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Dear Reader,

This is a set of lecture notes typed for the course Mixing Times of Markov Chains taught at the
University of Cambridge during the academic year 2024-2025.
Yours falsely,

JOF.
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Notation

K: denotes an idea or proof that is hard, and/or requires unmotivated tools.
�: denotes an idea that requires a tool seemingly out of thin air.
♩: denotes an idea that follows relatively simple knowing some prior ideas.
�: denotes an easy idea or proof that can be reproduced with no problem.

Ω: a state space.
P: a probability measure.
E(X ): the integral of some X with respect to the measure P. Also denoted by

∫

Ω

X dP or
∫

Ω

X (ω)P(dω) or
∫

Ω

X (ω)dP(ω)

1(A): the indicator function of a set A.

n ∧m : min(n , m ).
n ∨m : max(n , m ).
R∞: the space of R-valued sequences.
P (Ω): the set of probability measures on Ω.
L (µ) : the law of a probability measure µ.
P(A | F ): the conditional probability of an event A given a σ-algebra F , is defined as E[1A | F ]
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Chapter 1

Markov Chains

Let us begin by speed-running basic ideas of Markov Chain Theory.

1.1 Elementary concepts

Definition 1.1 Let Ω be a finite set, µ a distribution on S , and P a stochastic matrix of size
|Ω| × |Ω|. A Markov Chain (MC) is a stochastic process (Xn : n ≥ 0) with

1. X0 ∼µ.

2. For n ≥ 0, conditional on Xn = i , Xn+1 has distribution (P (i , j ) : j ∈Ω) and is independent of
X0, · · · , Xn−1.

Explicitly, these conditions mean

P(X0 = x0, X1 = x1, · · · , X t = xt ) =µ(x0)P (x0, x1)P (x1, x2) · · ·P (xt−1, xt )

The fundamental property of a Markov chain is its lack of memory. This is clear from the definition,
but a strong version of this statement comes in form of the

Theorem 1.2 (Markov Property) Let (Xn : n ≥ 0) be a Markov Chain with initial distribution µ
and transition matrix P . Then given any t ≥ 0, we have that conditional on X t = i , (Xn+t : n ≥ 0)

is a Markov Chain with initial distribution δi , with transition matrix P , and it is independent of
X0, · · · , X t

We are also interested in knowing the probability of the Markov Chain being in some state at a given
point in time. Noting that our distribution µ can simply be thought of as a vector (µ(i ) : i ∈Ω) gives

7



8 CHAPTER 1. MARKOV CHAINS

a clear way of computing the distribution of of the Chain after one unit of time, µ′, namely

µ′(i ) =
∑

j∈Ω

µ( j )P ( j , i ) = (µP )i

It turns out that there is also a simple way of computing the probability of a given state after n time
units, this is just a simple consequence of the Markov Property:

Theorem 1.3 Let (Xn : n ≥ 0) be a Markov Chain with initial distribution µ. Then

P(X t = j | X0 = i )≡Pi (X t = j ) = P n (i , j )

Proof.
Pi (X t = j ) =

∑

x1,··· ,xt−1

P (i , x1)P (x1, x2) · · ·P (xt−1, j ) = P n (i , j )

♥

1.2 Class Structure

Sometimes we may break down a Markov Chain into smaller pieces, each of which is easier to under-
stand. This is done through the identification of communicating classes.

Definition 1.4 Let (Xn : n ≥ 0) be a Markov Chain. We say a state i leads to a state j , written
i → j if Pi (Xn = j for some n ≥ 0)> 0. If i → j and j → i we say i and j communicate, written as
i↔ j .

It is clear that↔ defines an equivalence class on Ω, and as such it partitions Ω into communicating
classes.

Definition 1.5 A communicating class C is closed if i ∈ C and i → j implies j ∈ C . A state i is
absorbing if {i } is a closed class. If Ω is a single class under the Markov Chain, then we refer to
the chain as irreducible.

1.3 Transience and recurrence

Definition 1.6 Given a Markov Chain (Xn : n ≥ 0) and an event A, we can define the hitting times
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of A:
TA = inf{t ≥ 0 : X t ∈ A} T +A = inf{t > 0 : X t ∈ A}

Definition 1.7 A Markov Chain for which Pi (T +i <∞) = 1 is called recurrent. Otherwise, it is
called transient. A Markov Chain for which Ei [T +i ]≡ E[T +i | X0 = i ]<∞ is called positive recurrent.

Theorem 1.8 An irreducible Markov Chain on a finite state space is positive recurrent.

Proof. Appendix. ♥

Theorem 1.9 (Xn ) is transient if and only if
∑

n≥0(P
n )(i , i )<∞.

See the appendix for some more results on this area.

1.4 Invariant Distributions

Recall that a distribution µ on the state space Ω may be thought of as a vector (µ(i ) : i ∈ Ω), and
as such we had a notion of multiplication by the transition matrix P . The long-term properties of a
Markov Chain are connected with the notion of an invariant distribution.

Definition 1.10 (Invariant distribution ) A distribution π on Ω is said to be invariant if

πP =π

For notational expediency, we shall reserve the use of π for an invariant measure. It turns out that
invariant measures exist for certain kinds of Markov Chains

Theorem 1.11 (Existence of π) Let (Xn ) be an irreducible, positive recurrent Markov Chain, then
(Xn ) admits an invariant distribution π, and moreover

π(x ) =
1

Ex [T +x ]
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Proof. See Appendix. ♥

Remark 1.12 In this course, only irreducible finite state chains will be considered, therefore every
chain we consider will have an invariant distribution.

1.5 Time Reversal

For Markov Chains, the past and the future are independent given the present. This symmetry in time
suggests looking at a Markov Chain running backwards. However, convergence to equilibrium suggests
a behavior that is asymmetrical in time: one may start from a highly organised state such as a point
mass, and see it decay into chaos, the invariant distribution. This suggests that if we wish complete
time-symmetry we must begin in equilibrium. This is indeed the case, however, the transition matrix
will be different.

Theorem 1.13 Let P be an irreducible Markov Chain with invariant distribution π. Suppose that
(Xn : 0 ≤ n ≤N ) is Markov(π, P ) and set (Yn : 0 ≤ n ≤N ) by Yn = XN−n . Then Yn is Markov(π, P ∗)

where
(P ∗)(i , j ) = P ( j , i )

π( j )
π(i )

Moreover Yn is irreducible with invariant distribution π.

If a Markov Chain has that P ∗ = P , i.e:

π(i )P (i , j ) =π( j )P ( j , i )

we say that the Markov Chain is time-reversible. That is to say, if it starts running from the equilibrium
distribution, one cannot distinguish between the original chain and the time-reversed one. The equation
above is called the Detail Balanced equation. It is a simple result that if a distribution λ on Ω is in
Detail Balance, then λ is invariant. It turns out that P ∗ makes another appearance:

Proposition 1.14 Let f , g :Ω→R be two functions. Then




P f , g
�

π
=



f , P ∗g
�

π

where



f , g
�

µ
=
∑

x∈Ω
µ(x ) f (x )g (x )
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Proof.




P f , g
�

π
=
∑

x∈Ω
π(x )

�

∑

y ∈Ω
P (x , y ) f (y )

�

g (x )

=
∑

x ,y ∈Ω
π(y )P ∗(y , x ) f (y )g (x )

=
∑

y ∈Ω
π(y )

�

∑

x∈Ω
P ∗(y , x )g (x )

�

f (y )

=



f , P ∗
�

π

♥

1.6 The Ergodic Theorem

Definition 1.15 (Aperiodicity) A Markov Chain (Xn : n ≥ 0) is aperiodic if for all states x ∈ Ω,
gcd(t > 0 : P t (x , x ) > 0) = 1. I.e: the times at which the chain can return to any given starting
point are co-prime.

Theorem 1.16 (Aperiodicity is a class property) Let (Xn ) be an irreducible Markov Chain, then
if some state x0 is aperiodic, then all states are aperiodic.

Proof. We show in fact something better, that if two states x and y communicate, then the
periods d (x )≡ gcd(t > 0 : P t (x , x )> 0) and d (y ) coincide. The claim then follows immediately.

Since x and y communicate, there exists integers n and m such that P n (x , y )> 0 and P m (y , x )> 0.
Then for any s ∈ {t > 0 : P t (x , x )> 0}

P n+m (y , y )≥ P m (y , x )P n (x , y )> 0 P n+s+m (y , y )≥ P m (y , x )P s (x , x )P n (x , y )> 0

Which means that d (y ) |m +n and d (y ) |m +n + s hence d (y ) | s . Therefore d (y ) | d (x ). By
symmetric arguments d (x ) | d (y ) and as such the periods coincide. ♥

Definition 1.17 (Ergodicity) A Markov Chain is said to be ergodic if it is irreducible, aperiodic
and positive recurrent.
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Theorem 1.18 (The Ergodic Theorem) Let (Xn ) be an Ergodic Markov Chain with invariant
distribution π. Then for all i , j ∈Ω we have that

(P t )(x , y )→π(y ) t →∞



Chapter 2

The Total Variation and Coupling

In this section we learn:

• The definition of the Total Variation (TV) and different ways to characterise TV. How the
TV turns the space of probability measures into a metric space with a convex-like property
where the transition matrix is a non-expansion.

• The definition of a coupling and how couplings provide an upper bound for TV.

The goal of this course is to examine in depth the Ergodic Theorem. In particular, this theorem
has the defect that it offers no information about the speed of convergence. To study this, we first
need to define a metric on the space of probability measures, in order for us to determine this rate
of convergence. This will incidentally prove the Ergodic Theorem. This metric is given by the total
variation.

Definition 2.1 Let Ω be a finite space and let µ,ν be two measures on Ω. Their total variation
distance is defined by

dTV(µ,ν)≡


µ−ν




TV := sup
A⊆Ω
|µ(A)−ν(A)|= sup

A⊆Ω
µ(A)−ν(A)

Remark 2.2 The reason why we can remove the absolute value signs is that

µ(A)−ν(A) =−(µ(Ac )−ν(Ac ))

We wish to now formalise the fact that this is indeed a distance between measures. It is quite clear
that this quantity is symmetric, let us show the other two requirements. To do so some results that
provide alternative formulations for total variation distance will be useful.

13
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Lemma 2.3 (Alternatives for TV �) Let µ and ν be two probability measures. Then



µ−ν




TV =
∑

x∈Ω
(µ(x )−ν(x ))+ = 1−

∑

x∈Ω
µ(x )∧ν(x ) =

1

2

∑

x∈Ω
|µ(x )−ν(x )|=

1

2
sup

f :S→[−1,1]
|µ( f )−ν( f )|

Main idea: One defines the set B of states where µ is at least ν, and shows that


µ−ν




TV =

µ(B )−ν(B ). Then one can expand this in two ways, as a sum over states in B , or by splitting into an
antisymmetric expression involving B c . For the supremum one does a standard argument to show an
upper bound and one chooses the signum function for the lower bound.

Proof. The clever idea is to consider the set B = {x ∈Ω :µ(x )≥ ν(x )}, then we see that given any
A ⊆Ω

µ(A)−ν(A) =µ(A ∩B )−ν(A ∩B ) +µ(A ∩B c )−ν(A ∩B c )
︸ ︷︷ ︸

≤0

≤µ(A ∩B )−ν(A ∩B ) +µ(Ac ∩B )−ν(Ac ∩B )
︸ ︷︷ ︸

≥0

Where the inequality came due to the fact that if for some set D we have that µ(D )−ν(D ) ≤ 0,
then µ(D c )−ν(D c )≥ 0. Moreover,

µ(A)−ν(A) =µ(B )−ν(B )−
�

µ(Ac ∩B )−ν(Ac ∩B )
�

︸ ︷︷ ︸

≥0

,

and so µ(A)− ν(A) ≤ µ(B )− ν(B ). It follows that


µ−ν




TV = µ(B )− ν(B ). Everything will now
follow relatively simply:



µ−ν




TV =µ(B )−ν(B ) =
∑

x∈B

µ(x )−ν(x )

=
∑

x∈B

(µ(x )−ν(x ))++
∑

x∈B c

(µ(x )−ν(x ))+

︸ ︷︷ ︸

=0

=
∑

x∈Ω
(µ(x )−ν(x ))+ (First Goal)

=
∑

x∈Ω
µ(x )−µ(x )∧ν(x ) = 1−

∑

x∈Ω
µ(x )∧ν(x ) (Second Goal)

Returning to the first lines
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µ−ν




TV =µ(B )−ν(B ) =
1

2

�

µ(B )−ν(B )
�

+
1

2

�

ν(B c )−µ(B c )
�

=
1

2

∑

x∈B

µ(B )−ν(B ) +
1

2

∑

x∈B c

ν(x )−µ(x )

=
1

2

∑

x∈Ω
|µ(x )−ν(x )| (Third Goal)

Finally:

sup
f :S→[−1,1]

�

�µ( f )−ν( f )
�

�= sup
f :S→[−1,1]

�

�

�

�

�

∑

x∈Ω
(µ(x )−ν(x )) f (x )

�

�

�

�

�

≤
∑

x∈Ω

�

�µ(x )−ν(x )
�

�= 2


µ−ν




TV

And conversely, choosing g (x ) = sgn
�

µ(x )−ν(x )
�

we have that

sup
f

�

�µ( f )−ν( f )
�

�≥
�

�µ(g )−ν(g )
�

�=

�

�

�

�

�

∑

x∈Ω

�

µ(x )−ν(x )
�

g (x )

�

�

�

�

�

=
∑

x∈Ω

�

�µ(x )−ν(x )
�

�= 2


µ−ν




TV

♥

Example 2.4 (Bernoulli distributions) Let µ ∼ Ber(p ) and ν ∼ Ber(q ). Then using the previous
result we have that



µ−ν




TV =
1

2

∑

x∈{0,1}

|µ(x )−ν(x )|=
1

2
|1−p −1+q |+

1

2
|q −p |= |p −q |

Lemma 2.5 (Range of Total Variation �) Let µ and ν be two probability measures. Then

0≤


µ−ν




TV ≤ 1

With equality at zero if and only if the two measures are equal, and equality at one if and only if
their supports are disjoint.

Main idea: The bounds themselves are obvious. To show the "equality at 1 iff" parts, use L 1

characterisation of TV as well as usual definition of TV.

Proof. Since µ and ν are probability measures, the most they can differ by is one, thus obtaining
the upper bound. The lower bound for zero is clear. If



µ−ν




TV = 0, it means that for all A ⊆Ω,
|µ(A)− ν(A)| ≤ 0. This obviously implies that µ(A) = ν(A) for all A ⊆ Ω. Conversely, if the two
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measures agree, it is obvious that the total variation is zero. Suppose now that supp(µ) and
supp(ν) are disjoint. Then we can split the sum



µ−ν




TV =
1

2

∑

x∈Ω
|µ(x )−ν(x )|=

1

2

 

∑

supp(µ)

µ(x ) +
∑

supp(ν)

ν(x )

!

= 1

Conversely, if


µ−ν




TV = 1, then due to finiteness of state space, there exists some set A ⊆ Ω
with µ(A) = 1 and ν(A) = 0. This means that supp(µ)⊆ A, and consequently the two supports are
disjoint. ♥

The remaining ingredient to show that the total variation distance is actually a metric is the triangle
inequality, but this follows trivially from the fact that



µ−ν




TV =
1

2

∑

x∈Ω

�

�µ(x )−ν(x )
�

�

by using the triangle inequality
�

�µ(x )−ν(x )
�

�≤
�

�µ(x )−ρ(x )
�

�+
�

�ρ(x )−ν(x )
�

�. Thus we can finally say

Theorem 2.6 The space (P (Ω), dTV) is a metric space.

We can now introduce the idea of couplings:

Definition 2.7 Let µ,ν ∈P (Ω), and X , Y be two random variables on the same probability space
such that L (X ) = µ and L (Y ) = ν. Then we refer to the random vector (X , Y ) as a coupling.
Sometimes we write Π(µ,ν) for the set of all couplings of µ,ν.

Coupling is a general technique in probability, but in our case, it will allow us to obtain one more way
of bounding the total variation distance.

Example 2.8 (An example of a coupling of Bernoulli distributions) Let µ and ν be Bernoulli p

and q distributions respectively. Suppose that p < q . To construct a coupling for µ and ν we
could take a uniform distribution U ∼U [0, 1] and have

X = 1{U≤p} Y = 1{U≤q }

Notice that P(X ̸= Y ) = q − p which is equal to the total variation distance between µ and ν.
Coincidence? I don’t think so.

It turns out that the total variation distance is upper bounded by the probability of disagreement of a
coupling, and moreover, there always exists a coupling, called the optimal coupling, that attains this
lower bound.
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I I I

I I I

µ ν

µ(x )∧ν(x )

Figure 2.1: The diagram that says it all

Theorem 2.9 (The coupling inequality �) Let µ,ν ∈P (Ω). Then



µ−ν




TV = inf
�

P{X ̸= Y } : (X , Y ) is a coupling for µ,ν
	

Moreover, this infimum is attained.

Main idea: For the upper bound, express µ(A) as P(X ∈ A) and ν(A) in a respective manner, then
work towards writing P(X ̸= Y ). To construct the coupling, look at the diagram that says it all: throw
a coin at the diagram, and if it lands in region I I I , then sample X and Y to be the same. If the
coin lands on the other regions, sample X and Y according to the "rescaled" curves in regions I and
I I . This construction has that X and Y agree when the coin falls on region I I I , which occurs with
probability

p =
∑

x∈Ω
µ(x )∧ v (x ) = 1−



µ−ν




TV

thus satisfying our request.

Proof. Let A ⊆Ω, and (X , Y ) ∈Π(µ,ν). Then

µ(A)−ν(A) =P(X ∈ A)−P(Y ∈ A)≤P(X ∈ A)−P(X ∈ A, Y ∈ A) =P(X ∈ A, Y /∈ A)≤P(X ̸= Y )

Thus


ν−µ




TV ≤ P(X ̸= Y ) for all couplings (X , Y ). Now we show there is some coupling that
attains this bound. First of all, suppose that we can construct a coupling (X , Y ) with

P({X = Y }) =
∑

x∈Ω
µ(x )∧ν(x ) =: p
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(µ1,ν1)

(µ2,ν2)
P (Ω)×P (Ω)



(λµ1+ λ̄µ2)− (λν1+ λ̄ν2)




TV

λ


µ1−ν1





TV+ λ̄


µ2−ν2





TV

Figure 2.2: The map (µ,ν) 7→


µ−ν




TV is convex

Then P({X ̸= Y }) =


µ−ν




TV by one of the equivalent characterisations. The coupling is con-
structed as follows: toss a coin with probability p of obtaining heads. If a head is obtained, then
set X = Y = Z where Z is sampled from the distribution

µ(x )∧ν(x )
p

If a tails is obtained, then sample

X ∼
µ(x )−ν(x )

1−p
1{µ(x )>ν(x )} Y ∼

ν(x )−µ(x )
1−p

1{µ(x )<ν(x )}

In the case a tails is obtained, then the supports of the distributions of X and Y are disjoint so
they cannot be equal. Therefore the probability that X = Y is p . Now we can easily check that
(X , Y ) is a coupling by using the law of total probability:

P(X = x ) = p
µ(x )∧ν(x )

p
+ (1−p )

µ(x )−ν(x )
1−p

1{µ(x )>ν(x )} =µ(x )

And similarly for Y . ♥

We finish this section with one more property of the total variation distance, which I illustrate in a
diagram because I’m a stupid visual learner:

Proposition 2.10 (Convexity and non-expansion ♩) The function (µ,ν) 7→


µ−ν




TV is convex.
Moreover, given a transition matrix P , P is a non-expansion, i.e:



µP −νP




TV ≤


µ−ν




TV ∀µ,ν ∈P (Ω)

Main idea: Convexity is an easy calculation, non-expansivity uses the fact that the set of all functions
of the form P f where f :Ω→ [−1, 1] is in fact contained in the set of all functions f :Ω→ [−1, 1], and
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so the supremum over the integrals cannot be larger.

