on A that look like

P =
�

k1
n , k2

n , · · · , km
n

�

Where m = |A |. Therefore a straightforward observation is that since for a given n-type P ,since
ki ∈ {0, · · · , n}, and there are m choices to make, we have that

|Pn (A )| ≤ (n +1)m

Of course this is a brutal bound because we have to account for the fact that k1+ · · ·+km = n .
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Definition 8.7 (Type class) Given an n-type P , the type class T (P ) is the set of strings whose
empirical distribution is P :

T (P ) =
�

x n
1 ∈A

n : bPx n
1
= P

	

A n (c , d )

(d , c )

Pn

=
�

0, 0, 1
2 , 1

2 , 0, 0
�

Since each string x n
1 on A n gives rise to n-type, namely bPx n

1
, and each T (P ) is a subset of A n , it

follows that
A n =

⋃

P∈Pn (A )
T (P )

Moreover, we can give an explicit expression for the size |T (P )|, indeed, if A = {a1, a2, · · · , am}, then to
describe a string x n

1 ∈ T (P ), we need to arrange nP (a1) lots of a1, nP (a2) lots of a2, · · · , and nP (am )

lots of an , note that these quantities are indeed integers because P is an n-type. I.e: we have to sort
n elements (the individual bits of the string) into m groups (the letters of the alphabet), the i t h of
which has size nP (ai ), this is described by the multinomial coefficient:

|T (P )|=
�

n

nP (a1) nP (a2) · · · nP (am )

�

=
n !

∏m
i=1(nP (ai ))!

Now we attempt to give some information-theoretic bounds on the size of T (P ).

Proposition 8.8 (Size of type class ♩) For a type P ∈ Pn over an alphabet of size m , we have
that

(n +1)−m 2nH (P ) ≤ |T (P )| ≤ 2nH (P )

To prove this we will need the following result:

Lemma 8.9 (P maximises P n (T (P )), ♩) Let P be an n-type, then the most likely type class under
P n is T (P ), i.e:

max
P ′∈Pn

P n (T (P ′)) = P n (T (P ))
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Main idea: The key is that for a string x n
1 ∈ T (P ), its probability under P n is very simply

∏

a∈A P (a )nP (a ),
because each character a occurs nP (a ) times, and since the string is IID, we don’t care about the
order. This allows us to compute then the likelihood ratio between P n (T (P )) and P n (T (P ′))

Proof. Let P and P ′ be two n-types, and write A = {a1, · · · , am}. Consider an x n
1 ∈ T (P ), we have

that
P n (x n

1 ) = P (x1)P (x2) · · ·P (xn )

and since each xi ∈ {a1, · · · , am}, we have that

P (x1)P (x2) · · ·P (xn ) = P (a1)
#a1 P (a2)

#a2 · · ·P (am )
#am

where #ai indicates the number of occurences of ai in x n
1 . However the number of occurrences

of each ai in x n
1 is precisely nP (ai ), this is because x n

1 ∈ T (P ). Therefore:

P n (T (P )) =
∑

x n
1 ∈T (P )

P n (x n
1 )

=
∑

x n
1 ∈T (P )

n
∏

i=1

P (xi )

=
∑

x n
1 ∈T (P )

m
∏

j=1

P (a j )
nP (a j )

= |T (P )|
m
∏

j=1

P (a j )
nP (a j )

Therefore we have that the likelihood ratio

P n (T (P ))
P n (T (P ′))

=
|T (P )|

∏m
j=1 P (a j )nP (a j )

|T (P ′)|
∏m

j=1 P (a j )nP ′(a j )
=

n
∏

j=1

(nP ′(a j ))!

(nP (a j ))!
P (a j )

n [P (a j )−P ′(a j )]

Where in the last equality, we have used the expression of the size of T (P ) and T (P ′) we did before
using multinomial coefficients. Now we use the inequality

k !/ℓ!≥ ℓk−l
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Then we have that

P n (T (P ))
P n (T (P ′))

≥
m
∏

j=1

(nP (a j ))
n [P ′(a j )−P (a j )]P (an )

n [P (a j )−P ′(a j )]

=
m
∏

j=1

n n [P ′(a j )−P (a j )]

= n n
∑m

j=1[P
′(a j )−P (a j )] = n 0 = 1

This establishes the proof. ♥

Now we are ready to prove Proposition 8.8.
Main idea: The upper bound is the standard counting argument, with the addition of the Probability
of IID Strings Lemma, which tells us that if x n

1 ∈ T (P ), then P n (x n
1 ) = 2−nH (P ). The lower bound comes

from the observation we did a while ago that

A n =
⋃

Q∈Pn

T (Q )

and using the Lemma which states that P = argmaxQ∈Pn
P n (T (Q ))

Proof of Proposition 8.8. Using Proposition 8.3, we have that

1≥ P n (T (P )) =
∑

x n
1 ∈T (P )

P n (x n
1 ) =

∑

x n
1

2−nH (P ) = |T (P )|2−nH (P )

Which gives the upper bound. For the lower bound, we have that

1= P n (A n ) = P n

�

⋃

P ′∈Pn

T (P ′)

�

≤
∑

P ′∈Pn

P n (T (P ′))

≤ |Pn |max
P ′∈Pn

P n (T (P ′))

= |Pn |P n (T (P ))

≤ (n +1)m |T (P )|2−nH (P ).

Where in the last inequality we have used the observation that |P n | ≤ (n +1)|A | as well as Propo-
sition 8.3. ♥

The size of type class proposition and Proposition 8.3 give a non-asymptotic version of the AEP: they
explain that the strings in the set T (P ) (which correspond to the typical strings, because they have
relative frequency equal to P ) all have a uniform probability of 2−nH and that there are approximately
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2nH of them. As an immediate corollary we have that

Corollary 8.10 (Probability of type class) For any type P ∈Pn over an alphabet of size m , and
any PMF Q on the alphabet, we have that

(n +1)−m 2−nD (P ∥Q ) ≤Q n (T (P ))≤ 2−nD (P ∥Q ).

Main idea: Since all IID strings have probability determined uniquely by its type: Q n (T (P )) =

|T (P )|2−n [H (P )+D (P ∥Q )]. Now using the bounds on |T (P )| from Proposition Size of Type Class finishes
the claim.
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Before moving on, let us summarise the basic theorems concering types we have just proven. This
suite of results is the method of types, and we will use it to obtain some results in Large Deviation
Theory

|Pn | ≤ (n +1)|A | Bound on n types.

Q n (x n
1 ) = 2−n (H ( bPx n

1
)+D ( bPx n

1
∥Q )) Probability of IID strings.

|T (P )| ≈ 2nH (P ) Size of Type Class.

Q n (T (P ))≈ 2−nD (P ∥Q ) Probability of Type Class.