Proof. Checking convexity is simple: let λ ∈ [0, 1] and let λ̄ denote 1−λ



(λµ1+ λ̄µ2)− (λν1+ λ̄ν2)




TV =max
A⊆Ω

�

(λµ1+ λ̄µ2)(A)− (λν1+ λ̄ν2)(A)
�

=max
A⊆Ω

�

λ(µ1−ν1) + λ̄(µ2−ν2)
�

≤max
A⊆Ω

�

λ(µ1−ν1)
�

+max
A⊆Ω

�

λ(µ2−ν2)
�

=λ


µ1−ν1





TV+ λ̄


µ2−ν2





TV

For non-expansivity, we have that



µP −νP




TV =
1

2
sup

f :S→[−1,1]

�

�µ(P f )−ν(P f )
�

�

Since P is stochastic, we have that

�

�P f (x )
�

�=

�

�

�

�

�

∑

y ∈Ω
P (x , y ) f (y )

�

�

�

�

�

≤ 1

and as such
�

P f | f : S → [−1, 1]
	

⊆
�

f : S → [−1, 1]
	

so
1

2
sup

f :S→[−1,1]

�

�µP f −νP f
�

�≤
1

2
sup

f :S→[−1,1]

�

�µ f −ν f
�

�=


µ−ν




TV

♥
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2.1 Examples

Here are some examples. I could have included many others, but these are the ones I found hard
once:

Example 2.11 Let Y be an N-valued random variable with the property that P[Y = j ] ≤ c and
P[Y = j ] is decreasing in j . Let Z be an independent N-valued random variable. Show that

∥L (Y +Z )−L (Y )∥TV ≤ c E[Z ].

Proof. This is an interesting example as we some sort of two sources of randomness to take care
of, so it is a good way to see how conditioning can save the day. First let’s tackle the case with
Y +k instead of Y +Z . Note:

∥L (Y +k )−L (Y )∥TV =
1

2

∑

n≥1

|P[Y = n −k ]−P[Y = n ]| (2.1)

=
1

2

�

k
∑

n=1

P[Y = n ] +
∞
∑

n=k+1

P[Y = n −k ]−P[Y = n ]

�

(2.2)

=
k
∑

n=1

P[Y = n ]≤ c k (2.3)

Where 2.2 comes from the fact that since Y is N-valued, P[Y ≤ 0] = 0, and so we just split the
sum. Moreover, in this same step we also used the decreasing property to get rid of the absolute
value signs on the second sum. Then in 2.3 we used the fact that the second sum telescopes, and
is equal to the first sum. Now we are ready to use this to finish the exercise, all we need to do is
condition on Z and be careful about it. For each k , let Vk and Wk be the TV-optimal couplings
of the laws of Y and Y +k , and let them be independent of Z . Then

∥L (Y +Z )−L (Y )∥TV ≤P[VZ ̸=WZ ]

=
∑

n≥1

P[Z = n ]P[Vn ̸=Wn ]

≤ k
∑

n≥1

nP[Z = n ].

♥
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Mixing Times

Definition 3.1 Let (Xn ) be a Markov Chain with invariant distribution π and transition matrix P .
The distance to stationarity at a time t is given by

dP (t )≡ d (t ) :=max
x∈Ω



P t (x , ·)−π(·)




TV

In other words, the distance to stationarity is the worst TV distance from the the distribution of the
Markov Chain at the t th time, initiated at any starting point to its invariant distribution. We also write

d̄ (t ) :=max
x ,y ∈Ω



P t (x , ·)−P t (y , ·)




TV

For the worst two starting point distance. We have some preliminary facts:

Proposition 3.2 (Properties of distance to stationarity ♩) Let (Xn ) be as above, then d (t ) and
d̄ (t ) are non-increasing. Moreover, given any distribution ν, we have that d (t )≥ ∥νP t −π∥TV.

Main idea: For non-increasingness, we use the fact that P is a non-expansion of TV. For the second
inequality, we express ν as a convex combination of point masses.

Proof. By Proposition 2.10, we have that if t1 ≤ t2, then

d (t1) =max
x∈Ω



P t1(x , ·)−π(·)




TV ≥max
x∈Ω











P t1(x , ·)P − πP
︸︷︷︸

π











TV

≥ · · · ≥ d (t2)

To show the second part, we recall again from Proposition 2.10 that the map (µ,ν) 7→


µ−ν




TV

is convex. In particular, for a collection (pi : i ∈ I ) of real numbers such that
∑

i pi = 1, and a
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d (t )

ε

tmix(ε)

Figure 3.1: Mixing time

collection (µi : i ∈ I ) of distributions, we have that










�

∑

i∈I

aiµi

�

−ν











TV

≤
∑

i∈I

ai



µi −ν




TV

Therefore,










�

∑

y ∈Ω
ν(y )δy (y )P

t (y , ·)

�

−π











TV

≤
∑

y ∈Ω
ν(y )



P t (y , ·)−π(·)




TV

≤max
x∈Ω



P t (x , ·)−π(·)




TV

∑

y ∈Ω
ν(y ) =max

x∈Ω



P t (x , ·)−π(·)




TV .

♥

We are now ready to define a mixing time:

Definition 3.3 Let ε> 0 be given, the ε-mixing time is given by

tmix(ε) = inf{t ≥ 0 : d (t )≤ ε}

I.e: the least time for which the distance to stationarity is no more than ε. Thanks to Proposition
3.2 we know this definition is not nonsense, because if we reach the mixing time, then waiting any
further will not make us "unmix". Obscure historical reasons made it so that when written by itself,
tmix denotes tmix(0.25).

We now move on by using this framework to prove the Ergodic Theorem, and in fact we will do it by
showing something stronger, which actually gives us an understanding of the nature of the decay of
the distance to equilibrium.

Theorem 3.4 (Geometric decay of distance to equilibrium, K) Let (Xn ) be an irreducible, aperiodic
Markov Chain on a finite state space with invariant distribution π. There exists some α ∈ (0, 1) and



23

positive constant C so that for all t we have

max
x∈Ω



P t (x , ·)−π(·)




TV ≤Cαt

Main idea: By aperiodicity and irreducibility, there is some r ≥ 0 such that P r has positive entries.
The final goal now is to express P t as a convex combination of Π, a matrix whose rows are all π,
and some other matrix. Then we use the convexity of the "TV map". A good place to start is by
expressing P r as such a convex combination, then extending for P r k and finally for P r k+l . To see what
a good choice of the "convexity parameter" would be, note that we want to write

P r (x , y ) =απ(y ) + (1−α)Q (x , y )

and since we want Q to be non-negative, we need an α such that

P r (x , y )≥απ(y )

We also need our α to be at most 1.

Proof. We begin by noting that since the chain is irreducible and aperiodic, by Theorem D.7 we
have the existence of some r ≥ 0 so that P r has positive entries. From this we can define

α= min
x ,y ∈Ω

P r (x , y )
π(y )

Which is clearly positive, and moreover, since for any x ∈Ω

∑

y

P r (x , y ) = 1=
∑

y

π(y )

we must have that for some y ∗, P r (x , y ∗)≤π(y ∗), indeed, if all P r (x , y ) were strictly greater than
π(y ) the sums over y would not coincide. Therefore we see that

α≤
P r (x , y ∗)
π(y ∗)

≤ 1

Now we have concluded that α ∈ (0, 1]. If α= 1, then this means that given any x , y ∈Ω, then

P r (x , y )≥π(y )

But due to the requirement that they both sum to one, it must be that we have strict equality
and hence d (r ) = 0 so the inequality holds trivially. Suppose otherwise that α< 1. Then since for
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any pair it holds that P r (x , y )≥απ(y ), we may write

P r (x , y ) =απ(y ) + (1−α)Q (x , y )

Where Q (x , y ) is trivially checked to be a stochastic matrix. The interpretation of this is that to
sample from P r , with probability α you sample from π and with probability (1−α) you sample
from Q (x , y ). For reasons that will become apparent now, it is better to construct a matrix Π
whose rows are the row vector π, and simply write the matrix equation

P r =αΠ+ (1−α)Q

Now we claim that P r k = (1− (1−α)k )Π+ (1−α)kQ k . The argument goes by induction. The base
case we have just shown, so suppose it holds for k = n , then

P r (k+1) = P r k P r

=
�

(1− (1−α)k )Π+ (1−α)kQ k
�

P r

= (1− (1−α)k )ΠP r + (1−α)kQ k P r

(1)
= (1− (1−α)k )Π+ (1−α)k

�

αQ kΠ+ (1−α)Q k+1
�

(2)
= (1− (1−α)k+1)Π+ (1−α)k+1Q k+1

Where step (1) came from the fact that ΠP r =Π by expressing this matrix multiplication as a sum
and then using the fact that π=πP r . Step (2) comes using Lemma D.8 and a bit of algebra.
Now we may multiply by any P l and as such

P r k+l = (1− (1−α)k )Π+ (1−α)kQ k P l

Finally, since any t ≥ 0 may be expressed as some r k + l , we have that:



P t (x , ·)−π(·)




TV =




�

(1− (1−α)k )Π(x , ·) + (1−α)k (Q k P l )(x , ·)
	

−π(·)




TV
(!)
≤ (1− (1−α)k )∥Π(x , ·)−π(·)∥TV+ (1−α)k



(Q k P l )(x , ·)−π(·)




TV

= (1−α)k


Q k P l −π




TV

≤ (1−α)k

Where step (!) comes from the convexity of the map (µ,ν) 7→


µ−ν




TV and where the last inequality
comes from the fact that TV is bounded above by 1. Now to finish off, since l ≤ r , we see that

(1−α)k = (1−α)
t−l

r ≤ (1−α)
t−r

r =
1

1−α
(1−α)

t
r
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so all in all


P t (x , ·)−π(·)




TV ≤C a t

where C = (1−α)−1 and a = (1−α)−r ♥

We now set off to compute bounds for mixing times. To do so we will need some useful inequalities
relating distances to stationarity

Lemma 3.5 (Comparison of d and d̄ ) For all t we have that

d (t )≤ d̄ (t )≤ 2d (t )

Main idea: The upper bound follows from the triangle inequality. The lower bound follows after
noting that if you want to extract a P t (y , A) (for the d̄ term) out of thin air, you may do so by writing
π(A) =

∑

y π(y )P
t (y , A).

Proof. The inequality d̄ (t )≤ 2d (t ) comes from the triangle inequality. Indeed, fix x and y , then



P t (x , ·)−P t (y , ·)




TV ≤


P t (x , ·)−π(·)




TV+


P t (y , ·)−π(·)




TV

Now maximise both sides of the inequality with respect to x and y . For the other inequality, we
note that

d (t ) =max
x

max
A
|P t (x , A)−π(A)|

(!)
=max

x
max

A

�

�

�

�

�

∑

y ∈Ω
π(y )P t (x , A)−π(y )P t (y , A)

�

�

�

�

�

≤max
x

max
A

max
y
|P t (x , A)−P t (y , A)|

∑

y

π(y )

=max
x

max
y



P t (x , ·)−P t (y , ·)




TV

= d̄ (t )

Where the only non-trivial step was step (!), where we used πP t =π. ♥

Lemma 3.6 (Submultiplicativity of d (t )) Let s , t ≥ 0. Then d̄ (s + t ) ≤ d̄ (s )d̄ (t ). We also have
that d (s + t )≤ d (s )d̄ (t ).

Main idea: The heart of the proof lies in taking a TV-optimal coupling (X , Y ) of P s (x , ·) and P s (y , ·),
and then noticing that

P t+s (x , z ) = E[P t (X , z )] P t+s (y , z ) = E[P t (Y , z )]
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with this one can cleverly push towards the goal by noting that E[1(X ̸= Y )] =


P s (x , ·)−P s (y ·)




TV.

Proof. Fix x , y ∈ Ω. From Theorem 2.9 we know that there exists a coupling (X , Y ) such that
X ∼ P s (x , ·) and Y ∼ P s (y , ·) and



P s (x , ·)−P s (y , ·)




TV =P(X ̸= Y )

Notice that by the Markov Property

P t+s (x , z ) =
∑

u∈Ω
P s (x , u )P t (u , z ) =

∑

u∈Ω
P(X = u )P t (u , z ) = E

�

P t (X , z )
�

Similarly P t+s (y , z ) = E [P t (Y , z )] Therefore, using one of the characterisations of total variation,
we see that



P s+t (x , ·)−P s+t (y , ·)




TV =
1

2

∑

z∈Ω

�

�E
�

P t (X , z )
�

−E
�

P t (Y , z )
��

�

≤ E

�

1

2

∑

z∈Ω

�

�P t (X , z )−P t (Y , z )
�

�

�

= E

�

1{X ̸=Y } ·
1

2

∑

z∈Ω

�

�P t (X , z )−P t (Y , z )
�

�

�

(!)
≤ E

�

1{X ̸=Y } d̄ (t )
�

=P(X ̸= Y )d̄ (t ) =


P s (x , ·)−P s (y , ·)




TV d̄ (t )

Where step (!) comes from the fact that almost surely

1

2

∑

z

�

�P t (X , z )−P t (Y , z )
�

�=


P t (X , ·)−P t (Y , ·)




TV ≤max
x ,y

�

�P t (x , z )−P t (y , z )
�

�= d̄ (t )

Reading off the inequality:



P s+t (x , ·)−P s+t (y , ·)




TV ≤


P s (x , ·)−P s (y , ·)




TV
¯d (t )

Hence maximising on both sides over x and y gives the result that d̄ (t + s )≤ d̄ (t )d̄ (s ). To show
the rest of the claim, we effectively replicate the argument but choose a different coupling.

Let (X , Y ) be an optimal coupling for P s (x , ·) and π(·), we start by making the following preliminary
observation:

E[P t (Y , z )] =
∑

y

P t (y , z )π(y ) =π(z )
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Therefore we may repeat the argument above now:



P s+t (x , ·)−π(·)




TV =
1

2

∑

z∈Ω

�

�E[P t (X , z )]−π(z )
�

�

=
1

2

∑

z∈Ω

�

�E[P t (X , z )]−E[P t (Y , z )]
�

�

≤
1

2
E

�

1(X ̸= Y )
∑

z

|P t (X , z )−P t (Y , z )|
�

≤ E
�

1(X ̸= Y )d̄ (t )
�

=P(X ̸= Y )d̄ (t ) = ∥P s (x , ·)−π(·)∥TV d̄ (t )

Now maximising over x gives the desired claim. ♥

Remark 3.7 As immediate consequences we can note that

• d (s + t )≤ 2d (s )d (t )

• d (k t )≤ d̄ (t )k

Indeed: d (s + t ) ≤ d (s )d̄ (t ) ≤ 2d (s )d (t ) and d (k t ) ≤ d (t (k − 1))d̄ (t ) and now we iterate by using
the fact that d (s )≤ d̄ (s ).

Proposition 3.8 (Upper bound on ε-mixing time in terms of mixing time) For an Ergodic Markov
Chain we have

tmix(ε)≤
�

− log2(ε)
�

tmix

Main idea: Follows from direct computation using the fact that we know how to deal with the
distance to stationarity at multiples of a certain time by using

d (k t )≤ d̄ (t )k ≤ (2d (t ))k

Proof. We proceed by showing that at time
�

− log2(ε)
�

tmix, the distance to stationarity falls below
ε. This is a straightforward computation:

d
��

− log2(ε)
�

tmix
�

≤ (2d (tmix))⌈− log2(ε)⌉

≤ (2−1)⌈− log2(ε)⌉

≤ (2−1)− log2(ε) ≤ ε.
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♥

Remark 3.9 (Of when the mixing time could be ∞) Throughout all these discussions we have
made among other assumptions that the chain is aperiodic. We now show how, if the chain is
periodic, it could be the case that the mixing time is infinite.

Proof. Suppose (X t ) is an irreducible and periodic Markov chain on a state space Ω. Suppose
that for some state x ∈ Ω we have that the period τx = gcd{t > 0 : P t (x , x )} = p > 1. Then by
Background result [TRACK THIS RESULT], since the chain is irreducible, all states are periodic
with period p , which means by Background result [TRACK THIS RESULT] that the state space
Ω can be partitioned into disjoint subsets C1, · · · , Cp such that whenever you are in Ck , on the next
move you must go to Ck+1 (addition taken modulo p).

C1 C2

· · ·
CpC3

By assumption the period is at least two, so there will be at least two partitioning states. Therefore
at least one of this must have π-measure at most 1/2, say this collection of states is Ck . This
means that if we start at some state say x ∈Ck in this particular collection of states, then at times
multiple of k , we will be with probability 1 back in Ck . Therefore, the distance to stationarity at
times multiple of the period is bounded below by:

d (p l )≥ |Px [Xp l ∈Ck ]−π(Ck )|= 1−π(Ck )≥
1

2
.

And since distance to stationarity is non-increasing, i.e: for any time t there will be a larger
multiple of p , say p l ′ so that d (t ) ≥ d (p l ′), it follows that for all 0 < ε < 1

2 , the distance to
stationarity will never fall below ε, so the ε-mixing-time is∞.

♥

3.1 Examples

We now see a bunch of examples of how to bound TV-distances using the results of this section. To
upper bound mixing times we have seen already a technique, namely the coupling inequality, but lower
bounding mixing times is something quite harder.
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Example 3.10 (Random Card Transposition) Let σ ∈ Sn be an arrangement of cards. Consider
the following shuffling method. Pick two cards L t and Rt uniformly at random, and swap them
(even if you picked the same card both for L t and Rt , i.e: do nothing). Then

tmix ≥
n −1

2
log

�

1−ε
6

n
�

.

Main idea: We will see some more techniques of lower bounding mixing times, but for now the only
thing we can do is, as I say, to get dirty . This means that we need to work with the direct definition
of the Total Variation distance. If we want to lower bound it for some time t , and more importantly,
if we want a decent lower bound, we will need to find a set A where the π-measure and the P t (x , ·)
measure disagree quite a lot, i.e: either π(A) is large but the chain has a low probability of being there
by time t , or conversely, A is π-small, but the chain has a large probability of being there by time t .
This is what we will do now.

Proof. For a permutation σ ∈ Sn , let F (σ) be the number of fixed points of σ. The idea is that for
a reasonably large number m , sets of the form {σ : F (σ)>m} have a very small π-mass, whereas
if we start our random walk from the identity, σid, we start with n fixed points, and it probably
take a long-ish time until we get rid of enough fixed points, which means that σt will be in A with
high probability for a reasonably large time. We now make these intuitions precise and quantifiable.