8.2 Large Deviations

Example 8.11 Let X1, · · · , Xn
i i d∼ Q with µ = E[X ] its common mean. Then the probability that

its empirical mean Sn =
1
n

∑n
i=1 X i is ε further to the right of µ is of course going to decay to zero

by the WLLN. But to obtain precise asymptotics one could bound the probability above by

P(Sn ≥µ+ε) =P
�

e λnSn ≥ e nλ(µ+ε)
�

≤ e −nλ(µ+ε)E[e λ
∑

X i ]

= exp(−n [λ(µ+ε)−Λ(λ)])

Where Λ(t ) = ln E
�

e t X
�

is the log-moment generating function. We thus rewrite

P(Sn ≥µ+ε)≤ exp(−nΛ∗(µ+ε))

Where Λ∗(t ) = supλ≥0(λt −Λ(λ)). This gives one way of looking at the rate at which the probability
decays. Another way we could have approached this is as follows:

The empirical averages Sn can be written as an expectation under a random empirical distribution,
indeed:

Sn =
1

n

n
∑

i=1

f (X i ) =
∑

a∈A

1

n

n
∑

i=1

1(X i = a ) f (a ) =
∑

a∈A

bPX n
1
(a ) f (a )

Where bPX n
1

is the random empirical measure onA induced by X n
1 . Therefore Sn being at least µ+ε

is an equivalent condition to the empirical distribution P = bPX n
1

of X n
1 being such that EX∼P [ f (X )]

is at least µ+ε. So that if we let E = {P ∈P : EX∼P [ f (X )]≥µ+ε}, then

P[Sn ≥µ+ε] =Q n ({x n
1 : bPx n

1
∈ E })
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8.2.1 Sanov’s Theorem

From the discussion above, we saw that asking if for X1, · · · , Xn ∼Q are IID, their empirical mean Sn

exceeds µ+ε, is the same question as asking if an IID string X n
1 generated according to Q n gives rise

to an empirical distribution bPX n
1

that belongs to a special set E of probability distributions. Sanov’s
Theorem asks this question in slightly more generality, attemptig to bound the probability that a
random string X n

1 ∼Q n gives rise to an empirical PMF bPX n
1

that belongs to a general class of PMFs.
It will also give a very nice geometric picture of this question.

Remark 8.12 (A question on notation) Whenever I write seemingly nonsense things like Q n ( bPn ∈
E ), what I really mean is - given that Q n induces a probability measure on A n - chosen a random
string x n

1 ∈A
n according to the distribution Q n , what is the probability that the empirical measure

this string induces, bPn ≡ bPx n
1

belongs to E . Alternatively, we can think just of X n
1 being a random

variable with P[X n
1 ∈ B ] = Q n (B ), and ask, what is the probability that the random empirical

measure induced by X n
1 is in E . Hence:

Q n ( bPn ∈ E ) :=Q n{x n
1 : bPx n

1
∈ E }=P{ω : bPX n

1 (ω)
∈ E }

Theorem 8.13 (Sanov’s Theorem K) Let X1, · · · , Xn
i i d∼ Q where Q is of full support on a finite

alphabet A of size m . Then for any E ⊆P

Q n ( bPn ∈ E )≤ (n +1)m 2−n infP∈E D (P ∥Q )

Moreover, if E = E ◦, then
lim

n−→∞
−

1

n
logQ n ( bPn ∈ E ) =D (P ∗∥Q )

Where P ∗ is the PMF that attains the infimum infP∈E D (P ∥Q ).

Main idea: To show the upper bound, we will employ the method of types, along the trivial expression

Q n ( bPn ∈ E ) =
∑

P∈E∩Pn

Q n (T (P ))

in particular, we will use the Probability of Type Class Lemma. Since Q is of full support and E is
nice, infP∈E D (P ∥Q ) is attained by some P ∗. This and the upper bound gives that

lim
n−→∞
−

1

n
logQ n ( bPn ∈ E )≥D (P ∗∥Q )

To show the opposite inequality, consider a sequence {µn} with µn ∈Pn ∩E , and µn −→ P ∗, and from
the sum above, we see that Q n ( bP ∈ E )≥Q n (T (µn )). Now use the Probability of Type Class again and
then send n −→∞.
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Proof. To establish the upper bound, we first note that

Q n ( bPn ∈ E ) =
∑

P∈E∩Pn

Q n (T (P )) (⋆)

Indeed, Q n ( bPn ∈ E ) is the probability that a string in A n gives rise to a type bPn that belongs to
E . Therefore to compute this probability we sum over all the probabilities of the type classes of
each n-type in E . Therefore

Q n ( bPn ∈ E )≤ |E ∩Pn | max
P∈E∩Pn

Q n (T (P ))

≤ (n +1)m sup
P∈E

2−nD (P ∥Q )

= (n +1)m 2−n infP∈E D (P ∥Q ) (⋆⋆)

Where in the second inequality we have used that |Pn | ≤ (n +1)m and Q n (T (P ))≤ 2−nD (P ∥Q ) which
was obtained in Corollary 8.10. To establish the second claim, we note that thinking of a PMF
P as a vector on the probability simplex, we have that D (P ∥Q ) is continuous in P since we have
assumed Q is of full support. Therefore since E is closed, we have that the infimum is attained
by some P ∗ ∈ E which we fix throughout the proof. From this we can already see from (⋆⋆) that

lim inf
n−→∞

−
1

n
logQ n ( bPn ∈ E )≥D (P ∗∥Q ).

Now observe that the set
⋃

nPn of n-types is dense in P (the probability simplex), and hence
also dense in E . Thus we can pick a sequence {µn} with µn ∈Pn ∩E (which is non-empty because
E being the closure of its interior means its interior is non-empty, and since being dense means
that every open set will be eventually intersected by Pn , we can guarantee that this µn can exist
K) such that µn −→ P ∗ and therefore D (µn∥Q )−→D (P ∗∥Q ) as n −→∞.

From (⋆) and the fact that for all n , Pn ∈ E , we have that Q n ( bPn ∈ E )≥Q n (T (Pn )), So in particular,
we also have that Q n ( bPn ∈ E ) ≥Q n (T (µn )). Moreover, using again Corollary 8.10 we can further
bound Q n (T (µn ))≥ (n +1)−m 2−nD (µn∥Q ) This implies that

lim sup
n−→∞

−
1

n
logQ n ( bPn ∈ E )≤ lim sup

n−→∞
D (µn∥Q ) =D (P ∗∥Q )

♥
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Figure 4: Proof by picture of the second part of Sanov’s Theorem

Remark 8.14 (Topological Remark) Let us explain a bit more in detail why the requirement
of E being the closure of its interior. Since

⋃

nPn is dense in P , it means that for any PMF
P ∈P , given any error tolerance ε > 0, there will always be a PMF µn ∈Pn large enough so that
|µn − P | < ε (Here remember we are treting PMFs as vectors in Rn). However, the PMF P in
question is the minimiser of an infimum, so to guarantee the existence of the minimiser, which we
labelled P ∗, we needed E to be closed. Finally, note that we used the bound

Q n ( bPn ∈ E )≥Q n (T (µn ))

This came from the expression

Q n ( bPn ∈ E ) =
∑

P∈E∩Pn

Q (T (P ))