First of all note that F (σt ) ≥ Z2t where Zt is the number of unselected coupons in a coupon-
collector problem of size n . Indeed: all the coupons that haven’t been touched give rise to a fixed
point, but even if a coupon has been touched, it could have been sent back to its original place,
contributing still to a fixed point. This motivates us to study some properties of Z2t . Here we
have to claims:

1. E[Z2t ] = n (1−1/n )2t =:µ.

This is reasonably easy to show, if we let I j (t ) denote the indicator function that the j t h

coupon has not been touched by time t , then it is clear that E[I j (2t )] = (1− 1/n )2t , and
moreover it’s clear to see that

Z2t =
n
∑

i=1

Ii (2t )

this finishes the first claim.
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2. Var[Z2t ]≤µ. Showing this is a bit trickier, but it amounts to the following, of course:

Var(Z2t ) =Var

�

n
∑

i=1

Ii (2t )

�

=
∑

i

Var(Ii (2t ))+
∑

i ̸= j

Cov(Ii (2t ), I j (2t ))

The sum of variances can be immediately seen as µ(1−µ/n ), indeed:

Var[Ii (2t )] = E[Ii (2t )2]−E[Ii (2t )]2

And the covariance, a bit trickier, is negative, indeed:

Cov(Ii (t ), I j (t )) = E[Ii (t )I j (t )]−E[Ii (t )]E[I j (t )] =
�

1−
2

n

�t

−
�

1−
1

n

�2t

≤ 0

Therefore Var(Z2t )≤µ.

We need one more technicality: namely that E[F (σ)] = 1 for σ picked uniformly at random. This
is not too hard to see:

E[F (σ)] = E

�

n
∑

i=1

1(σ(i ) = i )

�

=
n
∑

i=1

(n −1)!
n !

= 1

Now we are ready. As hinted in the intuition section, we are going to formulate a set of permu-
tations with more than a given amount of fixed points, we will choose the following:

A = {σ : F (σ)≥µ/2}

And so by Markov, and using the fact that π is uniform on Sn , we have that

π(A)≤
Eπ[F (σ)]
µ/2

=
2

µ

And so we see, that for n large enough, µ will be large and the mass of this set will be small.
Now we see how the probability of the walk being in A contrasts:

P t (σid, Ac )
(1)
≤ P[Z2t ≤µ/2]
(2)
≤ P[|Z2t −µ| ≥µ/2]
(3)
≤

µ

(µ/2)2
=

4

µ

Where (1) comes from the fact that if σt has less than m fixed points, then there must be less
than m untouched cards (this is the contraposite of what we said at the start of the proof). Then
step (2) comes from the following diagram:
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Z2t µ/2 µ

µ/2 µ/2

And step (3) comes from Chebyshev’s Inequality: P[|X −µ| ≥ a ]≤Var(X )/a 2 as well as the upper
bound we found on the variance. Combining this all we have that

π(A)−P t (σi d , A)≥ 1−
6

µ

and by looking at the definition of µ, we can see how finding a large enough t that looks what
is in the claim can render this difference lower bounded by ε, and so obtaining the bound on the
mixing time that we wanted. ♥

Example 3.11 (Lower bounds and hitting times) Let X be a Markov chain on a state space Ω
and denote by τA the hitting time of a set A, i.e: τA = inf{t ≥ 0 : X t ∈ A}. Then as we will see
now: tmix ≥ c maxx∈ΩEx [τA] for A such that π(A)≥ 1/8.

Proof. The key here is that we can relate Ex [τA] to any time t by using the Markov property:

Ex [τA]≤ t +
∑

y ∈Ac

P t (x , y )Ey [τA]

Indeed:

Ex [τA] = Ex [τA 1{X t ∈ A}] +Ex [τA 1{X t ∈ Ac }]

≤ t +
∑

y ∈Ac

Px [X t = y ]Ex [τA 1{X t ∈ Ac } | X t = y ]

= t +
∑

y ∈Ac

P t (x , y )Ey [τA]

where we used the Markov property in the last line. Then if we let x ′ = argmaxx∈ΩEx [τA], we see
that for any t ,

Ex ′[τA]≤ t +Ex ′[τA]P
t (x ′, Ac ).

Now we note that if t := tmix(1/16) = 4 tmix(1/4), we have that 1/16 = d (t ) ≥ 1/8−P t (x ′, A), and
so P t (x ′, A)≥ 1/16 which means P t (x ′, Ac )≤ 15/16, and so plugging into the above expression we



32 CHAPTER 3. MIXING TIMES

obtain that 1
16 Ex ′[τA]≤ tmix(1/16) which finally implies that

1

64
Ex ′[τA]≤ tmix .

♥



Chapter 4

Markovian Couplings

Definition 4.1 (Notation) Let f and g be two functions N→R. Then we write

• f ≲ g if there is a constant C ≥ 0 such that f (n )≤ C g (n ) for all n ∈N. This is also usually
written as f =O (g )

• f ≍ if f ≲ g and g ≲ f .

• f ≪ g if f (n )/g (n )→ 0 as n→∞, also written sometimes as f = o (g ).

Recall that a coupling of distributions µ and ν is a pair (X , Y ) of random variables on the same
probability space, such that the marginal distribution of X is µ and the marginal distribution of Y is
ν. We also saw how



µ−ν




TV is characterised as the minimum over all couplings (X , Y ) of µ,ν, of
the probability that X and Y disagree, which provides an effective method of obtaining upper bounds
on the distance. In this chapter we will extract more information by not just coupling distributions,
but entire Markov chains. In particular, we will see how building two simultaneous copies of a Markov
chain using a common source of randomness can be useful for getting bounds on the distance to
stationarity.

Definition 4.2 (Coupling of Markov Chains ) A coupling of Markov chains with transition matrix
P is a process (X t , Yt )∞t=0 with the property that both (X t ) and (Yt ) are Markov chains with transition
matrix P , although with possibly different starting distributions.

Example 4.3 (Initial example) Here is a “dumb example" of this, that showcases the power of
coupling chains to obtain information about their distribution. Suppose that (X t ) is a simple
random walk on the interval {1, · · · , n}, i.e: moves up and down with equal probability, and if the
chain is at say n and attempts to move upwards, it stays put (similarly if the chain is at 1 and it
tries to move downward). Then we have the “obvious" fact that if x ≤ y , then P t (x , n )≤ P t (y , n ).
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X t

Yt

Figure 4.1: A coalescent coupling of two Random Walks X t and Yt on the grid.

This is “obvious" because if the chain starts at a lower initial position, then the probability that
it reaches n in t steps cannot be greater than the probability when it starts at a higher initial
configuration.

Proof. To prove this claim we will couple two chains (X t ) and (Yt ) on {1, · · · , n}. For this define
a probability space on which there is defined a sequence (∆i ) of i.i.d random variables that take
the value ±1 with equal probability. Then it is clear that if x ≤ y are two given starting positions,
the chains (X t ) and (Yt ) that are started at x and y respectively and use the (∆i )’s to perform
the moves have the property that (X t ) and (Yt ) have transition probabilities P t (x , ·) and P t (y , ·)
respectively and that one always has X ≤ Y . Therefore, if X it at n , then so is Y , and so

P t (x , n ) =P[X = n ]≤P[Y = n ] = P t (y , n ).

This “stupid" argument showcases the power of couplings. ♥

Definition 4.4 (Markovian coupling) A Markovian coupling is a coupling of Markov chains
(X t , Yt )t≥0 which is itself a Markov chain on Ω×Ω and

P(X1 = x | X0 = x0, Y0 = y0) = P (x0, x ) P(Y1 = y | X0 = x0, Y0 = y0) = P (y0, y )

Remark 4.5 Any Markovian coupling with transition matrix P can be modified so that the two
chains stay together after their first meeting, so that if X s = Ys , then X t = Yt for all t ≥ s . For
this to be possible without altering the law of the process, the condition of Markovian coupling is
crucial, indeed, if we didn’t have it, we would not know whether the transition probabilities of X t

and Yt given that (X t−1, Yt−1) = (z , z ) are the same. Of course, if we have a coupling of Markov
chains that run independently before they meet, and then we run them together after they meet,
we can still produce this property, since this independence effectively gives us what we need from
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the Markovian coupling property.

Example 4.6 (Example of a coupling of Markov chains that is not a Markovian coupling) To fur-
ther understand the subtleties of these definitions, let us see an example of a coupling of Markov
chains (X t , Yt ) that is not a Markovian coupling.

Let Yt be a Markov chain on the state space {0, 1} with transition probability P (x , y ) = 1/2 for all
x , y , i.e: a memoryless Bernoulli binary string. Now take X t+1 = Yt , and say X0 = 0, then X t is
also a Markov chain with the same transition probabilities as Yt , but the process (X t , Yt ) is not a
Markovian coupling because X t is influenced by the values of Yt . To be more precise, it is not at
all the case that for any x , x0, y0

P(X1 = x | X0 = x0, Y0 = y0) = 1/2

Theorem 4.7 (Bound on TV via coalescent couplings, �) Let {(X t , Yt )} be coalescent Markov
chain coupling, for which X0 = x and Y0 = y . Define

τcouple = inf{t ≥ 0 : X t = Yt }

Then


P t (x , ·)−P t (y , ·)




TV ≤Px ,y (τcouple > t )

Where Px ,y (A) =P(A | X0 = x , Y0 = y ).

Main idea: We note that a coalescent Markov chain coupling started at x and y respectively is also
a coupling for P t (x , ·), P t (y , ·) so we can use the coupling inequality. We then note that since the
coupling is assumed to be coalescent, X t and Yt being different is equivalent to not having reached
coalescense time by time t .

Proof. Since P t (x , z ) =Px ,y (X t = z ) and P t (y , z ) =Px ,y (Yt = z ) we have that (X t , Yt ) is a coupling
of P t (x , ·) and P t (y , ·), therefore



P t (x , ·)−P t (y , ·)




TV ≤Px ,y (X t ̸= Yt )

Now we simply note that the events {X t ̸= Yt } and {τcouple > t } are the same events due to
assumption of the coupling being coalescent. ♥

Combining this previous fact with the bound obtained in Lemma 3.5 that tells us that d (t )≤ d̄ (t ) and
maximising over x and y gives that:
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X t

Yt

x

y

Figure 4.2: A coupling on Zn

Corollary 4.8 Suppose that for each pair of states x and y there is a Markov chain coupling
(X t , Yt ) with X0 = x and Y0 = y . Then for each such coupling, let τcouple be the first time the
chains meet. Then

d (t )≤max
x ,y ∈Ω

Px ,y (τcouple > t )

Why do we care about this Corollary? If our goal is to obtain upper bounds on the Mixing Time, since
tmix = inf{t ≥ 0 : d (t )≤ 1/4} we see that if we find some t ∗ such that d (t ∗)≤ 1/4, then tmix ≤ t ∗. If we
manage to construct coalescent couplings for which τcouple is small, i.e: they coalesce rapidly, then we
will obtain a good upper bound.

4.1 Examples

We now get dirty to see the power of this technique:

Example 4.9 (Mixing time on lazy random walk on Zn ) Define a Lazy Simple Random Walk
on the cycle Zn by setting the transition matrix to be (P + I )/2 where only non-zero transitions in
P are P (i , (i ± 1) mod n ) = 1/2. Then the mixing time of the Lazy Simple Random Walk on Zn

satisfies
tmix ≍ n 2

Main idea: The following idea is of great importance: we wish to construct a coupling on Zn , but
we must do so in a way that we (almost surely) guarantee coalescense at some point, if we just ran
the two chains as if they were, we might have the possibility that they jump over each other, so to
fix this, we employ the following common technique of coupling lazy chains (this is why this example
works with lazy chains): toss a fair coin and based on the outcome, only let one of the two chains
move, this respects the lazyness and prevents the chains from jumping over each other.
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X t
0

A
n/2

0

St

Figure 4.3: The picture to have in mind for the lower bound of the walk on Zn

Proof of upper bound. Consider a coupling defined as follows: at each step, we toss a fair coin
independently of previous tosses. If the coin comes up heads, then X makes a move, left or right,
with equal probability. Otherwise Y makes a move. If at some point they are in the same location,
we move them together. We see that the marginals for X and Y are indeed those of simple lazy
random walks on Zn . Letting Dt denote the clockwise distance between the two particles, we note
that Dt defines a simple random walk on the interior vertices of of {0, 1, · · · , n} and gets absorbed
at 0 or n . Thus in this case, τcouple =min{t ≥ 0 : Dt ∈ {0, n}}, and from Gambler’s Ruin we know
that Ex ,y (τcouple) = k (n − k ) where k is the clockwise distance between the initial states x and
y . Therefore using Corollary 4.8, we see that using Markov’s Inequality and using the fact that
k (n −k ) is maximised at n 2/4:

d (t )≤ max
x ,y ∈Zn

Px ,y (τcouple > t )≤
maxx ,y Ex ,y (τcouple)

t
≤

n 2

4t

Therefore for t ∗ = n 2 we have that d (t ∗)≤ 1/4 and as such tmix ≤ t ∗ = n 2. ♥

Main idea: (for lower bound) Once again we are going to have to get dirty: start by noting that



P t (x , ·)−π




TV ≥π(A)−P t (x , A)

for all sets A, so to obtain a good lower bound, we would like a large set A (large in the sense of
π-measure), but which hopefully has a small probability of the chain being there at time t . We can
intuitively imagine, that if our chains starts say at the top of the cycle (say 0), and if n is large, for
small enough values of t , the chain will have a hard time reaching the lower half of the cycle, so we
may choose this one.

Proof of lower bound. To obtain a lower bound, we note that it is always the case that

d (t )≥π(A)−P0(X t ∈ A)

So if we can find a subset A of our state space such that π(A)−P0(X t ∗ ∈ A)> 1/4 for some time t ∗
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then it will follow that tmix ≥ t ∗. Consider the set A consisting on the lower half of the cycle, i.e:
A = {k ∈ Zn : |k | ≥ n/4}, then by letting St be a lazy random walk on Z which tracks the steps that
X t has done (i.e: jumps +1 if X t moves clockwise and jumps −1 if it moves counter-clockwise)
then we have that if X t is in the lower half of the cycle, then St is further away from 0 than n/4.
Moreover we note that the variance of St is t /2, so

P0(X t ∈ A)≤P0(|St |> n/4)≤
16Var(St )

n 2
=

8t

n 2

Choosing any t < n 2/32, for example t = n 2/33 we then have that P0(X t ∈ A) < 1/4 but since A

contains at least n/2 vertices and π is easily checked to be the uniform distribution (also follows
intuitively) we have that π(A)≥ 1/2 so the claim follows, i.e: that tmix ≥ n 2/33. ♥

Example 4.10 (Lazy random walk on binary tree) Let Tk be a rooted finite binary tree with a
root ρ. Notice there are n = 2k − 1 vertices on this tree, and each leaf has degree 1, every other
vertex has degree 3. Then for this Markov Chain, we have that

tmix ≍ n

Main idea: The idea is similar, we want a coupling that prevents the chains from jumping past each
other. The idea is that once the chains reach the same level, they start moving together, then they
will be coupled by the time they reach the root.

Proof. Construct the following coupling (X t , Yt ) of two lazy random walks started from x0, y0 on
the tree. At each move, toss a fair independent coin to decide which of the two chains moves.
The one who moves will move uniformly at random amongst its neighbours. This ensures the
coupling respects the lazy transition matrix, and moreover, achieves that the particles don’t jump
past each other. Suppose that at some point they reach the same level (i.e: the same distance
away from the root), once this happens we will move both particles together, i.e: keep tossing fair
coins, but now if we get heads, we don’t just move one and leave the other put, we move both
of them. And so when they reach the root, they will have coalesced. Let L be the set of leaves
at the bottom of the tree. Clearly, the coupling time τcouple is smaller than or equal to the time
required for (X t ) to reach L and then reach the root, because in doing this trajectory it must have
visited the same level as (Yt ). Let τ denote this time. We can now bound τ by modelling the
height evolution as a biased (biased since the chance of moving down a level is twice the chance
of moving up because there are two leaves downwards and only one upwards) lazy simple random
walk on the line segment {0, · · · , k −1}. This τ is the so-called commute time from L to the root.
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Figure 4.4: A picture of the coupling idea for the upper bound in the binary tree

We take it as a black box from now that E[τ] ≤ 4n . Therefore Px ,y [τcouple > t ] ≤ 4n
t , which gives

that whenever t > 16n , d (t )< 1/4 and so tmix ≤ 16n . ♥

We now move on to prove the lower bound. For this we will need a tool proven in Example Sheet 1:
Main idea: The main idea for the lower bound is to use the technique proven in Example Sheet 1,
that says that

tmix ≳max
x

Ex [τA]

For any A with π(A)≥ 1/8, where τA is the hitting time of A.

Lower bound. This technique is pretty cracked, we can let A be the right half of the binary tree,
and clearly maxx Ex [TA] will be no less than the expected hitting time of A when starting from
a leaf of the left hand side of the tree. Moreover, the hitting time of A when starting from the
left hand side of the tree is precisely the hitting time of the root, which apparently is of order n .
Therefore tmix ≳ n . ♥

Example 4.11 (Discrete torus) Let X be a simple random walk on the d -dimensional discrete
torus T= (Z/nZ)d . Then tmix ≤C (d )n 2.

Proof. The proof is of course by coalescent coupling, and we will inspire this proof with the
arguments we did for the upper bound of the mixing time on the cycle. Writing

T= Z/nZ× · · ·×Z/nZ

gives the idea that to sample this Markov chain, what we can do is first select one of the d coordi-
nates at random, and then update that coordinate according to a lazy simple random walk on the
cycle. More precisely, we will run two Markov chains Xt = (X 1

t , X 2
t , · · · , X d

t ) and Yt = (Y 1
t , · · · , Y d

t )

as follows: select a coordinate k ∈ [d ], if the walks agree on that coordinate, i.e: X k
t = Y k

t , then
move both walks together according to a LSRW on the corresponding cycle. If the two coordinates
disagree however, we will choose one of the two walks at random, keep it still, and move the other
one by ±1 with probability 1/2. This clearly respects a LSRW law.
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We have now constructed a coalescent coupling, and so we turn our attention to bounding the
coalescence time from above. We can define the random times

Ti =min{t ≥ 0 : X i
t = Y i

t }

I.e: the random times at which the walks agree on coordinate i . It follows then that the walks
become fully coalescent at the last of those times, i.e:

τcouple =max
i∈[d ]

Ti

Which of course can be bounded as τcouple ≤
∑d

i=1 Ti . We are now almost ready. The plan is
to use Markov’s Inequality, and so we need to know some bounds for E[Ti ]. This is no problem
however, because we know that the distance |X i

t −Y i
t | between the walks in the i t h coordinate is

distributed according to Gambler’s ruin to reach 0 or n , where we interpret this Gambler’s ruin as
the distance, and we know that the time for coalescence on a LSRW on the cycle is bounded above
by n 2/4. However, we have to note that we only update the i t h coordinate once its picked, which
happens with probability 1/d , and so the expected time for an update to occur is d . Therefore
combining all this:

Ex,yTi ≤
d n 2

4

We can now finish because using the coalescence time bound on mixing times:

d (t )≤max
x,y

Px,y[τcouple > t ]≤
∑d

i=1 maxx,y Ex,y[Ti ]

t
≤

d 2n 2

4t

and so choosing t = n 2d 2 gives d (t )≤ 1/4 which means tmix ≤ n 2d 2. ♥

The key takeaway from all these examples is that to upper bound mixing times with coupling
arguments, one just considers a coupling where they coalesce, and then the hard part boils down
to proving upper bounds for the expectation of this coalescense time. This is usually done with
Gambler’s ruin or other classic Markov chains. Remember that if (Zt ) is a simple random walk
on {1, · · · , n}, Gambler’s ruin says that the expected time to hit 1 or n is k (n −k ) where k is the
initial starting point.

Constructing couplings of Markov chains is useful sometimes even if the coupling we construct is not
Markovian, but the philosophy here is that as long as you respect the transition probabilities, you have
some leeway into how you sample your Markov chain, and this leeway is what helps you solve some
problems, let see an example:
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Example 4.12 Let X be a Simple Random Walk on a graph G , and let Y be a Lazy Simple
Random Walk on a graph G . Let RX (t ) (resp. Y ) to be the range of the walk X (resp. Y ) by
time t , i.e:

RX (t ) = |{X1, · · · , X t }|

Then, for any starting distribution µ on G , we have that Pµ[RX (t ) >m ] ≥ Pµ[RY (t ) >m ]. Which
seems like a really obvious statement right? Since X is not lazy, it will move more and so it will
visit more vertices.

Main idea: The idea here is to construct a coupling (X ′t , Y ′t ) of the walks X and Y . This will be
useful because in a coupling, the laws of the processes X and X ′ will be the same, which means that
statements of the form {RX (t ) > m} and {RX ′(t ) > m} will have the same probabilities, this is true
because these statements are statements of the form

{(X1, · · · , X t ) ∈ A} {(X ′1, X ′2, · · · , X ′t ) ∈ A}

where A is some special measurable set that describes the union of all possible state sets that have at
least m elements. This is of course a measurable set, and since the two processes have the same law,
the two events above have the same probability. Technicalities aside, this will help us because perhaps
by sampling X ′ in a smart way that respects the law of X , we can actually compare in an easier way
the ranges of X ′ and that of Y . Then the key is to simply set Y ′ = Y and then sample X ′ to be the
"jumps of Y ".

Proof. We consider the following coupling of (X , Y ). Let Y ′ = Y , and defining the random times
T0 = 0 and Ti =min{t > Ti−1 : Yt ̸= Yt−1}, i.e: the set of jump times of Y . We can now sample
X ′t = YTt

. I.e: we are sampling the motion of X ′ to be that of Y but skipping the waiting in
between each jump. Then it is clear that the law of X ′ is that of a Simple Random Walk on G .
But now it is easy to compare the ranges. Indeed:

Pµ[RX (t )>m ] =Pµ[RX ′(t )>m ]

:=Pµ[|{X ′1, X ′2, · · · , X ′t }|>m ]
(1)
= Pµ[|{YT1

, YT2
, · · · , YTt

}|>m ]
(2)
= Pµ[|Y0, Y1, · · · , YTt

|>m ]

=: Pµ[RY (Tt )>m ]
(3)
≥ Pµ[RY (t )>m ]

Where (1) comes from the construction of X ′, step (2) comes from the fact that Y does not move
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at times different from {Ti } and so we may include them without interfering with the range, step
(3) comes from the fact that t ≤ Tt , this is because Yt can’t make t jumps in time less than t ,
and also using the fact that the range function is non-decreasing (set-wise) with t , this is clear
because if you have a larger time you can’t visit a smaller amount of states. ♥

Let’s see one last example:

Example 4.13 (Winning streak) Let us describe the winning streak Markov chain. Imagine that
after a night of questionable habits I limit my memory to a size of n . Then I keep tossing Bernoulli
1/2 random variables and try to remember the longest winning streak (i.e: of 1’s) that I’ve had.
Of course, after I’ve had n wins in a row, I could keep having more wins and I would still think
that my winning streak is of n . It is clear that this Markov chain has transition probabilities















P (i , 0) = 1/2 i ≤ n ,

P (i , i +1) = 1/2 i < n ,

P (n , n ) = 1/2.

The mixing time of this chain can be once again upper bounded with a coalescence time argument.
The coupling in this case is quite simple, consider two winning streak chains (X t ) and (Yt ), each with
different starting points a , b ∈ {1, · · · , n}. We can run these chains by using the same sequence
of Bernoulli 1/2 random variables, and so it is also clear that the coalescense time will be the
first time a zero is obtained. Therefore by stochastically dominating τcouple with a Geometric 1/2

random variable, we see that P[τcouple > t ]≤ 2−t , which gives that tmix(ε)≤
�

log2(1/ε)
�

.
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Strong Stationary Times

In this section we learn what a strong stationary time is, roughly speaking, a random time
T "independent from the chain", after which the Markov chain is distributed according to its
stationary distribution. We will show that

d (t )≤max
x∈Ω

Px (T > t )

and thus obtain another method of bounding mixing times.

We begin by recalling the definition of a filtration.

Definition 5.1 Let (Ω,F , P) be a probability space. An increasing sequence of sub-sigma-algebras
{Ft }t≥0 is called a filtration.

Definition 5.2 We say that a sequence of random variables (Xn ) is a Markov chain with respect
to {Ft } if

Px (X t+1 = y | Ft ) = P (X t , y )

Remark 5.3 The usual sense of a Markov chain corresponds to being a Markov chain with respect
to the natural filtration Ft =σ(X1, · · · , X t ).

Definition 5.4 Let {Ft } be a filtration such that (Xn ) is adapted to it and is a Markov Chain with
respect to it. A Randomised Stopping Time T is a random variable such that {T ≤ t } ∈Ft .
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Remark 5.5 The point of using a potentially larger sigma algebra instead of the natural filtration
is that we may want to allow some extra source of randomness to interact with the process.

Example 5.6 (Hitting time) For a set A ⊆Ω, the random variable

τA = inf{t ≥ 0 : X t ∈ A}

is a stopping time, because

{τA ≤ t }=
t
⋃

i=1

{τA = i }=
t
⋃

i=1

{X0 /∈ A, X1 /∈ A, · · · , X i ∈ A}

and this event clearly belongs to Ft

Definition 5.7 (Stationary time, Strong Stationary Time) Let (X t ) be an irreducible Markov chain
with stationary distribution π. A stationary time τ for (X t ) is a stopping time, possibly depending
on the starting position x , such that the distribution of Xτ is π, i.e:

Px (Xτ = y ) =π(y )

If moreover, we have that Xτ is independent of τ, i.e: for all y ∈ S

Px (Xτ = y ,τ= t ) =Px (τ= t )π(y )

then we refer to τ as a strong stationary time.

We hope to use strong stationary times to give other ways of bounding distance to stationarity and
hence mixing times. Indeed, since at the strong stationary time τ, the chain is distributed according
to π, if there is a very high probability that for a time t , τ≥ t , then the distance between the current
distribution and the invariant distribution should also be quite high. Conversely, if the probability that
τ ≥ t is zero, meaning that τ < t with probability 1, then it makes sense that at time t , we have
already crossed the "threshold to stationarity" and as such we are already invariantly distributed so
the distance should be zero. To give a formal proof, it will be convenient to talk about the

Definition 5.8 (Separation distance, ) We define the separation distance sx (t ) as

sx (t ) =max
y ∈Ω

�

1−
P t (x , y )
π(y )

�
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and we also define s (t ) by
s (t ) =max

x∈Ω
sx (t )

Lemma 5.9 (Separation distance upper bounds TV distance) For all x ∈Ω, we have that



P t (x , ·)−π(·)




TV ≤ sx (t ).

Therefore d (t )≤ s (t ).

Main idea: The main idea is to use the equivalent characterisation of TV distance that says that for
B = {x :µ(x )>ν(x )}



µ−ν




TV =µ(B )−ν(B )

Then expressing this as a sum and extracting a factor of sx (t ) finishes the proof.

Proof.



P t (x , ·)−π




TV =
∑

y :P t (x ,y )<π(y )

π(y )−P t (x , y ) =
∑

y

π(y )
�

1−
P t (x , y )
π(y )

�

≤max
y

�

1−
P t (x , y )
π(y )

�

= sx (t ).

♥

Lemma 5.10 (Strong stationary time bounds separation distance) If τ is a strong stationary time,
then for all x ∈Ω, we have that for all t :

sx (t )≤Px (τ> t )

Main idea: The heart of the proof resides in showing that

Px [τ≤ t , X t = y ] =P[τ≤ t ]π(y )

Doing this is just cleverly using the Law of Total Probability. To intuitively know why each step should
be done, note that we have an event of the form {τ ≤ t } and our definitions concern events of the
type {τ= s }, and moreover, we will need to introduce somehow an event of the type {X s = z } so that
we can exploit the definition of a strong stationary time.
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Proof. We first show that
Px (τ≤ t , X t = y ) =P(τ≤ t )π(y )

This is just a mildly unpleasant calculation where we use the law of total probability a few times,
then some conditional probability and finally the fact that τ is a strong stationary time.

Px ({X t = y }∩ {τ≤ t }) =
∑

s≤t

Px ({X t = y }∩ {τ= s })

=
∑

s≤t

∑

z∈Ω
Px ({X t = y }∩ {τ= s }∩ {X s = z })

=
∑

s≤t

∑

z∈Ω
Px ({X t = y } | {τ= s }∩ {X s = z })
︸ ︷︷ ︸

P t−s (z ,y )

Px ({τ= s }∩ {X s = z })
︸ ︷︷ ︸

π(z )Px (τ=s )

=
∑

s≤t

Px (τ= s )
∑

z∈Ω
π(z )P t−s (z , y ) =Px (τ≤ t )π(y )

Now that we have this, we know that

1−
P t (x , y )
π(y )

= 1−
Px (X t = y )
π(y )

≤ 1−
Px (X t = y ,τ≤ t )

π(y )
= 1−

π(y )Px (τ≤ t )
π(y )

=Px (τ> t )

♥

As an immediate result we have that

d (t )≤max
x∈Ω

Px (τ> t )

Which is what we claimed was true in the initial discussion. Before moving on to examples we give
one more application of separation distance as a bound of distance to stationarity.

Lemma 5.11 (Separation distance is upper bounded by distance to stationarity) We have that
for a reversible chain

s (2t )≤ 1− (1− d̄ (t ))2

Main idea: The key here is that since s (2t ) involves an expression of the form

P 2t (x , y )
π(y )

=
∑

z

P t (x , z )P t (z , y )
π(y )

and we can now reverse this second part of the product and then see an expectation, where we can
use Jensen’s inequality.
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X t

Figure 5.1: The refresh mechanism in the hypercube example: a dimension is chosen at random, in
this illustration the vertical dimension, and then the walk must choose whether to stay in place or to
jump

Proof. We have the following straightforward calculation

P 2t (x , y )
π(y )

=
∑

z

P t (x , z )P t (z , y )
π(y )

=
∑

z

P t (x , z )P t (y , z )
π(z )

=
∑

z

P t (x , z )P t (y , z )
π(z )2

π(z )

=
∑

z

�√

√P t (x , z )P t (y , z )
π(z )2

�2

π(z )

(1)
≥

�

∑

z

√

√P t (x , z )P t (y , z )
π(z )2

π(z )

�2

(2)
≥
�

∑

z

P t (x , z )∧P t (y , z )

�2

=
�

1−


P t (x , ·)−P t (y , ·)




TV

�2

Where step (1) is Jensen, and step (2) is an awesome trick I had never seen before. ♥

5.1 Examples

We will now present two examples where strong stationary times are used to bound the value of the
mixing time.

Example 5.12 (Mixing time of lazy random walk on hypercube) The n-dimensional hypercube
is the graph whose vertices are {0, 1}n and two vertices are connected if and only if they differ by
exactly one coordinate. Then for any ε> 0, there is some constant C (ε)> 0 such that

tmix(ε)≤ n log n +C (ε)n
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Main idea: We aim to construct a strong stationary time. For this we invent a refresh mechanism
on the dimensions of the hypercube and use as stationary time the random time when all coordinates
have been refreshed at least once, then we use the coupon collector problem to estimate this time.

Proof. We first note that by the symmetry of the chain, the invariant distribution of the chain is
going to be uniform. This can also be quickly checked with pen and paper. Now we set off to
find a strong stationary time. First, we note that we can realise the lazy simple random walk by
choosing at every step a coordinate, say

n bits
︷ ︸︸ ︷

(0, 1, 0, 0, · · · , 1
︸︷︷︸

↑

, 0, 1, · · · , 1)

and refreshing the coordinate, that is to say, replacing it by a uniform choice on {0, 1}. We define
τrefresh to be the least time where all coordinates have been chosen at least once. Observe that
once τrefresh is reached, all of the coordinates have been replaced with independent fair bits, the
distribution on the chain is uniform on {0, 1}n , that is Xτrefresh is an exact sample from the stationary
distribution. From this we can show that τ=τrefresh is a strong stationary time. Indeed:

Px (τ= t , Xτ = y ) =Px (Xτ = y |τ= t )Px (τ= t ) =π(y )Px (τ= t )

as required. Now we know that
d (t )≤ max

x∈{0,1}n
Px (τ> t )

However, it is easy to see that τ has the same distribution as the Coupon Collector Problem (note
that I have written Px (τ> t ) but τ is independent of the starting point really). From the coupon
collector problem, we know that if we set t = n log n +C n (where C is for us to choose), then

d (t )≤ exp(−C )

By making C = C (ε) large enough, we make this right hand side less than ε, and as such we see
that

tmix(ε)≤ n log n +C (ε)n

♥

Remark 5.13 This argument we did could have also been shown earlier in these notes with the
technique of upper bounding mixing times by coupling: consider two chains (X t ) and (Yt ) on the
hypercube with different starting points x , y ∈ {0, 1}n . Then we can couple the chains by selecting
one bit in both and updating it according to a uniform choice on {0, 1}, it is clear that by the time
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n

j

n

j

n

j

Figure 5.2: Picture to have in mind for the relationship between τ j and A j

we have selected all bits, the chains have met, therefore the same ideas of the Coupon Collector
Problem can be used in this framework.

Example 5.14 (Random-to-top shuffle mixing time) Consider a deck of n cards with the random-
to-top shuffling method. Then for all ε> 0, there exists some constant C (ε) such that

n log n −C (ε)n ≤ tmix(ε)≤ n log n +C (ε)n

Remark 5.15 Note that essentially this is a random walk on the group Sn , where each σ ∈ Sn

represents a card shuffling. Moving card j to the top represents multiplying the current state σ
on the left by (1 2 · · · j ).

Main idea: Here the idea is to get dirty, and we use the set A of all permutations σ such that the
bottom j cards are in increasing order (not in strict order, just increasing order). Then this set has a
very small π-measure, and if we haven’t picked more than n − j +1 cards we will still be on this set.

Lower Bound. First and foremost note that π is uniform (pen and paper, check that all the
probability going into a state y ∈ Sn is 1). For the lower bound, we once again note that

d (t ) =max
σ∈Sn



P t (σ, ·)−π(·)




TV ≥ P t (id, A)−π(A)

for all A. To obtain a good bound, what we then want, is a set A of shufflings such that π(A) is
really small but P t (id, A) is then large enough for some time t , then we can make the right hand
side greater than ε and bound the mixing time from below. The set of shufflings that we want is

A j = {σ ∈ Sn :σ(n − j )<σ(n − j +1)< · · ·<σ(n )}
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the set of shufflings where the bottom j cards are in increasing order (not strict order, just
increasing order). Using that π is uniform, we see that

π(A j ) =
1

j !

which is gets small very quick. Intuitively, if there are enough cards and j is not a huge proportion
of the cards, for small values of time, it will be very likely that we are still in a shuffling that
preserves the order of the last j cards. Let us make this precise. Let X t be our random walk on Sn

and let Tj be the time by which n − j +1 different cards have been picked. Then the claim is that
if t < Tj , then X t ∈ A j . To see this, look at the diagram: When we start, all the cards are in
increasing order. In our first step, we will introduce a disorder, represented by moving the purple
card to the top, since the order went from 1, 2, · · · , k − 1, k , k + 1, · · · to k , 1, 2, · · · , k − 1, k + 1, · · ·
(note that k − 1, k + 1 is still in increasing order) (there is disorder unless we pick the top card
but we don’t care) and this disorder will only affect the j bottom cards after we have pushed the
purple card all the way back down to the bottom j cards. In total this required n − j +1 moves.
In precise terms:

P[X t ∈ A j ]≥P[Tj > t ] or also P[X t ∈ A j−1]≥P[Tj ≥ t ]

so we now set off to bound this last probability through our usual means, some sort of Markov’s
or Chebyshev’s inequality. In this case, we are able to bound both the mean and the variance so
we will use Chebyshev:

• Mean of Tj : note that this is morally the same object as the one in coupon collector,
and likewise, we can express Tj as a sum of independent geometrically distributed random
variables, Tj = Q1 +Q2 + · · ·+Qn− j+1 where Qi represents the additional cards we need to
select in order to collect one more kind of card. We have that if we have already selected
i −1 kinds of cards, the probability of choosing a new one is precisely

N − i +1

N

So E[Qi ] =
N

N−i+1 therefore:

E[Tj ] = E[Q1] + · · ·+E[Qn− j+1]

= 1+
n

n −1
+ · · ·+

n

n − (n − j +1) +1

= n
n
∑

k= j

1

k
≥ n

∫ n

j

d k

k
= n [log n − log j ]

• Variance of Tj : we recall momentarily that if X ∼ Geo(p ) then Var(X ) = 1−p
p 2 ≤ 1

p 2 , so from
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this and the fact that the Qi ’s are independent we gather that

Var(Tj ) =
n− j+1
∑

k=1

Var(Qk )

≤
n− j+1
∑

k=1

n 2

(n −k +1)2

=
n
∑

k= j

n 2

k 2

≤
n
∑

k= j

n 2

k (k −1)

≤
n 2

j −1

Where the last inequality comes from expressing 1/k (k − 1) as a partial fraction and tele-
scoping the sum.

We are now ready to put this together and employ Chebyshev’s inequality. We have the following
(watch out for the highlighted steps)

P[Tj ≥ n log n −C n ]
(!)
≥P[|Tj −ETj |< n (C − log j )]

= 1−P[|Tj −ETj ]≥ n (C − log j )]
(2)
≥ 1−

Var(Tj )

n 2(C − log j )2
(3)
≥ 1−

n 2

( j −1)n 2(C − log j )2

≥ 1−
1

j −1

Here step (!) comes from the following observation: note that if |Tj − ETj | < n (C − log j ) then
Tj ∈ (ETj −n (C − log j ), ETj +n (C − log j )) which in particular means that Tj > ETj −n (C − log j )≥
n log n −C n due to the bound on the expectation. Therefore {|Tj −ETj | < n (C − log j )} ⊆ {Tj ≥
n log n −C n}. Then step (2) comes from Chebyshev’s inequality, and step (3) comes from the
bound on the variance we obtained. The last step is just a brutal approximation by dropping the
(C − log j )2 whenever C ≥ log j + 1. We are now almost done with the lower bound, we put this
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all together and note that

d (n log n −C n )≥ P n log n−C n (i d , A j−1)−π(A j−1)

≥ 1−
1

j −1
−

1

( j −1)!

≥ 1−
2

j −1

and by taking j = ⌊exp(C −1)⌋ to satisfy the constraint on C we mentioned above, we get that

d (n log n −C n )≥ 1−
2

e C−1−1

and so by taking C = C (ε) to be a large enough number, we can guarantee that this right hand
side is larger than ε and so we have that

tmix(ε)≥ n log n −C (ε)n

♥

I suppose that the moral of the story is that lower bounds with a hands-on approach are hard. Thank-
fully for the upper bound we can just use the theory we have now developed, i.e: find a strong stationary
time.