So we had to guarantee that we could choose our µn to also belong to E . Let us show this. Let
ε > 0, we are going to show there exists some µ ∈ E ∩Pn for some n large enough such that
|µ−P ∗|<ε. Recall the definition of closure, for a set S in a topological space X ,

cl(S ) =
�

x ∈ X : for U ∋ x open,U ∩S ̸=∅
	

Therefore, since
E = cl(E ◦)

and P ∗ ∈ E , we have that Bε(P ∗)∩E ◦ ̸=∅. And since both Bε(P ∗) and E ◦ are open, then so is their
intersection. Now by

⋃

nPn being dense, we have that for n large enough, we will intersect the
open set Bε(P ∗)∩E ◦. Which will give us our desired µ.
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Example 8.15 (Example 8.11 continued) Recall that for the event B = {Sn ≥µ+ε}, the Chernoff
bound told us that

Q n (B )≤ exp(−nΛ∗(µ+ε))

Note that E = {P ∈ P : EP [X ] ≥ µ+ ε} has that E = E ◦ so by Sanov’s Theorem, Q n (B ) ≤ (n +
1)m e −nDe (P ∗∥Q ) and moreover De (P ∗∥Q ) is the asymptotically right exponent. We must then have
that Λ∗(µ+ε)≤De (P ∗∥Q ).

In fact these two quantities are equal:

Proposition 8.16 (Decay exponent and Sanov’s Theorem, K) Let X n
1

i i d∼ Q on an alphabet A .
For events be of the form

B =

¨

1

n

n
∑

i=1

f (X i )≥µ+ε

«

.

we have that
Λ∗(µ+ε) = inf

P∈E
De (P ∥Q ) =: De (P

∗∥Q )

Where recall that
E =

�

P ∈P : EP [ f (X )]≥µ+ε
	

Main idea: Compute the supremum in the definition of Λ∗(µ+ ε). To do so, you will show that
Λ′(0) = µ, and limx−→∞Λ

′(x ) = fmax > µ+ ε. Moreover, show Λ′′(x ) ≥ 0. Therefore, we have that
Λ(λ∗) =µ+ε for some λ∗. Now consider the PMF

Pλ(a ) =
exp(λ f (a ))

E[exp(λ f (X1))]
Q (a )

From this you will show that Pλ∗ ∈ E , and as such De (P ∗∥Q )≤De (Pλ∗∥Q ) and by computing this quantity
you will reach that De (Pλ∗∥Q ) =Λ∗(µ+ε) as required.

Proof. The only thing remaining to be shown is that Λ∗(µ+ε)≥De (P ∗∥Q ). We first compute the
supremum in the definition of Λ∗(x ). Define the PMF

Pλ(a ) =
exp(λ f (a ))

E[exp(λ f (X1))]
Q (a )

Then

Λ′(λ) =
E[ f (X1)e λ f (X1)]

E[e λ f (X1)]
= EY ∼Pλ[ f (Y )]
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By taking another derivative it’s pretty easy to see that

Λ′′(λ) =VarY ∼Pλ( f (Y ))≥ 0

Therefore Λ′(λ) is non decreasing from from Λ′(0) =µ to

lim
λ−→∞

Λ′(λ) = lim
λ−→∞

∑

x

Q (x ) f (x )
∑

y Q (y )exp{λ[ f (y )− f (x )]}
−→ fmax

Because whenever x ̸= argmaxx f (x ), the denominator will contain an exponential with a positive
exponent and so the limit will kill the entire fraction. Therefore, since µ<µ+ε< fmax, there must
be some λ∗ > 0 for which Λ′(λ∗) =µ+ε, as Λ′ is continuous. Recalling that

Λ∗(x ) := sup
λ≥0
{λx −Λ(x )}

We see that we can compute this supremum by taking derivatives and setting to zero, i.e: Λ′(x ) =λ,
and since Λ′′ ≥ 0, this will be indeed a maximum of λx −Λ(x ). Thus we see that Λ∗(µ+ε) = λ∗.
Now recall that EY ∼Pλ∗ [ f (Y )] =Λ

′(λ∗) =µ+ε, so Pλ∗ ∈ E , and so

De (P
∗∥Q )≤De (Pλ∗∥Q )

= EY ∼Pλ∗

�

log
Pλ∗(Y )
Q (Y )

�

= EY ∼Pλ∗

�

log
e λ
∗ f (Y )

E[e λ∗ f (X1)]

�

=λ∗EY ∼Pλ∗ [ f (Y )]−Λ(λ
∗)

=Λ∗(µ+ε)

as required. ♥

Incidentally we have also found the PMF P ∗ that minimises relative entropy.

Corollary 8.17 Let X n
1 be IID with common PMF Q on A . For events B such as the one in

Proposition 8.16, we have that the PMF P ∗ that minimises relative entropy, P ∗ = infP∈E D (P ∥Q ),
is equal to

P ∗(a ) =
exp(λ∗ f (a ))

E[exp(λ∗ f (X1))]
Q (a )

Where λ∗ > 0 is chosen so that EY ∼Pλ∗ [ f (Y )] =µ+ε.

Proof. From Example 8.15 we know that

Λ∗(µ+ε)≤D (P ∗∥Q )
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But in Proposition 8.16, we have found that

Λ∗(µ+ε) =D (Pλ∗∥Q )

which means that D (Pλ∗∥Q ) ≤D (P ∗∥Q ). But since by assumption EY ∼Pλ∗ [ f (Y )] = µ+ε, it follows
that Pλ∗ ∈ E and so by definition of P ∗, it must be that D (Pλ∗∥Q ) ≥ D (P ∗∥Q ), and as such both
relative entropies are equal. However, since D (P ∥Q ) is strictly convex, and E is nonempty, convex
and closed, we have that the minimiser is unique. (See Proposition A.6) ♥

Example 8.18 (An example on using Sanov’s Theorem) Here’s a neat example of how to use
Sanov’s Theorem to make a very clever counting argument. Let A = {1, 2, · · · , m} and g :A −→R

be a function. Fix some α ∈R. Show that

#

¨

x n
1 :

1

n

n
∑

i=1

g (xi )≥α

«

≈ 2nH ∗ H ∗ = sup
P :
∑

j P ( j )g ( j )≥α
H (P )

Solution. The clever ideas are as follows: first, the constraint we have on our string can be
expressed in terms of an expectation with respect to an empirical measure. Indeed:

E
bPx n

1
[g ] :=

∑

x

g (x ) bPx n
1
(x )

=
∑

x

g (x )
1

n

n
∑

i=1

1(xi = x )

=
n
∑

i=1

1

n

∑

x

g (x )1(xi = x )

=
n
∑

i=1

1

n
g (xi )

So if we let
E = {P ∈P : EP [g ]≥α}

Then it is clear by the above calculation that the set of strings we are interested in, is precisely the
set {x n

1 : bPx n
1
∈ E }. To count the number of strings in this set, we use the second clever idea, which

is to introduce uniform random variables. In particular, by setting X1, · · · , Xn ∼Unif{1, · · · , m}, we
have that

P[ bPX n
1
∈ E ] =

#{x n
1 : bPx n

1
∈ E }

m n

Because the numerator is the number of favorable strings and the denominator is the total number
of strings. Therefore, all we need to do is estimate the probability P[ bPX n