Upper Bound. We find a strong stationary time. The guess for this would be the time τ at which
all the cards have been selected at least once. This is clearly distributed to coupon collector and
so we can obtain an explicit formulation for P[τ > t ]. Indeed, if we let Ai be the event that the
i t h card hasn’t been selected by time t , then

P[τ> t ] =P

�

⋃

i

Ai

�

≤
∑

i

P[Ai ]

=
∑

i

�

1−
1

n

�t

≤ n exp(−t /n )

which means that for any C , we have that

P[τ> n log n +C n ]≤ exp(−C )

which can be made as small as we want, i.e: we can choose a C =C (ε) large enough so that the
right hand size is less than ε. Of course this does not finish the problem, we still need to see why
τ is a strong stationary time. To do so, we introduce the following notation. Let k (t ) be the
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number of cards we have picked by time t , and let Ck be the random set of the top k cards. We
will prove by induction on t that the set Ck (t ) is a uniform subset of {1, · · · , n} of size k where the
ordering of the cards is also uniform. The base case is clear (t = 1). Suppose that for some time t ,
we have picked k cards, and that the set Ck is uniformly random, both in the sense of which cards
it has and the ordering of the cards in it. Then at time t +1 we have two cases, either we pick a
card from within Ck , in which case it is obvious that the order remains uniformly at random, or
we pick a card from the remaining {1, · · · , n} \Ck cards. We note that these remaining cards are
not in random order, but the cards themselves are random, so by picking one of those cards, and
placing in on the top, now the set Ck+1 has k +1 cards which are randomly chosen, and the order
is indeed uniformly at random, because the first card is random, and the next k cards are both
random cards and with random order, therefore the order of the total k +1 cards is also random.
(Just to reiterate, the first card could have been any card, and the next k are all random and have
random order). Therefore by the time we have picked all cards, the entire deck is a uniformly at
random permutation of {1, · · · , n}. ♥

Remark 5.16 (On the top-to-random shuffle) We have just described the random-to-top shuffle
method, but we could talk about a very similar chain, the top-to-random shuffle, where instead
of choosing a card at random and placing it on the top, we get the card on the top and place it
somewhere at random. If P and bP are the transition matrices on the group Sn of the random-
to-top and top-to-random shuffle, it is clear that for any permutation a ∈ Sn , we have that
P (id, a ) = bP (id, a−1), it is also clear that in both of these chains the invariant distribution is uniform
(as a matter of fact, any random walk on a group where the increments are given by group
multiplication has uniform invariant distribution), therefore



P (id, ·)−π




TV =
1

2

∑

σ∈Sn

|P (id,σ)−π(σ)|=
1

2

∑

σ∈Sn

| bP (id,σ)−π(σ)|=



bP (id, ·)−π





TV .

Example 5.17 (The flower graph) To endure the horrors of mixing times, we study Markov chains
on pretty graphs, like the flower graph: consider two copies of the complete graph Kn , and glue
them at a single vertex v ⋆. Then add n loops to each vertex different from v ⋆ and add one final
loop at v ⋆, see the example for n = 3:
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On this graph we have that the mixing time of a simple random walk is order n .

Upper bound. To prove the upper bound we come up with the following strong stationary time.
Let τv ∗ be the hitting time of the vertex v ∗, and note that once the walk is at v ∗, the next state
of the walk can be any vertex of this graph, and each occurs with equal probability. Note that this
graph is such that each vertex has equal degree, so the stationary distribution is indeed uniform,
and so τ :=τv ∗+1 is going to be a strong stationary time: strong because the state of the walk at
τv ∗ +1 is independent of this time, and stationary because of what we have just described. Then,
we have that

P[τ> t ]≤P[τv ∗ > t ]

≤
�

1−
1

2n −1

�t−1

≤
�

1−
1

2n −1

��

1−
1

2n −1

�t−2

≤
�

1−
1

2n −1

�t−2

and so if we choose t = 4n , this thing above is less than or equal to e −2 < 1/4. And so tmix ≤ 4n .
♥

Hint for the lower bound: consider the set of vertices comprising one of the copies of Kn .

Lower bound. For the lower bound, as usual, we get dirty. The hint suggests that we need to deal
with a set of large π-measure, and small probability of being there by time t . In particular, let
y ∈V be any vertex of the flower-graph distinct from v ∗, and let A be the complete graph which
does not contain y . Then d (t )≥π(A)−Py [X t ∈ A], where (X t ) is the random walk on this graph.
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Now we have the following easy calculation:

Py [X t ∈ A]≤Py

�

⋃

1≤s≤
{X s = v ∗}

�

≤
∑

1≤s≤t

Py [X s = v ∗]

≤
∑

1≤s≤t

∑

x∈V

Py [X s = v ∗ | X s−1 = x ]Py [X s−1 = x ]

=
1

2n −1

∑

1≤s≤t

1=
t

2n −1
.

Moreover, note that π being uniform implies that π(A) = n
2n−1 . Therefore we wish to choose t so

that
n

2n −1
−

t

2n −1
≥

1

4
,

which rearranging gives that t ≤ n
2

�

1− 1
4n

�

, (i.e, if t is not greater than this number, then the
distance to stationarity is greater than or equal to 1/4), and so we conclude that

tmix ≥
n

2
(1+o (1))

♥
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Chapter 6

Cutoff

In example 5.14, we have shown that in some sense, all the mixing happens at time n log n . This
motivates the following definition and concept which will come to stay for the rest of the course.

Definition 6.1 (Cutoff) A sequence X n of Markov chains has cutoff if for all 1>ε> 0,

lim
n→∞

tmix
(n )(ε)

tmix
(n )(1−ε)

= 1

The intuition behind this definition is that as the "size of the chain" (n doesn’t need to be size but it
helps to think about it) grows, then the times for which you are arbitrarily close or far to stationarity
are pretty much the same time, meaning that all the mixing, happens very abruptly. In particular, as
we will see in the following remark, having cutoff is equivalent to saying that all the mixing occurs at
tmix.

Remark 6.2 A perhaps more clear illustration is that an equivalent characterisation for cutoff is,
writing dn (t ) for d (t ) with respect to X (n ), that there is cutoff if and only if we have that

lim
n→∞

dn

�

c tmix
(n )
�

=







1 c < 1

0 c > 1
(⋆)

Main idea: Work with epsilontics and use the definition of mixing times in both directions, i.e: if
d (t )<ε then tmix(ε)< t and if tmix(δ)> s , then d (s )>δ.

Proof. Assume first that that expression (⋆) holds. Let γ> 0, then we can write c > 1 as c = 1+γ.
Since limn→∞dn (c tmix

(n )) = 0, then by definition, for any ε > 0 we have that there is some n

large enough so that dn ((1+γ) tmix
(n ))<ε, this by definition of mixing time means that tmix

(n )(ε)≤
(1+γ) tmix

(n ). Similarly we gather that for n large enough, tmix
(n )(1−ε) ≥ (1−γ) tmix

(n ). From this

57
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we conclude that
tmix

(n )(ε)
tmix

(n )(1−ε)
≤

1+γ
1−γ
→ 1 γ ↓ 0

But of course we always have that tmix
(n )(1−ε)≤ tmix

(n )(ε) so dividing by tmix
(n )(1−ε) gives that the

desired ratio is always lower bounded by 1 so we have the desired defining limit of cutoff. Now
conversely, suppose we have cutoff. Then start by fixing a γ> 0. Then by definition of cutoff, for
any ε> 0, there is some n large enough so that

�

�

�

�

tmix
(n )(ε)

tmix
(n )(1−ε)

−1

�

�

�

�

<γ.

From this we gather two things: first that

tmix
(n )(ε)< (1+γ) tmix

(n )(1−ε)
(!)
≤ (1+γ) tmix

(n )

Where (!) comes from assuming that ε < 3/4 without loss of generality (we will later send ε to
zero). This means that by non-increasingness of dn (t ),

lim
n→∞

dn [(1+γ) tmix
(n )]<ε→ 0 ε ↓ 0

Similarly we will have that

lim
n→∞

dn [(1−γ) tmix
(n )]> 1−ε→ 1 ε ↓ 0

♥

Definition 6.3 (Cutoff window) A sequence of Markov chains X n is said to have cutoff with
cutoff window of order wn if wn ≪ tmix

(n ) and if for any 1> ε > 0 there exists some C (ε)> 0 such
that

tmix
(n )−C (ε)wn ≤ tmix

(n )(ε)≤ tmix
(n )+C (ε)wn

Remark 6.4 Here is some intuition behind this. Let ε > 0 be a small mixing threshold you want
to reach. We want to look at the time window window where all the mixing happens. This time
window has length tmix(ε)− tmix(1−ε), but by definition of cutoff window, we have that

tmix(ε)− tmix(1−ε)≤ (C (ε) +C (1−ε))wn
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Or in other words tmix
(n )(ε)− tmix

(n )(1− ε) ≲ wn ≪ tmix
(n ). I.e: the relative length of the mixing

window becomes negligible as n→∞.
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Chapter 7

L p distance

Recall from our equivalent characterisations of TV distance, that the TV distance between two dis-
tributions µ and ν, is nothing but half the L 1 distance between them. We start by defining the L p

norm.

Definition 7.1 (L p norm) Let π be a probability distribution on Ω and f : Ω→ R. Then we
define as usual



 f




p
≡


 f




p ,π
:=







�∑

x∈Ω | f (x )|pπ(x )
�1/p

p ∈ [1,∞)

maxx∈Ω | f (x )| p =∞

Definition 7.2 (Inner product) Let f , g be two functions Ω→R, then we can also define the inner
product




f , g
�

π
=
∑

x∈Ω
f (x )g (x )π(x ).

We can use these L p norms to talk about the distance from P t (x , ·) to π in a different way. Namely,
we can talk about the generalisation of d (t ):

dp (t ) :=max
x∈Ω









P t (x , ·)
π(·)

−1









p

which equals

dp (t ) =max
x∈Ω

�

∑

y ∈Ω

�

�

�

�

P t (x , y )
π(y )

−1

�

�

�

�

p

π(y )

�1/p

or d∞(t ) =max
x ,y ∈Ω

�

�

�

�

P t (x , y )
π(y )

−1

�

�

�

�

(It is quite clear how this generalises d (t )). We have now some facts about these distances

61
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Proposition 7.3 dp (t ) is increasing in p .

Main idea: As with increasing/decreasing quandaries involving expectation-like quantities, we want
to use Jensen’s inequality. Of course, we may also want to note that

dp (t ) =max
x∈Ω

Eπ[|P t (x , Y )/π(Y )−1|p ]1/p

Proof. We use Jensen’s Inequality of course. Suppose p < r , then x 7→ x p/r is concave, so we
have

Eπ
��

� f (x )
�

�

p �
= Eπ

h

��

� f (x )
�

�

r �p/r
i

≤ Eπ
��

� f (x )
�

�

r �p/r

So taking p th roots gives the result. ♥

It is clear as well how dp (t )≤ d∞(t ) for all p ∈ [1,∞], so we also have the following bounds:

2d (t ) = d1(t )≤ d2(t )≤ d∞(t )

We can now sensibly define a family of mixing times

Definition 7.4 (L p mixing times ) Let p ∈ [1,∞]. Then we define the L p mixing time by

tmix
(p )(ε) = inf{t ≥ 0 : dp (t )≤ ε}.

Proposition 7.5 (Relating d2 and d∞ for reversible chains) For a reversible Markov chain, we
have

d∞(2t ) = (d2(t ))
2 =max

x∈Ω

P 2t (x , x )
π(x )

−1.

Main idea: We use inner product algebra to easily show the second equality, and we use Cauchy
Schwarz to show that d∞(2t ) ≤ d2(t )2. We then observe that the thing on the right hand side is
trivially less than or equal to d∞(2t ) and so we are done.

Proof. Recall that we may think of theL p -distances as d2(t ) =maxx



qt (x , ·)−1




2
where qt (x , y ) =
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P t (x , y )/π(y ). Now:



qt (x , ·)−1




2

2
=



qt (x , ·)−1, qt (x , ·)−1
�

π

=



qt (x , ·), qt (x , ·)
�

π
−2




qt (x , ·), 1
�

π
+1

(!)
= q2t (x , x )−1

Where (!) comes from the fact that



qt (x , ·), 1
�

π
can be immediately seen to be 1, and




qt (x , ·), qt (x , ·)
�

can be expanded as an inner product, and reversing one of the matrices, we get that it is equal
to q2t (x , x ). Maximising over x gives the second inequality. Now we can in some sort reuse this
argument, and we have that

|q2t (x , y )−1|=
�

�




qt (x , ·)−1, qt (y , ·)−1
��

�

≤


qt (x , ·)−1




2



qt (y , ·)−1




2

Maximising over x and y gives that d∞(2t )≤ (d2(t ))2. But of course, it is trivial to see that

max
x

P 2t (x , x )
π(x )

−1≤max
x ,y

�

�

�

�

P 2t (x , y )
π(y )

−1

�

�

�

�

= d∞(2t )

Therefore we have that

d∞(2t )≤ (d2(t ))
2 =max

x∈Ω

P 2t (x , x )
π(x )

−1≤ d∞(2t )

so everything is an equality. ♥

As an immediate corollary:

Corollary 7.6 (TV, L 2, and L∞ for a reversible chain) For a reversible chain, we have that

tmix(ε)≤ tmix(ε/2) = tmix
(1)(ε)≤ tmix

(2)(ε)≤ tmix
(∞)(ε)≤ 2 tmix

(2)(
p
ε)

Moreover, tmix
(2)(ε) =

�

1
2 tmix

(∞)(ε2)
�
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Chapter 8

Spectral Decomposition

We now focus on observing the link between mixing times, and eigenfunctions. Note that since
vectors in RΩ can be thought of as functions Ω→ R, we use the term eigenfunction and eigenvector
interchangeably. From now on we will assume chains are reversible, that is to say for all x , y ∈ Ω,
π(x )P (x , y ) =π(y )P (y , x ).

Theorem 8.1 (Spectral decomposition of reversible chains) Let P be a reversible chain with
respect to π, then

• The inner product space
�

RΩ, 〈·, ·〉π
�

admits an orthonormal basis of real-valued eigenfunctions
(of P ) { f j }

|Ω|
j=1 corresponding to real eigenvalues {λ j }.

• The matrix P can be decomposed as

P t (x , y )
π(y )

=
|Ω|
∑

j=1

f j (x ) f j (y )λ
t
j .

• The eigenfunction f1 corresponding to the eigenvalue 1 (note that 1 is an eigenvalue for the
function π by definition), can be taken to be the constant vector f = (1, · · · , 1)T . In which
case:

P t (x , y )
π(y )

= 1+
|Ω|
∑

j=2

f j (x ) f j (y )λ
t
j

Main idea: Everything follows once we see that we have a matrix P that satisfies π(x )P (x , y ) =

π(y )P (y , x ) and we think of how we can get a symmetric matrix out of this in order to use the spectral
theorem for real symmetric matrices. Said matrix can be

A(x , y ) =

p

π(x )
p

π(y )
P (x , y )
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Proof. We will start by defining the matrix A(x , y ) =
p
π(x )p
π(y )

P (x , y ). Reversibility means that
π(x )P (x , y ) =π(y )P (y , x ) so

A(x , y ) =

p

π(x )
p

π(y )

π(y )
p

π(x )
P (y , x ) =

p

π(y )
π(x )

P (y , x ) = A(y , x )

Symmetric matrices admit an orthonormal basis {φ j : j ∈ [|Ω|]} of eigenfunctions with real eigen-
values λ j . We check that

p
π is an eigenfunction of A with eigenvalue 1:

(A
p
π)(x ) =

∑

y

A(x , y )
Æ

π(y ) =
∑

y

p

π(x )
p

π(y )
P (x , y )

Æ

π(y ) =
p

π(x )

Where we have used the definition of A, as well as the fact that P is a stochastic matrix. We label
φ1(x ) :=

p

π(x ) and λ1 := 1. Notice that if Dπ is defined as a diagonal matrix with Dπ(x , x ) =π(x ),
then it is easy to see that A =D 1/2

π P D −1/2
π . Now we can use this to note that

P
�

D −1/2
π φ j

�

=D −1/2
π Aφ j =λ j D −1/2

π φ j

Showing that D −1/2
π φ j is an eigenfunction of P with eigenvalue λ j . Notice that this implies that

1 is an eigenfunction of P with eigenvalue 1, which is obviously true by P being stochastic, as
we would have expected. We now verify that { f j } is indeed orthonormal with respect to the inner
product 〈·, ·〉π:




fi , f j

�

π
=
∑

x

fi (x ) f j (x )π(x ) =
∑

x

φi (x )
p

π(x )

φ j (x )
p

π(x )
π(x ) =

∑

x

φi (x )φ j (x ) =δi , j

Where in this last equality we have used the fact that {φi } formed an orthonormal basis with
respect to the usual inner product. This proves the first claim. Now we set off to prove the
desired decomposition:

To decompose P t , we use the trick that P t (x , y ) = (P tδy )(x ), where δy should be though of as
(0, · · · , 1, 0, · · · , 0)T with the 1 at the y th position, therefore P tδy is the y th column of P t and then
we can easily pick out the x th entry of this vector. We can now decompose δy as a sum of our
eigenfunctions, for they establish a basis:

δy =
∑

j




δy , f j

�

π
f j =

∑

j

�

∑

i

δy (i ) f j (i )π(i )

�

f j =
∑

j

f j (y )π(y ) f j

Now we put this all together and using the fact that f j is an eigenfunction of P t with eigenvalue
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λt :

P t (x , y ) = (P tδy )(x ) =
∑

z

P t (x , z )δy (z ) =
∑

z

∑

j

P t (x , z ) f j (y )π(y ) f j (z )

=
∑

j

�

∑

z

P t (x , z ) f j (z )

�

f j (y )π(y )

=
∑

j

λt f j (x ) f j (y )π(y )

Dividing through by π(y ) gives the desired decomposition ♥

This decomposition is nice, because in this basis, we can find a very elegant expression for P t f for
any f :Ω→R:

Corollary 8.2 Let f :Ω→R. Then

P t f =
∑

j

λt
j




f , f j

�

f j

Main idea: This is a rather brainless computation in which one has to start from the definition of
P t f and then use the decomposition of P we have just proven above.

Proof. We start by decomposing
f (x ) =

∑

i




f , fi

�

fi (x )

And now

(P t f )(x ) =
∑

y

P t (x , y ) f (y )
(1)
=
∑

y

λt

 

∑

j

f j (x ) f j (y )π(y )

!

�

∑

i




f , fi

�

fi (y )

�

=
∑

i

λt



f , fi

�

∑

j

f j (x )

�

∑

y

f j (y ) fi (y )π(y )

�

︸ ︷︷ ︸

〈 f j , fi 〉π

=
∑

i

λt



f , fi

�

 

∑

j

f j (x )δi , j

!

=
∑

i

λt



f , fi

�

fi (x )

♥
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Remark 8.3 We know from Perron’s Theorem that all eigenvalues of a stochastic matrix are in
[−1, 1], and moreover, if we assume the chain is lazy, it is a fact that −1 is not an eigenvalue,
therefore when our chain is reversible, using the Theorem above, we have that

P t (x , y )
π(y )

= 1+
∑

j≥2

λt
j f j (x ) f j (y )

and so as t →∞, the big sum will disappear, because the powers of the eigenvalues will go to
zero. This gives another proof of the Ergodic Theorem.

8.1 Examples

Example 8.4 For a state x ∈ Ω, let T (x ) = {t : P t (x , x ) > 0}. Show that T (x ) ⊆ 2Z if and only if
−1 is an eigenvalue.

Proof. Suppose that −1 is an eigenvalue with eigenfunction f . Let x = argmaxy ∈Ω | f (y )|. Then
we have that

| f (x )|= |P f (x )| ≤
∑

y

P (x , y )| f (y )| ≤ | f (x )|.