1
∈ E ] =Q n ({x n

1 : bPx n
1
∈ E }),

and since it can be checked that E is the closure of its interior, we can employ Sanov’s Theorem,
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P

E

Q

P
P ∗

Figure 5: Illustration of Pythagorean Theorem

to assert that Q (E )≈ 2−n infP∈E D (P ∥Q ). It follows that we are just left to compute this infimum. But
since Q is uniform, this is a really easy task because

D (P ∥Q ) =
m
∑

x=1

P (x ) log
P (x )
Q (x )

=−H (P ) + log(m )

It now follows that Q n (E )≈ 2−n (infP∈E −H (P ) log(m )) =m−n 2nH ∗ Which finishes our claim.
♥

Theorem 8.19 (Pythagorean identity for relative entropy) Suppose E ⊆P is closed and convex,
take Q /∈ E and assume Q has full support, and let P ∗ achieve the minimum in Sanov’s Theorem,
i.e:

D (P ∗∥Q ) = inf
P∈E

D (P ∥Q )

Then:
D (P ∥Q )≥D (P ∥P ∗) +D (P ∗∥Q ) for all P ∈ E

Remark 8.20 (Remark and waffle) Just for completeness, we recall that by the strict convexity
of D (P ∥Q ) as well as its continuity in P , and the fact that E is convex and closed, then P ∗ exists
and is unique. Before proving it, w note that the Pythagorean identity quantifies the following
statement. If D (P ∗∥Q ) is close to D (P ∥Q ), then P is necessarily close to P ∗, i.e: if a PMF is close
to minimising the "distance", then it must be close to the minimiser.

Main idea: Consider the function D (λ) = D (Pλ∥Q ), where Pλ = λP + (1−λ)P ∗. Since Pλ is in E by
convexity, and P ∗ is the minimiser, it follows that D (Pλ∥Q )≥D (P ∗∥Q ) =D (P0∥Q ), and so ∂λD (λ)≥ 0.
Now compute this derivative and everything comes out nicely.
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Proof. We show the result for De , and then just multiply by log2 e throughout. Let P ∈ E be
arbitrary, and consider the convex combination

Pλ =λP + (1−λ)P ∗

By convexity of E , Pλ ∈ E for all λ ∈ [0, 1], and by definition of P ∗,

D (Pλ∥Q )≥D (P ∗∥Q ) =D (P0∥Q )≥ 0.

Therefore the derivative of D (Pλ∥Q ) at zero, if it exists, must be non-negative (indeed think of
the defining limit of the derivative at zero plus). I.e:

0≤
d

dλ
De (Pλ∥Q )

�

�

�

�

λ=0+
=

d

dλ

∑

a∈A
Pλ(a ) loge

Pλ(a )
Q (a )

�

�

�

�

λ=0+

=
∑

a∈A
[P (a )−P ∗(a )] loge

Pλ(a )
Q (a )

�

�

�

�

λ=0+
+
∑

a∈A
[P (a )−P ∗(a )]

︸ ︷︷ ︸

0

=
∑

a∈A
P (a ) loge

�

P ∗(a )
Q (a )

P (a )
P (a )

�

−
∑

a∈A
P ∗(a ) loge

P ∗(a )
Q (a )

=De (P ∥Q )−De (P ∥P ∗)−De (P
∗∥Q )

♥

8.3 The Gibb’s conditioning principle

Sanov’s Theorem told us the following: if E ⊆P encodes a rare event, then if X1, · · · , Xn ∼Q are IID,
the probability that their empirical measure bPn belonged to E was approximately for large n , 2−nD (P ∗∥Q ),
where P ∗ minimised the relative entropy between Q and E . Now we will use some stronger argument
to show that actually the probability of E is essentially the same as the probability of the type P ∗,
and that all other types that are not close to P ∗ contribute a negligible amount of mass to E . Thus
explaining that if a rare observation is seen, then among the rare observations, the least rare is the
most likely to be observed: rare things happen in the least rare way possible.

Theorem 8.21 (Gibb’s conditioning principle) Let bPn be the type of IID observations X1, · · · , Xn

with PMF Q which has full support on A. Suppose that E ⊆ P is closed, convex, and has
non-empty interior, and does not contain Q . Then

E
�

bPn (a ) | bPn ∈ E
�

=P(X1 = a | bPn ∈ E )−→ P ∗(a )
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Where
P ∗ = argminP∈E D (P ∥Q )

Main idea: The first equality is just by definition of the empirical PMF. To show that E[ bPn (a ) | { bPn ∈
E }]−→ P ∗(a ), we aim to show that conditional on { bPn ∈ E }, bPn (a )−→ P ∗(a ) in probability. To do this,
we show that for any δ, Q n (D ( bPn∥P ∗) > 2δ) −→ 0, and then use Pinsker’s inequality. To show this
convergence, define appropriate relative entropy neighborhoods and use the Pythagorean inequality,
which remember, said that if D (P ∥Q )≤D (P ∗∥Q ) +2δ, then D (P ∥P ∗)≤ 2δ.

Proof. It is easy to see that

E
�

bPn (a ) | bPn ∈ E
�

:=
1

n

n
∑

i=1

E[1(X i = a ) | bPn ∈ E ]

=
1

n

n
∑

i=1

P(X i = a | bPn ∈ E )

=P(X1 = a | bPn ∈ E )

Where the last step comes from the fact that each X i still has the same distribution. And if
X = Y in distribution, then for events A, B , we also have that P[X ∈ A | B ] =P[Y ∈ A | B ] by simply
expanding the definition of conditional probability). Now to show that P(X1 = a | bPn ∈ E )−→ P ∗(a ),
we will in fact show that as distributions, given that { bPn ∈ E } holds, bPn and P ∗ are close. We will
do this by showing they are close in the sense of relative entropy, which by Pinsker’s inequality
will mean they are close in the sense of Total Variation, and from there the claim will follow.

Define the relative entropy neighborhood

B (Q ,δ) := {P ∈P : D (P ∥Q )≤D (P ∗∥Q ) +δ}

And define the subsets
C = B (Q , 2δ)∩E D = E \C

The picture to have in mind is something like this:
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Q ·

E

P ∗ C

B (Q ,δ)∩E

It is clear that the goal is to show that for δ≪ 1, we have that

Q n ( bPn ∈C | bPn ∈ E )≈ 1

Which is equivalent to showing that

Q n ( bPn ∈D | bPn ∈ E )≈ 0

We begin by noting that

Q n ( bPn ∈D | bPn ∈ E ) :=
Q n (P n ∈D ∩E )

Q n ( bPn ∈ E )

≤
Q n (P n ∈D )

Q n ( bPn ∈ E )

≤
Q n (P n ∈D )

Q n ( bPn ∈C )

By definition of D being the set of PMFs in E whose relative entropy distance from Q is further
than 2δ+D (P ∗∥Q ), we have that, in light of Sanov’s Theorem:

Q n ( bPn ∈D )≤ (n +1)m 2−n infP∈D D (P ∥Q ) ≤ (n +1)m 2−n [D (P ∗∥Q )+2δ]