From which we gather, that whenever P (x , y ) > 0, we must have that | f (y )| = | f (x )|. We could
repeat this argument with P t instead of P and then the eigenvalue would have been (−1)t . And
since the chain is irreducible, there is some t such that P t (x , y ) for all y . This tells us that for
all y ∈Ω, | f (y )|= | f (x )|. For simplicity, suppose without loss of generality, that | f (x )|= 1. Then
we can partition Ω into two disjoint sets A and B , namely

A =
�

x : f (x ) = 1
	

and B the same but with −1. We now show that the chain jumps from A to B and from B to A

successively, thus showing that P t (x , x )> 0 only if t ∈ 2Z. Let x ∈ A, then

−1= (P f )(x ) =
∑

x ,y

P (x , y ) f (y )

since f (y ) ∈ {+1,−1}, it must be that whenever P (x , y ) > 0, y ∈ B . Similarly we can show that
if x ∈ B , then the next step of the chain will be in A. Now we can do the converse. Much like
we did in Remark 3.9, if for some x , gcd{T (x )} = 2m for some m , then due to irreducibility, all
states have period 2m . Which means we can partition the states-space into 2m −1 components,
such that when you are on component Ci , the next step must be on component Ci+1. We can
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then make f (x ) take alternating values ±1 on consecutive components. Which will give −1 as an
eigenvalue. ♥

Example 8.5 Let P be a reversible transition matrix. Show that

�

�

�

�

P t (x , x )
π(x )

−1

�

�

�

�

≤
√

√

�

P t (x , x )
π(x )

−1
��

P t (y , y )
π(y )

−1
�

Proof. By using spectral decomposition and Cauchy-Schwarz, and then spectral decomposition in
reverse:

�

�

�

�

P t (x , x )
π(x )

−1

�

�

�

�

=

�

�

�

�

�

∑

i≥2

(λt
i )

1/2 fi (x )(λ
t
i )

1/2 fi (y )

�

�

�

�

�

≤
√

√

�

P t (x , x )
π(x )

−1
��

P t (y , y )
π(y )

−1
�

♥
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Chapter 9

The Relaxation Time

For a reversible transition matrix P , we know by Perron’s Theorem, that we can label the eigenvalues
in decreasing order

1=λ1 >λ2 ≥ · · · ≥λ|Ω| ≥−1

And by defining λ∗ =max{|λ| :λ is en eigenvalue different from 1}, we can define

Definition 9.1 (Spectral gaps) The difference γ∗ = 1 − λ∗ is the absolute spectral gap. The
difference γ= 1−λ2 is the spectral gap.

Definition 9.2 (Relaxation time) The relaxation time trel is defined as

trel =
1

γ∗

We now prove an upper and lower bound on the mixing time for reversible chains in terms of the
relaxation time and the stationary distribution of the chain. Here’s in plain English why these results
should morally be true: from the spectral decomposition we have shown, we know that

P t (x , y ) =π(y )
�

1+O (λt
2) +O (λt

3) + · · ·
�

Therefore, assuming say that −1 is not an eigenvalue for argument’s sake, we see that the speed of
convergence to π is in some sense limited by the largest of the eigenvalues, since the small eigenvalues
will decay very quickly. The absolute spectral gap quantifies how much the eigenvalue 1 dominates
the other eigenvalues. A big spectral gap will mean that the convergence will happen fast, so the
"relaxation time" will be small. In some sense, the relaxation time quantifies how long the chain takes
to forget its initial distribution say, and starts "relaxing" into its invariant distributuion.

71



72 CHAPTER 9. THE RELAXATION TIME

Theorem 9.3 (Upper and Lower bounds on mixing time in terms of relaxation time) Let P be
the transition matrix of a reversible, irreducible Markov chain and let πmin :=minx π(x ). Then

tmix(ε)≤ log
�

1

επmin

�

trel

Moreover, if the chain is aperiodic, then

tmix(ε)≥ (trel−1) log
�

1

2ε

�

To prove these bounds, although we could prove them directly, we go on a slight detour and explore
some other bounds first, which will reinforce the intuition given about spectral gaps and relaxation
times, and give a more general overview, particularly in terms of an arbitrary starting distribution
ν:

Theorem 9.4 (Poincaré Inequality) Let P be a reversible matrix with respect to the invariant
distribution π. Then for any starting distribution ν:

∥Pν(X t = ·)−π∥2 ≤ (1−γ∗)t ∥ν−π∥2 ≤ exp
�

−
t

trel

�

∥ν−π∥2

Once again, note that if γ∗ is huge, i.e: the stationary distribution dominates as an eigenfunction, then
1−γ∗ is very small so as t grows, then the distance between the current distribution of the chain and
the invariant distribution gets crushed. The proof of this inequality is just a bunch of algebra that uses
the spectral decomposition we found above

Proof. We start with the definition of the quantity of interest, as as is usual, we square it for
convenience:

∥Pν[X t ∈ ·]−π∥22 :=
∑

y

§

Pν[X t = y ]
π(y )

−1
ª2

π(y )

=

�

∑

y

Pν[X t = y ]2

π(y )

�

−1
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And now we study this

�

∑

y

Pν[X t = y ]2

π(y )

�

=
∑

y

1

π(y )

�

∑

x

ν(x )Px [X t = y ]

�2

=
∑

y

1

π(y )

�

∑

x

ν(x )Px [X t = y ]

��

∑

x ′

ν(x ′)Px ′[X t = y ]

�

=
∑

y

1

π(y )

�

∑

x

ν(x )P t (x , y )

��

∑

x ′

ν(x ′)P t (x ′, y )

�

=
∑

y

1

π(y )

∑

x ,x ′

ν(x )ν(x ′)

 

∑

i , j

λt
i λ

t
jπ(y )

2 fi (x ) fi (y ) f j (x
′) f j (y )

!

=
∑

x ,x ′

ν(x )ν(x ′)
∑

i , j

λt
i λ

t
j fi (x ) f j (x

′)
∑

y

fi (y ) f j (y )π(y )

=
∑

x ,x ′

ν(x )ν(x ′)
∑

i , j

λt
i λ

t
j fi (x ) f j (x

′)δ(i , j )

=
∑

x ,x ′

ν(x )ν(x ′)
∑

i

λ2t
i fi (x ) fi (x

′)

= 1+
∑

x ,x ′

ν(x )ν(x ′)
|Ω|
∑

i=2

λ2t
i fi (x ) fi (x

′)

≤ 1+λ2t
∗

∑

x ,x ′

ν(x )ν(x ′)
|Ω|
∑

i=2

fi (x ) fi (x
′)

Now note that

P 0(x , x ′)
π(x ′)

=
∑

i

λ0
i fi (x ) fi (x

′)

= 1+
∑

i≥2

fi (x ) fi (x
′)

and so
∑

i≥2

fi (x ) fi (x
′) =

Id(x , x ′)
π(x ′)

−1

Returning to the main computation we continue with:
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Finally we have that

∥Pν[X t ∈ ·]−π∥22 ≤λ
2t
∗ ∥ν−π∥

2
2

= (1−γ∗)2t ∥ν−π∥22

≤ exp
�

−
2t

trel

�

∥ν−π∥22

Taking square roots finishes the proof. We have used the inequality 1− x ≤ exp(−x ) ♥

And the proof of the Poincaré inequality can be easily modified to give

Lemma 9.5 Let P be a reversible chain, and using the usual convention for eigenvalues, we have
that

4


P t (x , ·)−π




2

TV ≤


P t (x , ·)−π




2

2
=
|Ω|
∑

j=2

f j (x )
2λ2t

j

Proof. Repeat the proof of Poincaré’s inequality with ν=δx . ♥

Armed with these inequalities, we now prove the goal of this section

Theorem 9.6 (Upper bound on mixing time in terms of relaxation time) Let P be reversible with
respect to the invariant distribution π and let πmin :=minx π(x ). Then for all ε ∈ (0, 1) we have
that

tmix(ε)≤ tmix
(∞)(ε)≤ trel log

�

1

επmin

�

Main idea: The proof follows almost immediately after bounding L∞ distance by some function of
L 2 distance (which we know we can do by Proposition 7.5), and then applying Poincaré’s inequality
with a little bit of algebra.

Proof. Since TV distance is proportional to L 1 distance and L p norms are monotonic, then it
suffices to prove the second inequality. Moreover, we know from Proposition 7.5, that

tmix
(∞)(ε)≤ 2 tmix

(2)(
p
ε)

so it suffices to show that
tmix

(2)(
p
ε)≤

1

2
trel log

�

1

επmin

�
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But now applying a direct consequence of Poincaré’s Inequality:



P t (x , ·)−π




2
≤ exp

�

−
t

trel

�

∥1x −π∥2 ≤ exp
�

−
t

trel

��

1

π(x )
−1

�1/2

≤ exp
�

−
t

trel

�

1
p

π(x )

≤ exp
�

−
t

trel

�

1
p
πmin

Now choose t ∗ = 1
2 trel log

�

1
επmin

�

and the above inequality shows that tmix
(2)(
p
ε) < t ∗ and thus

proves the Theorem. ♥

We now have the lower bound:

Theorem 9.7 If moreover we assume that the chain is aperiodic, then tmix(ε)≥ (trel−1) log
�

1
2ε

�

Remark 9.8 (Aperiodicity?) Why do we need aperiodicity? If we don’t assume aperiodicity, one
of the background results shows that −1 could be an eigenvalue, which means that trel could be
infinite. Of course, aperiodicity also implies that there is convergence to the stationary distribution
so hence why we need trel to be finite.

We now prove the Theorem
Main idea: The key here is that since

∑

y f (y )π(y ) = 0, one can rewrite cleverly |λt f (x )| for any
x ∈ Ω and eigenvalue λ and show that |λt f (x )| ≤ 2



 f




∞d (t ). Then since state space is finite, there
is some x ∗ for which | f (x ∗)|=



 f




∞, and so we have that for any eigenvalue λ: |λ|t ≤ 2d (t ). Now in
particular we can choose |λ|=λ∗ and rearrange.

Proof. Suppose f is an eigenfunction whose eigenvalue λ is not 1. Since eigenfunctions are
orthogonal with respect to 〈·, ·〉π, and 1 is different eigenfunction to f , it follows that

∑

y

π(y ) f (y ) =



1, f
�

π
= 0

Thus

|λt f (x )|=
�

�(P t f )(x )
�

�=

�

�

�

�

�

∑

y

P t (x , y ) f (y )−π(y ) f (y )

�

�

�

�

�

≤


 f




∞2d (t )

State space being finite means that for some x ∗ we have that
�

� f (x ∗)
�

� =


 f




∞ and so using that
x ∗ in the above expression yields

|λ|t ≤ 2d (t )
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or in other words,
|λ|tmix(ε) ≤ 2ε

Rearranging gives

tmix(ε) log
�

1

|λ|

�

≥ log
�

1

2ε

�

Since generally we have that log(1+u )≤ u , we see that

tmix(ε)
�

1

|λ|
−1

�

≥ log
�

1

2ε

�

In other words:
tmix(ε)≥ log

�

1

2ε

� |λ|
1− |λ|

Since this worked for all λ ̸= 1, it also works for λ∗, and so we have that

trel(ε)≥ log
�

1

2ε

�

λ∗

1−λ∗
= log

�

1

2ε

�

λ∗−1+1

γ∗
= log

�

1

2ε

�

(trel−1)

♥

Corollary 9.9 (λ∗ as the limit of d (t )1/t for ergodic chains) For a reversible, irreducible and
aperiodic chain, we have that

lim
t→∞

d (t )1/t =λ∗

Proof. From the proof of the previous Theorem, we know that |λ|t ≤ 2d (t ), so this gives that for
all t , d (t )1/t 21/t ≥λ∗ Thus lim inf d (t )1/t ≥λ∗. On the other hand we use the monotonicity of the
L p norm, and the last lines of the proof of the Poincaré inequality

d (t )≤ d2(t )≤ (1−γ∗)t
√

√ 1

πmin

Indeed: from the proof of the Poincaré inequality we had that

d2(t ) =max
x



P t (x , ·)−π




2

=max
x



Pδx
[X t ∈ ·]−π





2

≤max
x
(1−γ∗)t ∥δx −π∥2

And
∥δx −π∥22 ≤

∑

y

δx (y )2

π(y )
=

1

π(x )
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This gives the inequality claimed above, and so taking t t h roots, and taking limsup finishes the
claim. ♥

9.1 A necessary condition for cutoff

We now use an application of the bounds derived from spectral theory to show a necessary condition
for cutoff. Recall that a sequence {X (n )} of Markov Chains exhibits cutoff if given any ε ∈ (0, 1) we
have that

lim
n→∞

tmix
(n )(ε)

tmix
(n )(1−ε)

= 1

It is obvious that if cutoff holds, then the following weaker condition also must hold:

Definition 9.10 (Pre-cutoff ) A sequence of Markov chains (Xn ) exhibits pre-cutoff if

sup
ε∈(0,1/2)

lim sup
n→∞

tmix
(n )(ε)

tmix
(n )(1−ε)

<∞

We now state a condition that unless true, will prevent pre-cutoff and hence cutoff from happen-
ing:

Definition 9.11 (Product condition ) A sequence of reversible Markov chains (Xn ) exhibits the
product condition if

tmix
(n )≫ trel

(n )

Proposition 9.12 (No cutoff unless product condition holds) Let {X (n )} be a sequence of reversible
aperiodic Markov chains with mixing times tmix

(n ) and relaxation times trel
(n ). Suppose that tmix

(n )→
∞ as n→∞ but trel

(n ) / tmix
(n ) ̸→ 0. Then there is no pre-cutoff, and therefore no cutoff.

Proof. From one of the upper bounds derived from spectral theory, we know that

tmix
(n )(ε)≥ (trel(n ))−1) log

�

1

2ε

�

Dividing through by tmix we have that

tmix
(n )(ε)

tmix
≥
�

trel
(n )

tmix
−

1

tmix

�

log
�

1

2ε

�

Since we assume there is no product condition, we have that trel
(n ) / tmix

(n ) does not converge to
zero, that is to say, there exists some constant c > 0 and some infinite subset J ⊆N such that for
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all n ∈ J , one has that
trel
(n )

tmix
(n ) > c

Moreover, since 1/ tmix
(n )→ 0, we have that

lim sup
n→∞

tmix
(n )(ε)

tmix
(n ) ≥ c log

�

1

2ε

�

But also tmix
(n )(1−ε)≤ tmix

(n ) for ε ∈ (0, 1/2) so we have that

lim sup
n→∞

tmix
(n )(ε)

tmix
(n )(1−ε)

≥ c log
�

1

2ε

�

But now taking the supremum of ε over (0, 1/2) gives that the right hand side →∞ and as such
we have no pre-cutoff and as such no cutoff. ♥

Remark 9.13 Recall from the upper bound on mixing time

tmix(ε)≤ trel log
�

1

επmin

�

≡ trel C (ε)

that automatically tmix
(n )(ε) ≲ trel

(n ). The result we have just shown says that if we also have
tmix

(n ) ≳ trel
(n ), that is to say, if we have tmix

(n ) ≍ trel
(n ), then we have no cutoff. This gives a

relatively straightforward way to see whether a given chain does not exhibit cutoff.

Let us see an example of this result in practice:

Example 9.14 (No cutoff for a lazy walk on a cycle) Recall from Example 4.9 that for a lazy
simple random walk on Zn , the mixing time is of order

tmix
(n ) ≍ n 2

Let us show by computing the order of trel
(n ), that this chain does not exhibit cutoff.

Main idea: We need to compute the order of the relaxation time. To do this, we must evaluate the
eigenvalues of the transition matrix, and get the order of the second largest eigenvalue.

Proof. We first note that the transition matrix of this chain is

P (x , x ) =
1

2
P (x , x ±1) =

1

4
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Where addition and subtraction is understood to be modulo n . Therefore if ( f ,λ) is an eigenpair,
we have that

λ f (x ) = (P f )(x ) =
∑

y ∈Zn

P (x , y ) f (y ) =
1

2
f (x ) +

1

4
( f (x +1) + f (x −1))

Thinking of Zn as {ω j : j ∈ [n ]} where ω is the n th root of unity, gives an easy way to verify that

fk (ω
j ) =ωk j

is an eigenfunction with eigenvalue

λk =
1+ cos(2πk/n )

2

Indeed:

(P fk )( j ) :=: (P fk )(ω
j ) =

1

2
ωk j +

1

4

�

ω(k+1) j +ω(k−1) j
	

=
ωk j

2

�

1+ωk +ω−k
	

=λkω
k j =λk fk ( j )

Of course the largest eigenvalue is λ0 = 1 as expected, and as a cute observation note that all
eigenvalues are non-negative, as expected by the fact that the chain is lazy. It is clear that the
largest eigenvalues other than λ0 will be λ1 which also is the same as λn−1. Therefore, to compute
the order of the relaxation time, we want to compute the order of λ1, which is

λ1 =
1+ cos(2π/n )

2
≈

1

2

�

1+1−
1

2

�

2π

n

�2

+O (n−4)

�

And so trel
(n ) ≍ n 2, showing that trel ≍ tmix, and as such showing that this chain cannot exhibit

cutoff. ♥
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9.2 Examples

Let us show how to compute the eigenvalues of the transition matrix of some simple classes of Markov
chains:

Example 9.15 (Walk reflected on the boundaries) Consider a simple random walk on the n-vertex
segment {v0, · · · , vn−1} with reflecting boundary conditions, i.e: when the walk is at v0, it jumps on
the next step to v1 with probability one, and when it is at vn−1, it jumps to vn−2 with probability
one. Then for 0≤ j ≤ n −1, the functions

f #
j (vk ) = cos

�

π j k

n −1

�

,

are eigenfunctions with eigenvalue cos(π j /n −1)

Proof. The key idea is that if we let ω= e iπ/(n−1), and let P be the transition matrix of a simple
random walk on the 2(n − 1) cycle identified with the group W2(n−1) = {ω,ω2, · · · ,ω2(n−1)}, we can
introduce an equivalence relation on the state space W2(n−1) that declares ωk and ω−k the same
element, and so the random walk (X t ) on W2(n−1) can be projected to the random walk ([X t ])t
on {v0, · · · , v2(n−1)}. With a transition matrix P #([x ], [y ]) =

∑

y ∈[y ]P (x , y ), where x is taken as any
representative of the coset [x ]. We now make two observations:

• For the simple random walk on the n-cycle, if ω was the n t h root of unity, then ϕ j (ωk ) =

exp(2πi k/n ) was seen to be an eigenfunction with eigenvalue cos(2π j /n ). Since the eigen-
value is real, then it means that both real and imaginary parts of ϕ j are eigenvalues, so in
particular, f j (ωk ) = cos

� 2π j k
n

�

is an eigenfunction.

• If we define f #
j ([x ]) = f j (x ) (notice this is well defined since cos(x ) = cos(−x )), then we see

that

(P # f #
j )([x ]) =

∑

[y ]∈W2(n−1)/∼

P #([x ], [y ]) =
∑

[y ]∈W2(n−1)/∼

∑

z∈[y ]

P (x , z ) f j (z ) = cos
�

π j

n −1

�

f j (x ) = cos
�

π j

n −1

�

f #
j ([x ]).

♥



Chapter 10

Transitive chains

Let us give yet another expression for


P t (x , ·)−π




2

in terms of eigenvalues, but this time for a specific kind of chains

Definition 10.1 (Transitive chain ) A Markov chain with transition matrix P is said to be transitive
if it looks the same from all points, i.e. for any pair (x , y ) of states, there exists a map φ ≡φx ,y :

Ω→Ω such that

• φ(x ) = y .

• P (φ(z ),φ(w )) = P (z , w ) for all z , w ∈Ω.

Lemma 10.2 (Transitive chains have uniform stationary distributions)

Proof. Let U (x ) denote the uniform distribution on Ω. Pick any two states x and y , let us show
that when initialising the chain with distribution U and doing one step, the mass going into x

and y is the same. This will then easily show that U =π.

Let φ =φx ,y be the map mentioned above. Then

∑

z∈Ω
U (z )P (z , x ) =

∑

z∈Ω
U (φ(z ))P (φ(z ),φ(x ))

=
∑

z∈Ω
U (φ(z ))P (φ(z ), y )

=
∑

ω∈Ω
U (ω)P (ω, y )

81
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Therefore
∑

x∈Ω

∑

z∈Ω
U (z )P (z , x ) =

∑

x

C =C |Ω|

But also, by swapping the order of the sum

∑

x ,z

U (z )P (z , x ) = 1

so
∑

z

U (z )P (z , x ) = |Ω|−1 =U (x )

♥

Lemma 10.3 (Transition steps of transitive chains has constant diagonals) Let P be the transition
matrix of a transitive chain, then for any n ≥ 0, any x , y ∈Ω, we have that P n (x , x ) = P n (y , y ).

Proof. One shows immediately by induction that for any z , w , setting φ =φx y as the "transitive
map", we have that P n (z , w ) = P n (φz ,φw ), from this we plug z = x and w = x .

♥

Lemma 10.4 (Eigenvalue decomposition for transitive reversible chain) Let P be reversible and
transitive. Then for all x ∈Ω we have that



P t (x , ·)−π




2

2
=
|Ω|
∑

i=2

λ2t
i

Main idea: Combine the facts that



P t (x , ·)−π




2

2
=
|Ω|
∑

i=2

f 2
i (x )λ

2t
i



P t (x , ·)−π




2

2
=

P 2t (x , x )
π(x )

−1

With the fact that transitive matrices have constant diagonals for all powers, as well as π being uniform
to see that ∥P t (x , ·)−π∥22 is independent of x .

Proof. We know from Lemma 9.5 that



P t (x , ·)−π




2

2
=
|Ω|
∑

i=2

f 2
i (x )λ

2t
i



10.1. EXAMPLES 83

But also we know that from Proposition 7.5



P t (x , ·)−π




2

2
=

P 2t (x , x )
π(x )

−1

We know that for any t , we have that P t (x , x ) is constant for all x ∈Ω. Moreover, we know that
π is uniform, so in fact



P t (x , ·)−π




2

2

is independent of x . From this we gather that

1

n

∑

x∈Ω

|Ω|
∑

i=2

f 2
i (x )λ

2t
i =

|Ω|
∑

i=2

f 2
i (x )λ

2t
i

But also, rearranging and noting that { fi } is a collection of orthonormal vectors:

1

n

∑

x∈Ω

|Ω|
∑

i=2

fi (x )λ
2t
i =

|Ω|
∑

i=2

λ2t
i

�

∑

x∈Ω

1

n
fi (x ) fi (x )

�

︸ ︷︷ ︸

〈 f , f 〉π=1

as required. ♥

10.1 Examples

Example 10.5 Let X be a transitive chain on a d -regular graph. Let λ be an eigenvalue of
the chain of multiplicity one, with corresponding eigenvector f that has been rescaled such that
maxx | f (x )|= 1. Show that f (x ) ∈ {+1,−1} for all x ∈Ω and that there exists some p ∈ {0, 1, · · · , d }
for which

λ= 1−
2p

d

Proof. Let x ∈Ω be some state for which f (x ) ∈ {1,−1} and let y ∈Ω be given. Let f̂ = f ◦φx ,y .
Note that

(P f̂ )(z ) =
∑

w

P (z , w ) f
�

φ(w )
�

=
∑

w

P (φ(z ),φ(w )) f
�

φ(w )
�

=
∑

w ′

P (φ(z ), w ′) f (w ′)

=λ f
�

φ(z )
�
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since λ is of multiplicity one, it must mean that f̂ (x ) = C f (x ) for all x , but since f̂ = f (φ(·)), it
must be that f̂ (·) = ± f (·) and in particular, f (y ) = ± f̂ (y ) = ± f (φ(y )) = ± f (x ) ∈ {1,−1}. To show
the second claim, without loss of generality suppose x ∈Ω is such that f (x ) = 1, then

λ= (P f )(x ) =
∑

y∼x

1

d
f (y )

we know that f (y ) ∈ {1,−1} and thus if p neighbours of x are sent to +1 and d −p are sent to
−1, we’ll have that

λ= 1−
2p

d
.

♥

10.2 Wilson’s Method

We now present another method to bound (from below) the mixing times.

Theorem 10.6 (Wilson’s Method ) Let (X t ) be an irreducible aperiodic Markov chain with state
space Ω and transition matrix P . Let f be an eigenfunction with eigenvalue λ such that

1/2<λ< 1

Then for a fixed ε> 0 let R > 0 satisfy

Ex

�

| f (X1)− f (x )|2
�

≤R ∀x ∈Ω

Then

tmix(ε)≥max
x∈Ω

�

1

2 log(1/λ)

�

log

�

(1−λ) f (x )2

2R

�

+ log
�

1−ε
ε

�

��
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Example 10.7 (LSRW on Hypercube has cutoff) Let
�

X (n )t

	

be a Lazy Simple Random Walk
on the n-dimensional hypercube: {0, 1}n . The sequence exhibits cutoff at time 1

2 n log n with a
window of order n . Moreover, the relaxation time is trel = n .

Exposition and waffle. We note that the hypercube is an example of a Product Chain (see Ap-
pendix), and so we can start by finding eigenfunctions of the "sub-chains", i.e: LSRW on {0, 1},
which has transition matrix P (x , y ) = 1/2 for all x , y ∈ {0, 1}. Of course, the function g1(x ) = 1 for
all x is an eigenfunction with eigenvalue 1, but then we also have g2(x ) = 1−2x :

(P g2)(x ) =
∑

y ∈{0,1}

P (x , y )g2(y ) =
1

2
(1−1) = 0

so g2 is an eigenfunction with eigenvalue zero. Now using the known results about product chains
from the Appendix, we see that

fI =
n
∏

i=1

fi (xi )

where each fi is g1 or g2, and I = {i : fi = g2}, is an eigenfunction of the chain on the hypercube,
with eigenvalue

λI =
n − |I |

n

It is clear that the invariant distribution of each of the smaller chains is simply π j a uniform
distribution, so its also easy to check that




g i , g j

�

π j
= δ(i , j ), so in fact by another result of the

Appendix,

B =

¨

fI =
∏

i∈I

g2(xi ) : I ⊆ {1, · · · , n}

«

are all the orthonormal eigenfunctions forming an orthonormal basis. Note that for I =∅, λ∅ = 1,
and for |I | = 1, we have λ∗ = λI = 1− 1

n , and so trel = n as required. Recall that using a strong
stationary time argument we showed that tmix(ε)≤ 1

2 n log n +C (ε)n . We will reprove this fact us-
ing some results we have just proven and compare different bounds that we obtain using different
results.

Since we have computed the relaxation time trel = n , we might as well see what bound we get
using this. Recall from Theorem 9.6 that

tmix(ε)≤ n log
1

επmi n

It is easy to compute πmi n because its obvious that the chain is transitive and so the distribution
is uniform. Hence πmi n = 2−n . From this we get that tmix(ε) ≲ n 2. But observe that this is
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actually a pretty shit bound compared to what we have already obtained before. Now we will
see an example of the tradeoff between being lazy and computing just the second eigenvalue to
actually computing the full spectrum like we have done. Using a corollary to Poincaré’s inequality
for transitive chains:

4


P t (x , ·)−π




2

TV ≤


P t (x , ·)−π




2

2
=

∑

∅ ̸=I⊆{1,··· ,n}

λ2t
I

=
n
∑

k=1

�

n

k

�

�

1−
k

n

�2t

≤
n
∑

k=1

�

n

k

�

exp(−2k t /n )

= (1+exp(−2t /n ))n −1

So choosing t = n log n
2 +C n means we can choose C large enough and bound TV distance by

anything as small as we wish, and we get the same bound we got before. Now we set off to get
the lower bound with Wilson’s method. If you look at the set B defined above, you will convince
yourself that the functions g i = 1− 2xi are eigenfunctions of the LSRW on the hypercube each
with eigenvalue 1− 1

n , therefore if P is transition matrix of the LSRW on the hypercube

P

�

n
∑

i=1

1−2xi

�

︸ ︷︷ ︸

:= f

=
�

1−
1

n

�

�

n
∑

i=1

1−2xi

�

and since n ≥ 2, we see that this new eigenfunction has eigenvalue ≥ 1/2, so the first checkbox of
Wilson’s method is ticked. Now we check the second condition of Wilson’s method, we need to
compute

Ex [| f (X1)− f (x )|2]

A nice way to compute this is by conditioning on the events that the walk does or doesn’t move:

Ex [| f (X1)− f (x )|2] =
1

2
Ex [( f (X1)− f (x ))2 | {stays put}] +

1

2
Ex [( f (X1)− f (x ))2 | {moves}]

If the walk stays put, then f (X1) = f (x ), and if the walk has moved, what used to be a zero in
one of the coordinates has now become a one or vice-versa, which means that the total sum in
the definition of f has changed by ±2, upon squaring this and then multiplying by the 1/2, we
see that

Ex [| f (X1)− f (x )|2] = 2

which is the value of R we will take. Finally, we note that for x = (0, 0, · · · , 0) we get that f (x ) = n
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and so finally plugging into Wilson’s method we see that

tmix(ε)≥
1

2 log(1/(1−1/n ))

�

log
(1/n )n 2

4
+ log

1−ε
ε

�

We recall the expansion for log:

log
1

1− x
=
∞
∑

n=1

x n

n
|x |< 1

and so we have that
log

1

1−1/n
=

1

n
+O (1/n 2)

Then we have that for large n ,

1

log(1/(1−1/n ))
= n +O (1)

so putting it all together:

tmix(ε)≥
n

2

�

log n − log 4+ log
1−ε
ε

�

+O (log n )≥
1

2
n log n −C (ε)n

(The reason for the minus sign in front of C (ε) is that for ε> 1/2 the log 1−ε
ε is negative) ♥
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Chapter 11

Dirichlet Forms and Bottleneck Ratio

Definition 11.1 (Dirichlet form ) Let P be a reversible transition matrix with respect to a sta-
tionary distribution π. The Dirichlet form associated to (P,π) is defined for functions f and h on
Ω by

E ( f , h ) =



(I −P ) f , h
�

π

We also refer to E ( f ) := E ( f , f ).

Lemma 11.2 (Alternative characterisation of Dirichlet form ) For all P , we have that

E ( f ) =
1

2
Eπ
�

( f (X1)− f (X0))
2
�

Moreover, if P is reversible, then

E ( f , g ) =
1

2

∑

x ,y

( f (x )− f (y ))(g (x )− g (y ))π(x )P (x , y )

Remark 11.3 Note that

Eπ
�

( f (X1)− f (X0))
2
�

=
∑

x ,y

( f (x )− f (y ))2P(X1 = x , X0 = y )

=
∑

x ,y

( f (x )− f (y ))2P(X1 = x | X0 = y )P(X0 = y )

=
∑

x ,y

( f (x )− f (y ))2P (y , x )π(y )

89
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Proof of Lemma 11.2. This is just one big computation

E ( f ) =



f , f
�

π
−



P f , f
�

π

=
∑

x

f 2(x )π(x )−
∑

x ,y

P (x , y ) f (y ) f (x )π(x )

=
1

2

¨

∑

x

f 2(x )π(x ) +
∑

y

f 2(y )π(y )−2
∑

x ,y

f (y ) f (x )π(x )P (x , y )

«

=
1

2

¨

∑

x ,y

f 2(x )π(x )P (x , y ) +
∑

y ,x

f 2(y )π(x )P (x , y )−2
∑

x ,y

f (y ) f (x )π(x )P (x , y )

«

=
1

2

¨

∑

x ,y

( f (x )− f (y ))2π(x )P (x , y )

«

=
1

2
Ex

�

( f (X1− f (X0))
2
�

To prove the second statement, we compute the value of E ( f , g ) in two ways:

E ( f , g ) =
∑

x

((I −P ) f )(x )g (x )π(x )

=
∑

x ,y

�

f (x )− f (y )
�

g (x )P (x , y )π(x ) (A)

(!)
=
∑

x ,y

( f (y )− f (x ))g (y )P (x , y )π(x ) (B )

Where (!) comes from reversing π(x )P (x , y ) and then relabelling x↔ y . Once we have calculated
E ( f , g ) to be equal to both (A) and (B ), we can just declare that

E ( f , g ) =
1

2
((A) + (B )) =

1

2

∑

x ,y

( f (x )− f (y ))(g (x )− g (y ))π(x )P (x , y )

♥

As we have seen, the information provided by the spectral gap is fantastic, but calculating the spectral
gap explicitly can be hard, unless we are in some particular example where either the full spectrum can
be calculated or it is easy to see which eigenvalue corresponds to λ∗, so we want ways to estimate the
gap. First we show an alternative way to characterise it, using the Dirichlet form and variances. For
notational convenience, we understand any function f to be a function Ω→R

Theorem 11.4 (Variational characterisation of spectral gap) Let P be reversible with respect to
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π. Then the spectral gap γ:

γ := 1−λ2 = inf
�

E ( f ) : Eπ[ f ] = 0,


 f




2
= 1

	

= inf

(

E ( f )


 f




2

2

: Eπ[ f ] = 0

)

= inf
§ E ( f )

Varπ( f )
: f non-constant

ª

Before proving this characterisation, let us show how this is actually intuitive: recall that E ( f ) measures
the average change in f over one step of the Markov chain when it starts at stationarity. Of course
if f already has high variance, this will already be big by nature, so by dividing E ( f )/Varπ( f ) you are
in some sense quantifying the normalised average change of f over one step of the chain, and once
we take the infimum over all f that are non-constant, we have accounted over all functions on state
space, how much do the normalised versions of f change over 1 step in the Markov chain, this now
seems to be more of a property of the chain itself, and a high value of this ratio, indicates that at
the very start of the execution of the chain, there are really big changes over all functions on state
space, intuitively indicating that the chain is going to forget its initial distribution quite quickly. This
connects perfectly with the fact that γ controls the speed of convergence.
Main idea: Translation and scaling of the Dirichlet form give the last two equalities. For the first
equality, use spectral decomposition and the bound 1−λi ≥ 1−λ2 to get one equality and then the
fact that E ( f2) = γ to get the other equality.

Proof. It is easy to see that since

E ( f ) =
1

2
Eπ[( f (X1)− f (X0))

2]

we have that for any constant c ∈ R: E ( f + c ) = E ( f ). Thus using f −Eπ[ f ] instead of f , gives
the last equality. Similarly, we have that E (c f ) = c 2E ( f ) gives the second equality. So all there is
to show really is the first equality.

Let { fi } be an orthonormal family of eigenfunctions with respect to P , so that we can write any
f with Eπ( f ) = 0

f =



f , 1
�

π
︸ ︷︷ ︸

Eπ( f )=0

1+
n
∑

j=2




f , f j

�

π
f j
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And plugging inside the Dirichlet form gives

E ( f ) =

*

n
∑

j=2




f , f j

�

π
(I −P ) f j , f

+

π

=
n
∑

j=2




f , f j

�

π




( f j −λ j f j ), f
�

π

=
n
∑

j=2




f , f j

�

π
(1−λ j )




f j , f
�

π

=
n
∑

j=2

(1−λ j )



f , f j

�2

π

≥ (1−λ2)
n
∑

j=2




f , f j

�2

π

︸ ︷︷ ︸

∥ f ∥2

2
=1

Thus we have that
γ≤ inf

�

E ( f ) : Eπ[ f ] = 0,


 f




2
= 1

	

But noting that γ= E ( f2) (indeed, E ( f2) =



f2, f2

�

−



P f2, f2

�

= (1−λ2)


 f2





2
= 1−λ2 by orthonormality

of the { fi }’s) and clearly
E ( f2)≥ inf

�

E ( f ) : Eπ[ f ] = 0,


 f




2
= 1

	

finishes the claim. ♥

We saw above how the Poincaré inequality was absolutely cracked out of its mind, but it only applied
to reversible chains. We would like to generalise the inequality to non-reversible chains now. Of course
we will not have all that spectral business, but as we’ve seen, we can express the spectral gap in a
variational form, and so we can just extend this to all chains. The idea is to first define the Poincaré
constant, which we shall see that in the case of reversible chains is nothing but the spectral gap. With
some work, we will replace the spectral gap in Theorem 9.6 with the Poincaré constant and as such
generalise the inequality to hopefully a broader class of chains.

Definition 11.5 (Poincaré constant ) Let P be the transition matrix of a Markov chain, the
Poincaré constant γ(P ) is defined as

γ(P ) = inf
§ E ( f )

Varπ( f )
: f non-constant

ª

Remark 11.6 By the above Theorem, it is clear that when P is reversible, then γ(P ) = γ. Moreover
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Notice that for a transition matrix P , if P ∗ denotes its time reversal, we have that

EP ( f ) =



(I −P ) f , f
�

π
=


 f




2

2
−



P f , f
�

π
=


 f




2

2
−



f , P ∗ f
�

= EP ∗( f )

And moreover
E P+P ∗

2
( f ) =



 f




2

2
−

1

2




P f , f
�

−
1

2




P ∗ f , f
�

= EP ( f )

Therefore we have that the Dirichlet form and the consequently the Poincaré constant are invariant
under time reversal and additive symmetrisation, where the additive (and multiplicative) time sym-
metrisation of P are

P +P ∗

2
P P ∗

respectively. We now state the bound on mixing time, directly analogous to the one we obtained using
the relaxation time, but that doesn’t require reversibility.

Lemma 11.7 (Spectral interpretation of Poincaré constant) For any chain P we have that

γ(P ) = 1−λ2

�

P +P ∗

2

�

Where λ2(Q ) denotes the second largest eigenvalue of a reversible chain Q .

Proof. Simply combine the fact that γ(P ) = γ
�

P+P ∗

2

�

(which comes from the fact that the Dirichlet
forms agree and then use the variational characterisation of the gap) and then use the fact that
for a reversible chain, the Poincaré constant equals the spectral gap. ♥

Theorem 11.8 (Poincaré bound on mixing time) Let P be the transition matrix of a lazy Markov
chain. Then for ε ∈ (0, 1) we have that

tmix(ε)≤
2

γ(P )
log

�

1

2ε
p
πmin

�

And for a general P :

tmix(ε)≤
2

γ(P P ∗)
log

�

1

2ε
p
πmin

�

Compare this with Theorem 9.6. To prove this we need the following Lemma obtained from Example
Sheet 2.
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Lemma 11.9 Let f :Ω→R, then we have that for a transition matrix P :

Varπ(P f )≤ [1−γ(P P ∗)]Varπ( f )

Moreover, if P is lazy γ(P )≤ γ(P P ∗).

Main idea: The idea is to bound TV distance by an L 2 distance, which can then be related to the
Variance of (P ∗)t fx , where fx (z ) =π−1(x )δx (z ). From there use variational contraction property.