(Indeed, infP∈D D (P ∥Q ) ≤ 2δ+D (P ∗∥Q ) and so taking minus signs and taking powers gives the
last inequality above) To lower bound the denominator, we note that since

⋃

n≥1Pn is dense in
P , every open set in P will eventually be intersected by Pn , and since E has nonempty interior,
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then B (Q ,δ)∩E ∩Pn will eventually be non-empty.Let Pn be one such PMF. Then

Q n ( bPn ∈C )
(1)
≥Q n ( bPn ∈ B (Q ,δ)∩E ))
(2)
≥Q n (T (Pn ))
(3)
≥ (n +1)−m 2−nD (Pn∥Q )

(4)
≥ (n +1)−m 2−n [D (P

∗∥Q )+δ]

where (1) comes from the fact that C := B (Q , 2δ)∩ E ⊃ B (Q ,δ)∩ E , (2) comes from the fact that
if a string x n

1 ∈ T (Pn ), then since Pn ∈ B (Q ,δ)∩E ∩Pn , then the type of this string bPn also belongs
to B (Q ,δ)∩E . Step (3) comes from the fact that the probability of a type class can be bounded
below by Corollary 8.10. Step (4) holds because Pn ∈ B (Q ,δ), so its distance to Q is at most
D (P ∗∥Q ) +δ. Combining with the upper bound we obtained on Q n ( bPn ∈D ) gives that:

Q n (cPn ∈D | bPn ∈ E )≤ (n +1)2m 2−nδ −→ 0 (n −→∞)

Therefore, by definition of the set C , we have that with very high probability,

D ( bPn∥Q )≤D (P ∗∥Q ) +2δ.

Note that for any P ∈C , we have that

D (P ∗∥Q ) +2δ≥D (P ∥Q )

≥D (P ∥P ∗) +D (P ∗∥Q )

where the first inequality comes from the definition of being in C , and the second inequality is the
Pythagorean inequality. I.e: if P ∈C , then D (P ∥P ∗)≤ 2δ. So

Q n
�

D ( bPn∥P ∗)≤ 2δ| bPn ∈ E
�

≥Q n
�

bPn ∈C | bPn ∈ E
�

−→ 1

Therefore by Pinsker’s Inequality, if for some ε> 0 we have that



bPn −P ∗





TV >ε then it must also
be the case that D ( bPn∥P ∗)≳ ε2 but since δ was arbitrary, combining with the above gives that for
any ε> 0,

Q n
�


bPn −P ∗





TV >ε| bPn ∈ E
�

−→ 0

which in particular implies that for any a ∈ A,

Q n (| bPn (a )−P ∗(a )|>ε| bPn ∈ E )−→ 0

which means that conditional on { bPn ∈ E }, the random variables bPn (a ) converge to P ∗(a ) in
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probability. Since they are bounded by 1, the bounded convergence theorem implies they also
converge in L 1, and so we get the desired result, namely that

E[ bPn (a ) | { bPn ∈ E }]−→ P ∗(a )

♥

{P : D (P ∥Q )≤D (P ∗∥Q ) +ε}
P ∗

Q

P̂n

Figure 6: An illustration of what happens in Gibbs’ Theorem: if you fix an ε tolerance about P ∗ in the
D (P ∥Q ) sense, it will happen with high probability that conditional on bPn ∈ E , for n large enough, the
empirical measure will fall within the specified tolerances.

Example 8.22 (On using Gibbs’ conditioning principle) Let us showcase how to use this in a
practical example. Suppose X1, · · · , Xn are distributed according to a Bin(m , q ) where q ∈ (0, 1).
For some α ∈ (mq , m ), we have that

lim
n−→∞

P

�

X1 = k

�

�

�

�

1

n

n
∑

i=1

X i ≥α

�

= P ∗[k ]

Where P ∗ ∼Bin(m ,λ) for some special value of λ which we will also determine.

Solution. First we make the remark that we really need the assumption that α > mq , so that
α = µ+ ε and this is a rare event in the form of the Gibb’s conditioning principle. By Gibb’s
conditioning principle, we have that

P ∗[k ]∝ exp(ηk )Q (k )

where η has to be chosen so that
EP ∗[X1] =µ+ε=α
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If we expand the expression above for P ∗[k ], we obtain that

P ∗[k ]∝ exp(ηk )

�

m

k

�

q k (1−q )m−k

= (1−q )m
�

m

k

�

�

exp(η)q
1−q

�k

∝
�

m

k

�

�

exp(η)q
1−q

�k

:=

�

m

k

�

�

λ

1−λ

�k

Where λ is chosen so that
exp(η)q

1−q
=
λ

1−λ

Now we note that with this choice of λ, we obtained that P ∗[k ]∝
�

m
k

�

λk (1− λ)k , which is in
the form of P ∗ ∼ Bin(m ,λ). All that’s left to do is choose η so that EP ∗[X1] = α, but since P ∗ is
binomial, this expectation is nothing but mλ, and so we have that λ = α

m . Now one can choose
η appropriately so that everything checks out. ♥
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Example 8.23 (On using Gibbs’ conditioning principle for rare events) Suppose a dice is rolled
1010 times and a proportion of 6’s was observed ≥ 25% of the time. Given that this event has
occurred, what is the average result of the dice?

Solution. Let X1, X2, · · · , Xn be IID Unif{1, 2, 3, 4, 5, 6}. We begin by defining our rare event in terms
of empirical measures:

E =
§

P ∈P : EP [1(X1 = 6)]≥α=
1

4

ª

Then by Gibbs’ conditioning principle, we are interested in computing EP ∗[X ], where

P ∗[·] =P
�

X1 ∈ · | bPX n
1
∈ E

�

Since we have rolled the dice a very large number of times, we have that approximately:

P ∗[k ]∝ exp
�

η1(k = 6)
�

Therefore P ∗[k ] ≈ (q , q , q , q , q , 1− 5q ). And to find q , we have to impose the constraint on η,
namely that

1

4
=α= EP ∗[ f (X1)] = 1−5q

Therefore q = 3
20 , and now one can calculate that EP ∗[X ] = 3.75. ♥

Remark 8.24 Let us appreciate for a second Gibbs’ conditioning principle. If one wanted to
simulate this event, you would be in deep shit, because if you simulated 1010 dice throws, it would
almost never be the case that you would observe a proportion of 6’s greater than 1/4. Therefore
by simulation it would be a completely unfeasible task to simulate EP ∗[X ].

8.4 Error probability in fixed-rate data compression

Recall in the earlier sections our discussion about fixed-rate data compression: we had a source
X = {Xn} and we established that data compression using codebooks, which was nothing else than
using a collection {Bn} of strings of length n to compress our data, could achieve a compression rate
of H whilst having the error probability go to zero, but any codebook that has an error probability
going to zero, that is to say, the probability that a string x n

1 does not belong to the codebook, goes
to zero, cannot have a better rate than H , thus in some sense, H was the optimal rate one could
achieve. We now pose the following question, suppose a codebook with a given rate R > H has
decaying probability of error P (n )e . How fast can this probability of error decay? It turns out that at
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best the decay will be approximately of

P (n )e ≈ 2−nD ∗ where D ∗ = inf
H (P )≥R

D (P ∥Q )

Theorem 8.25 (Error exponent for fixed-rate compression) Let X= {Xn} be a memoryless source
with entropy H and distribution Q which as full support on a finite alphabet A . Let R be any
rate with H <R < log |A | (This latter inequality is just a pedantic remark, because if we take the
rate to be log |A | then there is no compression at all and so we have 0 probability of error). Then

• There is a fixed-rate code {B ∗n} with asymptotic rate no more than R bits/symbol,i.e:

lim sup
n−→∞

1

n

�

1+ ⌈log |B ∗n |⌉
�

= lim sup
n−→∞

1

n
log |B ∗n | ≤R

whose probability of error decays at least as fast than exponentially with exponent D ∗, i.e:

lim sup
n−→∞

1

n
log P (n )e ≤−D ∗

• Conversely, if {Bn} is any fixed-rate code with asymptotic rate no more than R bits/symbol,
i.e:

lim sup
n−→∞

1

n

�

1+ ⌈log |Bn |⌉
�

= lim sup
n−→∞

1

n
log |Bn | ≤R

Then its probability of error cannot decay faster than exponentially exponentially with expo-
nent D ∗, i.e:

lim inf
n−→∞

1

n
log P (n )e ≥−D ∗

Where D ∗ = infH (P )≥R D (P ∥Q ).

Proof. For the direct part, we have to construct said codebook, and our candidate will be

B ∗n =
⋃

P∈Pn :H (P )<R

T (P )

i.e: all strings whose type is a PMF with entropy less than R . Understanding the asymptotic
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compression rate of this codebook is quite straightforward, simply:

|B ∗n |
(1)
≤ |Pn | max

P∈Pn :H (P )<R
|T (P )|

(2)
≤ (n +1)m max

P∈Pn :H (P )<R
|T (P )|

(3)
≤ (n +1)m max

P∈Pn :H (P )<R
2nH (P )

(4)
≤ (n +1)m 2nR

Where (1) comes from a simple bound on the size of a union of sets, (2) comes from the fact that
to determine an n-type we need to make choose among n +1 values for each of the m elements
of the alphabet, (3) comes from the bound in |T (P )| ≤ 2nH (P ) from Proposition size of Type Class
(Proposition 8.8) and the final step, (4) comes from the fact that the PMFs we are taking the
maximum over all have entropies less than R . Therefore it now follows immediately that

lim sup
n−→∞

1

n
log |B ∗n | ≤R .

We have now constructed a codebook with the desired rate. We must now show that the decay
of the error probability of this codebook is as fast as exponential with exponent D ∗. To do this
we explicitly compute the error probability:

P (n )e :=P(X n
1 /∈ B ∗n )

=P

�

X n
1 ∈

⋃

P∈Pn :H (P )≥R

T (P )

�

=
∑

P∈Pn :H (P )≥R

Q n (T (P ))

(a )
=

∑

P∈Pn :H (P )≥R

2−nD (P ∥Q )

(b )
≤ |Pn |2−nD ∗ ≤ (n +1)m 2−nD ∗

The first three steps are elementary, and step (a ) is due to the bound Q n (T (P ))≤ 2−nD (P ∥Q ) found
in Proposition 8.10, and (b ) comes from a simple size bound along the fact that any P ∈Pn with
H (P ) ≥ R will have that D (P ∥Q ) ≥ infP∈Pn :H (P )≥R D (P ∥Q ) := D ∗. Putting this all together shows
that

lim sup
n−→∞

1

n
log P (n )e ≤−D ∗.

To show the converse statement, we will show that for any codebook {Bn} with rate no more than
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R and any ε> 0, one has that:

lim inf
n−→∞

1

n
log P (n )e ≥−(D

∗+2ε)

Hence, let ε> 0 be given, we will make the following rather long-winded but necessary observation:

• Stare at the definition D ∗ := infH (P )≥R D (P ∥Q ). Since relative entropy is continuous in P , if
we slightly shrink the set that we are taking the infimum over, then this infimum will only
increase slightly. In precise terms, for the ε we have been given, there will be a small enough
δ such that

inf
H (P )≥R+δ

D (P ∥Q )≤D ∗+ε. (⋆)

Now note that by taking δ even smaller if needed so that R +δ/2 is still less than log |A |,
the set {P ∈P : H (P )≥R +δ/2} has nonempty interior, so since the n-types {Pn : n ≥ 1} are
dense in P , for all n large enough, there will be some Pn ∈ Pn such that H (Pn ) ≥ R +δ/2

and by taking n even larger if needed, we can get close enough to the P that minimises the
infimum in (⋆) so that

D (Pn∥Q )≤D ∗+2ε

Now we claim that Bn is necessarily much smaller than the type class T (Pn ), this will come
in handy later. Let rn ↓ 0 be a sequence of real numbers tending to zero with

1

n
log |Bn | ≤R + rn for all n ≥ 1

(This is allowed because of the assumption on the rate of Bn) Then we have the following:

|Bn |
|T (Pn )|

(1)
≤

2n (R+rn )

(n +1)−m 2nH (Pn )

= (n +1)m 2n [R−H (Pn )+rn ]

(3)
≤ (n +1)m 2n [−δ/2+rn ]

Where (1) comes from the lower bound found in Proposition size of Type Class (Proposition
8.8), the second step is trivial, and step (3) comes from the construction of Pn . It is therefore
clear that the right hand size goes to zero as n −→∞, and so in particular, for all n large
enough,

|Bn |
|T (Pn )|

≤
1

2
. (⋆⋆)
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We are now armed to lower bound P (n )e as required. Let x n
1 ∈ An be any string in T (Pn ), then

P (n )e

(1)
= P(X n

1 ∈ B c
n )

(2)
≥ P(X n

1 ∈ T (Pn )∩B c
n )

(3)
= |T (Pn )∩B c

n |Q
n (x n

1 )

(4)
=
|T (Pn )∩B c

n |
|T (Pn )|

Q n (T (Pn ))

(5)
≥
�

1−
|T (Pn )∩Bn |
|T (Pn )|

�

(n +1)−m 2−nD (Pn∥Q )

(6)
≥

1

2(n +1)m
2−n (D ∗+2ε)

Where (1) is by definition of the error probability, (2) is trivial, (3) comes from the fact that all
strings in T (Pn ) have the same frequency of symbols of A , and since they are IID, they all in
particular have the same probability. Step (4) is again because all the strings in T (Pn ) have the
same probability, so the probability of one string is the sum of the probabilities of all strings divided
by the number of strings. Step (5) is because of the lower bound found in Corollary of Type Class
proposition (Proposition 8.10) as well as the fact that the proportion of strings in T (Pn ) that are
in B c

n is one minus the proportion of strings that are in Bn , and finally step (6) is due to the bound
we have established in (⋆⋆) as well as the bound we have established on D (Pn∥Q ). This now gives
the desired lower bound on the decay exponent of the error probability, namely that

lim inf
n−→∞

1

n
log P (n )e ≥−(D

∗+2ε)

Since ε was arbitrary the proof is finished. ♥
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9 Variable rate Lossless data compression

In preceding discussions we studied the fundamental information-theoretic properties that fixed-rate
lossless data compression had. One of the practical problems however, is that the codebook method
required an exponential search when encoding and decoding. We now study a more practical method
of data compression:

Definition 9.1 (Variable-rate code) A variable-rate lossless compression code with blocklength n

on an alphabet A is a pair (Cn , Ln ) where the encoder

Cn :A n −→{0, 1}∗

Is a one-to-one function that maps source strings x n
1 to variable-length binary codewords Cn (x n

1 ),
and the length-function Ln is defined as

Ln (x
n
1 ) = [length of Cn (x

n
1 )] bits

For this method to be a sensible way of communicating messages, we must have the following condi-
tion:

Definition 9.2 (Prefix-free code) The code (Cn , Ln ) is a prefix-free code if no code Cn (x n
1 ) is a prefix

of another code Cn (y n
1 ) whenever x n

1 ̸= y n
1

Symbol Codeword
A 0
B 10
C 110
D 111

Table 1: Prefix-Free Codewords

Symbol Codeword
A 0
B 01
C 001
D 0111

Table 2: Non-Prefix-Free Codewords

Naturally in the context of a non-prefix-free codeword, if the decoder were to receive the message
001, it would not be possible to detect whether the message was AB or C . Naturally, from a practical
standpoint, we wish to create a code that assigns to each message a codeword of minimal length, how-
ever, the following result expresses a fundamental combinatorial limit on possible prefix-free codeword
lengths, indicating that it is not possible for a code to assign only short codes and still be prefix-free.
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11

101 011

B =

a : 11

b : 101

c : 011

L ∗ = 3

Figure 7: The diagram that says it all: Kraft’s Inequality

Theorem 9.3 (Kraft’s Inequality, �) Let Ln :A n −→N be a length function.

• If Ln satisfies Kraft’s inequality, i.e:

∑

x1∈A n

2−Ln (x n
1 ) ≤ 1,

there is a prefix-free code Cn on An with length function Ln .

• If (Cn , Ln ) is a prefix-free code, then Ln must satisfy Kraft’s inequality.

Main idea: This all steps from the correspondence of codes and nodes in a binary tree. The prefix-free
condition guarantees that no codeword is a descendant of any other codeword. When trying to check
Kraft’s inequality, the fact that the subtrees rooted at the codewords are disjoint give the inequality.
When trying to construct the codeword, Kraft’s inequality guarantees there are enough leaves.

Proof. We first prove the converse. Let L ∗ be the maximum code-word length, and consider the
complete binary tree of length L ∗. Every codeword can be thought of as a node in the tree, so let
the i th code be represented by a node vi . Let Ai represent the set of leaves of the subtree rooted
at vi . If a codeword vi has length L i , then it has 2L∗−L i leaves at depth L ∗ as its descendants.
Since we are assuming the prefix-free condition, it follows that no codeword is a direct descendant
of any other codeword in the tree, as that would contradict the prefix-free condition. Therefore
the collection of leaves at the bottom of the tree descending from each codeword are disjoint, i.e:
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Ai ∩A j =∅ for i ̸= j . Therefore we have the following:

2L∗
(1)
≥
�

�

�

�

⋃

i

Ai

�

�

�

�

(2)
≥
∑

i

|Ai |

(3)
=
∑

i

2L∗−L i

Step (1) comes from the fact that there are a total of 2L∗ leaves at the bottom of the tree, so
the collection of all the leaves out of each codeword cannot exceed this number (the reason why
it is not an equal sign is because we can have sections of the tree that contain no codewords,
see figure). Step (2) comes from the fact that the Ai ’s are disjoint, and step (3) comes from the
calculation we did on the size of each Ai . For the direct part, given a collection of codeword
lengths {Ln (x n

1 ) : x n
1 ∈A

n}, i.e: we have codeword lengths

ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn = L ∗

We choose the codewords as follows:

• Choose any node from the full tree at depth ℓ1. Since we are building a prefix-free code, all
its descendants become unusable. After doing this we have discarded 2L∗−ℓ1 nodes at depth
L ∗.

• Choose a surviving node at depth ℓ2, which removes 2L∗−ℓ2 leaf nodes at depth L ∗.

• The question is whether when we have reached the final iteration of the algorithm we have
ran out of leaves at the bottom of the tree. When we reach the last choice of our algorithm,
i.e: choosing the last codeword, which has length ℓn = L ∗, we will need to pick a leaf at the
bottom of the tree, and there will be remaining

2L∗ −
n−1
∑

i=1

2L∗−ℓi = 2L∗ −

�

n
∑

i=1

2L∗−ℓi −2L∗−L∗

�

≥ 1

leaves remaining, i.e: we will not have ran out of options, which means we can construct
our code.

♥
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9.1 Code-distribution correspondence

Naturally, we wish to consider the problem of assigning the optimally short codewords to our messages,
and for this we would like to take advantage of the probability distribution of our underlying messages,
assigning shorter codelengths to the more likely messages, as an illustration, if we have a trivial set of
messages, where there are only two messages that we have to send, then we would only need 1 bit of
length for our codewords. The following result establishes the fact that there is a way, given any PMF
on our set of messages, to create a prefix-free code that incorporates this idea of assigning shorter
lengths to more probable messages. The following theorem also tells us that we are also limited in
how well we can compress messages, and this limitation will also come in shape of PMF.

Theorem 9.4 (Code-distribution correspondence, �) We have the following:

• For any distribution Pn on A n , there is a prefix-free code (C ∗n , L ∗n ) with

L ∗n (x
n
1 )<− log Pn (x

n
1 ) +1 bits, for all x n

1 ∈A
n .

• For any prefix-free code (Cn , Ln ) there is a distribution Qn on A n such that

Ln (x
n
1 )≥− logQn (x

n
1 ) bits, for all x n

1 ∈A
n .

Main idea: The proof is really easy. From the statement of the direct part, it is no surprise that
we need to show that there eixsts a prefix-free code with length function L ∗n (x

n
1 ) = ⌈− log Pn (x n

1 )⌉. To
show this existence, simply verify Kraft’s inequality. Conversely, we are told that Kraft’s inequality is
satisfied, i.e:

Z :=
∑

x n
1

2−L (x n
1 ) ≤ 1

This looks an awful lot like a normalisation constant, and so we may define

Q n (x n
1 ) =

2−Ln (x n
1 )

Z

and then simply solve for Ln (x n
1 ).

Proof. For the direct part, we note that

∑

x n
1 ∈A n

2−⌈− log Pn (x n
1 )⌉ ≤

∑

x n
1 ∈A n

2log Pn (x n
1 ) = 1

So Kraft’s inequality is satisfied for the length function L ∗n (x
n
1 ) = ⌈− log Pn (x n

1 )⌉<− log Pn (x n
1 ) +1.
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For the converse part, if we assume (Cn , Ln ) is prefix-free, then we must have that

∑

x n
1 ∈A n

2−Ln (x n
1 ) ≤ 1

We may define a PMF on A n by

Qn (x
n
1 ) =

2−Ln (x n
1 )

Z

and so
− logQn (x

n
1 ) = Ln (x

n
1 ) + log Z ≤ Ln (x

n
1 )

Where this last inequality comes from the fact that Z ≤ 1 so log Z ≤ 0. ♥

We reach the final great result on this topic, which establishes fundamental bounds on the expected
length of a code. It should be of no surprise that entropy plays a key role in the limitations of how
well we can compress our data, i.e: how short we can make our messages on average whilst still being
prefix-free.

Theorem 9.5 (Entropy bounds, �) Suppose a message X n
1 has a distribution Pn on our alphabet

A n , then:

• There is a prefix-free code (C ∗n , L ∗n ) that achieves an expected description length:

E[L ∗n (X
n
1 )]<H (X n

1 ) +1

• For any prefix-free code (Cn , Ln ) on A n ,

E[Ln (X
n
1 )]≥H (X n

1 )

Main idea: We just use the Code-Distribution correspondence. For the first part it is clear what to
do, just take expectations to both sides, for the converse, just use the trick

EP [− logQ (X )] = EP

�

− log
�

P (X )Q (X )
P (X )

��

Proof. For the direct part, we know from the code-distribution correspondence, that if Pn is the
distribution of X n

1 , then L ∗n (x
n
1 )≤− log Pn (x n

1 ) +1, and so

E[L ∗n (X
n
1 )]≤ E[− log Pn (X

n
1 ) +1] =H (X n

1 ) +1

For the converse, we use again the code-distribution correspondence to see that there is a distri-
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bution Qn for which Ln (x n
1 )≥− logQn (x n

1 ) bits, and so

E[Ln (X
n
1 )]≥ E[− logQn (X

n
1 )]

= E

�

log

�

1

Pn (X n
1 )

Pn (X n
1 )

Qn (X n
1 )

��

= E

�

log
1

Pn (X n
1 )

�

+E

�

log
Pn (X n

1 )
Qn (X n

1 )

�

=H (X n
1 ) +D (Pn∥Qn )≥H (X n

1 )

♥

Remark 9.6 A nice way of expressing this result is that

H (X n
1 )≤ inf

(Cn ,Ln )
E[Ln (X

n
1 )]<H (X n

1 ) +1

where the infimum is taken over prefix-free codes.

We conclude with a final nail in the coffin that really drives the point home that entropy is the best
rate one can achieve for variable-rate compression. The proof follows immediately from the remark
above.

Corollary 9.7 (Compression rate) Let X= {Xn} be a stationary source. The entropy rate H =H (X)

(which exists by Example 7.5) is the best asymptotically achievable compression rate among all
variable-rate prefix-free codes:

lim
n−→∞

inf
(Cn ,Ln )

1

n
E[Ln (X

n
1 )] =H

Where the infimum is taken over prefix-free codes.
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9.2 Shannon codes and properties

We end this course with a brief discussion of Shannon codes and their properties.

Definition 9.8 (Shannon code) Given a distribution Q n on A n , the code with length function

Ln (x
n
1 ) = ⌈− logQ n (x n

1 )⌉

is called the Shannon code

Remark 9.9 Note that this code indeed exists, because the length function satisfies Kraft’s in-
equality as shown in the Code-Distribution correspondence Theorem, and moreover, it is not
unique, as it is easy to see (by for example looking at an example of a code-tree) that for a given
length function l1 ≤ · · · ≤ lk , there is more than one code attaining this lengths (one can think of
swapping branches of the tree for example).

Definition 9.10 (Ideal Shannon codelengths) For a distribution Q n on A n , we call the function

Ln (x
n
1 ) =− logQ n (x n

1 )

the ideal Shannon Codelength.

Remark 9.11 This name comes from the fact that as n becomes large, taking the integer part
or leaving the decimal part has no effect on the asymptotics.

Theorem 9.12 (Competitive Optimality of Shannon Codes) Let X n
1 ∼ P n be a message on A n ,

then for any other distribution Q n on A n , we have that

P[− logQ n (X n
1 )≤− log P n (X n

1 )−K ]≤ 2−K

Remark 9.13 (Waffle) Recall that any variable-rate compression code can be identified with a
probability measure Q n on A n . What this Theorem tells you is that if you are trying to compress
any file (that is large enough so that the right hand side of the inequality is not negative), the
probability that any algorithm beats the Shannon code by a merely 20 bits is less than one in a
million.
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Main idea: Markov’s Inequality.

Proof.

P[− logQ n (X n
1 )≤− log P n (X n

1 )−K ] =P

�

log
Q n (X n

1 )
P n (X1)

≥ K

�

=P

�

Q n (X n
1 )

P n (X n
1 )
≥ 2K

�

≤ 2−K
∑

x n
1

P n (x n
1 )

Q (x n
1 )

P (x n
1 )

= 2−K

♥
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A Some nice results

Theorem A.1 (Jensen’s Inequality) Let X be a random variable taking values in A ⊆ R and let
f :A −→R be a convex function. Then

E[ f (X )]≥ f (E[X ])

Corollary A.2 (Log-sum inequality) Let (ai ) and (bi ) be a collection of real, non-negative numbers.
Then we have that

∑

i

ai log
ai

bi
≥

�

∑

i

ai

�

log

�∑

i ai

�

�∑

i bi

�

Proposition A.3 (Marginal trick) Let (X n
1 ) have a joint mass function PX n

1
onA n . Let f :A −→R

is a function, then
∑

x∈A n

PX n
1
(x ) f (xi ) = EPXi

[ f (X i )]≡
∑

x∈A

PX i
(x ) f (x )

Proof. The proof is, as the name suggests, a very simple trick to get the marginal distribution.
Its a really simple computation, but I write it down for future reference.

∑

x∈A n

PX n
1
(x ) f (xi ) =

∑

x1∈A

∑

x2∈A

· · ·
∑

xi∈A

f (xi ) · · ·
∑

xn∈A

PX n
1
(x1, x2, · · · , xn )

=
∑

xi∈A

f (xi )

 

∑

j ̸=i

∑

x j∈A

PX n
1
(x1, · · · , xi , · · · , xn )

!

︸ ︷︷ ︸

the marginal distribution

=
∑

xi∈A

f (xi )PX i
(xi )

♥

Proposition A.4 (Cesáro Lemma) If an −→ a and bn =
1
n

∑n
i=1 ai , then bn −→ a .

Proposition A.5 (Factorial inequality) Let k ,ℓ ∈N, then k !/ℓ!≥ ℓk−l .
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Proposition A.6 (Uniqueness of minima in strictly convex function) Let f : E −→R be a strictly
convex function on a convex domain E . Then if f attains a minimum at x ∈ E , then this minimum
is unique.

Proof. Suppose that y ∈ E is another minimiser, i.e: f (x ) = f (y ). Then by taking a convex
combination of x and y , we see that

f (λx + (1−λ)y )<λ f (x ) + (1−λ) f (y ) = f (y )

and so we have found a point z =λx +(1−λ)y (which belongs to E by the convexity of E ) with
f (z )< f (y ), which contradicts the minimality of y . ♥
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