Proof of Theorem 11.8. We start by noting that due to the monotonicity of ℓp norms:



P t (x , ·)−π(·)




TV ≤
1

2









P t (x , ·)
π(·)

−1









2

And using the fact that

P t (x , y )
π(y )

=
P ∗t (y , x )
π(x )

=
∑

z

P ∗t (y , z )1{x }(z )
π(x )

= (P ∗t fx )(y )

Where we define fx (z ) =π−1(x )1{x }(z ). Now we compute









P t (x , ·)
π(·)

−1









2

2

=
∑

y

�

P t (x , y )
π(y )

−1
�2

π(y )

=
∑

y

�

P t (x , y )
π(y )

�2

π(y )−2
∑

y

P t (x , y )
π(y )

π(y ) +
∑

y

π(y )

=
∑

y

�

P t (x , y )
π(y )

�2

π(y )−1
(!)
=Varπ

�

P t (x , ·)
π(·)

�

=Varπ(P ∗t fx )

(Useful trick to remember to save time!). Step (!) comes from the fact that the expectation of
P t (x , Y )/π(Y ) under π is one. Using the variational contraction property of the previous lemma
inductively, we have that

Varπ(P ∗t fx )≤ [1−γ(P ∗P )]t Var( fx ) = [1−γ(P ∗P )]t
�

1

π(x )
−1

�

Using the general bound that 1+ x ≤ exp(x ), we have that









P t (x , ·)
π(·)

−1









2

2

≤
1

πmin
exp(−t γ(P P ∗))
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From this we have that


P t (x , ·)−π




TV ≤
1

2
p
π

exp
�−t

2
γ(P P ∗)

�

This gives the bound on the general case of P . If P is lazy, we use the second part of the variational
contraction Lemma along the fact that P ∗ is also lazy (this is easily seen as the diagonals of P ∗

and P agree by definition) ♥
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Here’s a quick summary of what we have done in the previous chapters:

• In Chapter 8 we saw that if P is reversible, then it admits an orthonormal basis ( fi )i≤n

of eigenfunctions with eigenvalues 1 = λ1 > λ2 ≥ · · ·λn ≥ −1, and that if the chain was
aperiodic, then in fact this last inequality was strict because all eigenvalues are positive.

• More importantly, we had decompositions:

– Of the matrix:
P t (x , y )
π(y )

= 1+
∑

i≥2

λt
i fi (x ) fi (y ).

– Of functions:
(P t f )(x ) =

∑

i≥1

λt
i




fi , f
�

fi (x )

• If we let λ∗ be the eigenvalue of greatest modulus other than the eigenvalue λ1 = 1, then
we defined γ∗ = 1−λ∗ as the absolute spectral gap, and we also defined γ = 1−λ2 to be
the spectral gap. We defined trel = 1/γ∗ to be the relaxation time. It turns out that the
relaxation time provides powerful insights as to how the mixing time behaves, that is to
say, for reversible matrices:

– A general upper bound, consequence of the Poincaré inequality 9.4 and a comparison
of d2 and d∞ distances 7.5.

tmix(ε)≤ trel log
�

1

επmin

�

– And if the chain was aperiodic, we could also get a lower bound:

tmix(ε)≥ (trel−1) log(1/2ε).

• After this we moved on to provide a characterisation of the spectral gap that didn’t directly
involve the eigenfunctions or eigenvalues. We did so by defining the Dirichlet form E ( f )
of a function, and we saw that

γ= inf
�

E ( f ) : Eπ[ f ] = 0,


 f




2
= 1

	

.

• Since this characterisation did not involve any sort of spectral nonsense, we could directly
generalise the idea of spectral gap to non-reversible chains, defining γ(P ) for a general chain
to be the infimum above. We then saw how working directly with this notion of spectral
gap and a variational Poincaré inequality, also provides upper bounds on the mixing time
that were resembling of those obtained prior, namely that for a general P :

tmix(ε)≤
2

γ(P P ∗)
log

�

1

2ε
p
πmin

�

.
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Remark 11.10 (Where are we heading?) So far we have seen a quite a few tools to bound mixing
times, from above: coupling inequalities, strong stationary times, Markovian couplings, relaxation
time... and from below: dirty bounds, relaxation time, Wilson’s method, diameter bounds...
One other thing of interest to us soon will be to start comparing Markov chains themselves, so
that by using known bounds on mixing times of simple Markov chains, we can obtain bounds on
modifications of those chains. For this purpose we start talking about the following easy Theorem.

Theorem 11.11 (Comparison of Poincaré constants) Let P and P ′ be two chains with forms
E ,E ′, invariant distributions π and π′, and Poincaré constants γ,γ′. If there exists some A > 0 such
that

E ′( f )≤ AE ( f ) ∀ f :Ω→R

then we have that γ′ ≤
�

maxx∈Ω
π(x )
π′(x )

�

Aγ

Main idea: The key principle is that Var(X ) = E[(X −EX )2] =mina∈R E[(X −a )2].

Proof. We start by noting the following

γ′ = inf
§ E ′( f )

Varπ′( f )
: f non-constant

ª

≤ A inf
§ E ( f )

Varπ′( f )
: f non-constant

ª

(⋆)

So the question becomes, how can we bound Varπ′( f ) using Varπ( f ). The key observation is in
the main idea section. We simply note that

Varπ( f ) = Eπ[( f −Eπ f )2]

≤ Eπ[( f −Eπ′ f )
2]

=
∑

x

π(x )
�

f (x )−Eπ′ f
�2

=
∑

x

π′(x )
π′(x )

π(x )
�

f (x )−Eπ′ f
�2

≤
�

max
x

π(x )
π′(x )

�

Eπ′[( f −Eπ′ f )
2]

=
�

max
x

π(x )
π′(x )

�

Varπ′( f )

And so Varπ′( f )≥
�

maxx
π(x )
π′(x )

�−1
Varπ( f ) so substituting into (⋆) finishes the claim. ♥
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11.1 Canonical Paths

We now present our first method of comparing Markov chains. Consider as an illustration the random
walk on Zd

n . As we saw before, this is a particularly nice chain to analyse, since by a coupling argument
we could find upper bounds relatively easily on its mixing time. Suppose now that we remove some
edges from the torus, this irregularity no longer allows us use the coupling method, and since the
transition probabilities of this new chain are not comparable to the transition probabilities of the
original chain, we cannot hope to compare Dirichlet forms either. This new method will provide an
answer:

Definition 11.12 (E -Path) For any states x , y ∈Ω say there is an edge e = (x , y ) between them
if P (x , y )> 0. We define the set of edges

E =
�

(x , y ) : P (x , y )> 0
	

For any pair x , y we define an E -path, denoted by Γx y (if it exists) a collection of edges

Γx y =
�

(x , x1), (x1, x2), · · · , (xk−1, y )
	

We define |Γx ,y | = k to be the length of the path. For an edge e = (a , b ) we also say Q (e ) =

π(a )P (a , b )

Let’s introduce a preliminary result that shows how the method of considering E -paths can give us
lower bounds on the spectral gap.

Theorem 11.13 (Canonical Path Method) For all x , y ∈Ω, fix an E -path (if it exists) Γx y and let

B =max
e∈E

 

1

Q (e )

∑

x ,y :e∈Γx y

|Γx y |π(x )π(y )

!

Then γ(P )≥ 1/B . B is referred to as the congestion ratio. Of course, it depends on the choice of
paths.

Remark 11.14 (Waffling) The quantity Q (e ) should be understood as the "rate of flow in the
long run through the edge e ", indeed, π(a ) tells you the "density" of particles at vertex a in
the long run, and P (a , b ) tells you which fraction of the particles cross from a to b in one step,
thus Q (e ) is the overall flux of particles through edge e . That confusing sum can be expressed as
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follows. Let X and Y be independent and distributed according to π. Then

B =max
e∈E

1

Q (e )
E[|ΓX Y |1(e ∈ ΓX Y )]

is the ratio of the average length of an E -path that contains e , with the flux of particles through
the edge. If B is big, one can understand that there is a lot of congestion on average on the graph.
According to this waffle, the result of the Theorem is intuitively expected: since γ≥ 1/B , then for
the reversible case, trel ≤ B , and so if B is small, meaning there is not a lot of congestion, we will
have that the relaxation time is small and so the walk "diffuses quickly".

Main idea: Examine Varπ( f ) as 1
2 E[{ f (X )− f (Y )}2] where X and Y are iid random variables distributed

according to π, and use Cauchy-Schwarz after decomposing { f (x )− f (y )}2 as
�

∑

e∈Γx y
∇ f (e )

�2
.

Proof. We start by examining

Varπ( f ) =
1

2
E
�

{ f (X )− f (Y )}2
�

=
1

2

∑

x

∑

y

{ f (x )− f (y )}2π(x )π(y )

Where X , Y
i i d∼ π. It is very easy to verify the identity for the variance. Now we have the

decomposition (recall that for an edge e = (a , b ), ∇ f (e ) = f (a )− f (b )

{ f (x )− f (y )}2 =

 

∑

e∈Γx y

∇ f (e )

!2

≤

 

∑

e∈Γx y

12

! 

∑

e∈Γx y

(∇ f (e ))2
!

= |Γx y |
∑

e∈Γx y

(∇ f (e ))2

Plugging in we have that

Varπ( f )≤
1

2

∑

x ,y ∈Ω

∑

e∈Γx y

(∇ f (e ))2|Γx y |π(x )π(y )

The important thing to realise now is that we are summing by picking pairs of points (x , y ), and
then summing over all edges in the designated path Γx y between them. It is clear that doing
this will eventually sum over all edges in E , and it will potentially repeat some of the edges, but
this sum is equivalent to first picking an edge e ∈ E , and then sum over the pairs (x , y ) whose
designated path Γx y contains e . (Please see diagram) In other words, we can flip the sum to be

Varπ( f )≤
1

2

∑

e∈E

∑

x ,y :e∈Γx y

(∇ f (e ))2|Γx y |π(x )π(y )
Q (e )
Q (e )
≤E ( f )B
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Γx y
Γz w

x

yz

w

H (e ; x , y )

H (e ; z , w )

∑

x ,y

∑

e∈Γx y
H (e ; x , y ) =

∑

e∈E

∑

x ,y :e∈Γx y
H (e ; x , y )

Figure 11.1: The diagram that says it all for Proof of Canonical Path Method

e

y

x

e

x

y

Figure 11.2: The diagram that says it all: Relaxation time for LSRW on box

Where we have used in this last step that

E ( f ) =
1

2

∑

e∈E

Q (e )(∇ f (e ))2

is an alternative characterisation of the Dirichlet form. Now we just observe that

γ(P ) = inf
f n.c.

E ( f )
Var( f )

≥ inf
f n.c

E ( f )
E ( f )B

= 1/B

♥

Example 11.15 (Relaxation time of a LSRW on the box ) Let X be a LSRW on the box {1, · · · , n}d .
Then there exists a constant C > 0 such that trel ≤C (d n 2).

Proof. First we say what our canonical paths are. For a pair of points (x , y ) in the box, the path
Γx y will be to first move along the first coordinate until it becomes the first coordinate of y , and
so on with all coordinates. Here’s an example
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x

y

Now we set off to obtain some bounds on relevant quantities. We want to estimate

B =max
e∈E

1

Q (e )

∑

x ,y :e∈Γx y

|Γx y |π(x )π(y )

The easiest is to note that π(x )≍ 1
n d . (Its easy to see that if µ= 1

n d , then µP ≍µ and its easy to
prove that if µP ≍ µ, then π≍ µ). Now it is also easy to see that |Γx y | ≤ d n , this is because the
longest a path can be is if it runs through the edges of the box, each having length n , and in d

dimensions being d of them. Next we note that Q (e )≍ (d n d )−1, this is because P (y , x )≍ 1
d . Finally

we just need to bound, for a fixed edge e , the number of pairs (x , y ) such that Γx y contains e .
Now is when I ask you to look at the diagram that says it all. An easy way to bound this quantity,
is as follows. Let an edge e be given. It will always be the case, depending on the orientation of
the given edge, that either the starting point or the end point can be placed wherever you want. In
the drawn diagram, on the left case, the end point can be placed wherever you want, you have n d

possibilities. However, the starting point will be restricted to lie in an appropriate side of the line
that contains the edge. This gives less than or equal to n possibilities, and so the total amount of
possible pairs is less than or equal to n d+1. If you look at the diagram on the right, its the same
thing, but now the starting point can be placed wherever you want, and then the end point will
have to be constrained so that the path Γx y contains e . (Essentially the distinction is whether the
edge e points in the first direction or in a different direction. Here’s another example of a case
in which the starting point can be placed wherever you wish and then the end point has to be
corrected:

e

x

y

All in all, for a fixed e ∈ E , one has that
∑

x ,y :e∈Γx y
1≤ n d+1 so putting this all together:

B ≲ d n d ·n d+1 ·
1

n 2d
· (d n ) = d 2n 2

And using Theorem Canonical Paths Method, we finish the claim. ♥
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11.2 Comparison technique

We have the following result for reversible chains that gives an analogue to the variational characteri-
sation of the second largest eigenvalue:

Theorem 11.16 (Characterisation of the j th largest eigenvalue) Let P be a reversible chain with
respect to the invariant distribution π and let λ j be its ordered eigenvalues. Then for all j ∈ [n ]
we have that

1−λ j = max
φ1,··· ,φ j−1

min
�

E ( f ) :


 f


= 1, f ⊥φ1, · · · ,φ j−1

	

Main idea: To show 1− λ j ≥ · · · , choose an arbitrary collection φ1, · · · ,φ j−1 and smartly pick an
g ⊥φ1, · · · ,φ j−1, and show that 1−λ j ≥E (g ), from this it will follow that 1−λ j ≥max min · · · because
we have kept the φ’s general but the f is specific. For the other direction, pick a smart choice of
φ1, · · · ,φ j−1, and show that for any g ⊥φ1, · · ·φ j−1, then 1−λ j ≤E (g ).

Proof. Following the main idea of the proof, let φ1, · · · ,φ j−1 be arbitrary functions. Let W =

span
�

φ1, · · · ,φ j−1

	

Since they may or may not be linearly independent, we have that

dim{W } ≤ j −1

Which means that dim
�

W ⊥
	

≥ n − j + 1 (because the φ’s are elements of R|Ω| = Rn). Naturally,
by orthonormality we have that dim

�

span
�

f1, · · · , f j

		

= j (the fi ’s are the eigenfunctions) so it
must be the case by comparing dimensions and the fact that for a vector space V , dim(A ∩B )≥
dim(A)+dim(B )−dim(V ), that W ⊥∩ span

�

f1, · · · , f j

	

has dimension at least 1. In particular, pick
a g in this intersection, which without loss of generality can be made to be



g




2
= 1. Expressing

g as being in the span of the ( f j )s gives that g =
∑

i∈[ j ]ai fi with
∑

i∈[ j ]a
2
i = 1. Plugging in the

Dirichlet form gives:

E (g ) =

*

(I −P )
∑

i∈[ j ]

ai fi ,
∑

i∈[ j ]

ai fi

+

=

*

∑

i∈[ j ]

ai (1−λi ) fi ,
∑

i∈[ j ]

ai fi

+

=
∑

i∈[ j ]

ai (1−λi )≤max
i∈[ j ]
(1−λi )

∑

i∈[ j ]

a 2
i

= 1−λ j

This demonstrates that 1− λ j ≥ maxφ1,··· ,φ j−1
min

�

E ( f ) :


 f




2
, f ⊥φ1, · · · ,φ j−1

	

. Conversely, we
can pick φi = fi for i ∈ [ j − 1], and in this case any function g perpendicular to the φi s is in the
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span of { f j , · · · , fn}, (because they form an orthonormal basis, so all functions are in their span!)so
let g =

∑n
i= j ai fi with

∑n
i= j a 2

i = 1 and we can repeat the argument but when we get to the point
that

E (g ) =
n
∑

i= j

ai (1−λ j )≥ min
j≤i≤n

(1−λ j ) = 1−λ j

This show the reverse inequality. ♥

This gives a way to compare the eigenvalues of two chains provided that we are able to compare their
Dirichlet forms. The proof is immediate by noting that taking mins and max respects inequalities.

Corollary 11.17 Let P and P ′ be reversible with respect to π and π′ respectively. Let E and E ′

be their Dirichlet forms, λ j and λ′j denote the eigenvalues. Then if there is a constant A such that
E ′ ≤ AE , then 1−λ′j ≤ A(1−λ j )

Of course this is only useful if we can actually compare Dirichlet forms.

Theorem 11.18 (Comparison Theorem) Let P and P ′ be two transition matrices reversible with
respect to invariant distributions π and π′. Moreover, letting E and E ′ denote the edge-sets of
the chains, assume that for any (x , y ) ∈ E ′, we fix a path Γx y of edges in E . Then setting

B =max
e∈E

 

1

Q (e )

∑

x ,y :e∈Γx y

|Γx y |Q ′(x , y )

!

Gives that E ′ ≤ BE . Consequently, if B is just a constant then we will have that γ′ ≲ γ and so
trel
′ ≳ trel

Main idea: Do similar things as to what the proof of Canonical Path Method did. I.e: bound
{ f (x )− f (y )}2 by |Γx y |

∑

e (∇ f (e )2)
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Proof.

E ′( f ) =
1

2

∑

x ,y

{ f (x )− f (y )}2Q ′(x , y )

(1)
≤

1

2

∑

x ,y

Q ′(x , y )|Γx y |

 

∑

e∈Γx y

(∇ f (e ))2
!

=
1

2

∑

e∈E

(∇ f (e ))2
∑

x ,y :e∈Γx y

Q ′(x , y )|Γx y |

(2)
=

1

2

∑

e∈E

Q (e )(∇ f (e ))2 ·
1

Q (e )

∑

x ,y :e∈Γx y

Q ′(x , y )|Γx y |

≤max
e∈E

 

1

Q (e )

∑

x ,y :e∈Γx y

Q ′(x , y )|Γx y |

!

1

2

∑

e∈E

Q (e )(∇ f (e ))2

= BE ( f )

The two steps to keep an eye out for are step (1), which is the same to what happened in the
proof of the Canonical Path Method, { f (x )− f (y )}2 was expressed as the square of a telescoping
sum going through the edges in Γx y and then Cauchy Schwarz was applied. Step (2) used again
the same idea that was used in Canonical Paths to interchange the sums

∑

x ,y

∑

e∈Γx y
H (e ; x , y ) =

∑

e∈E

∑

x ,y :e∈Γx y
H (e ; x , y ) where H is a generic function. ♥

Example 11.19 (Two graphs with different edge sets) Suppose two graphs have the same vertex
set but different edge sets E and E ′ and we run a simple random walk on both graphs. Then we
can easily compute the congestion ratio in the Comparison Method Theorem.

Explanation. Since a simple random walk on a graph has a degree-biased invariant distribution
and a transition matrix P with

π(x ) =
deg(x )

2|E |
P (x , y ) =

1(x ∼ y )
deg(x )

It follows immediately that

Q (x , y ) =
1(x ∼ y )

2|E |
Q ′(x , y ) =

1(x ∼ y )
2|E ′|
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so then the congestion ratio can be easily computed as

B =max
e∈E

1

Q (e )

∑

e∈Γx y

|Γx y |Q ′(e )

=

 

max
e∈E

∑

e∈Γx y

|Γx y |

!

|E |
|E ′|

♥

Example 11.20 (Box with some edges removes) Consider a 2-dimensional box {1, · · · , n}2, but
now remove some of the horizontal edges at even heights. Run a lazy simple random walk on this
new graph. Then trel =O (d n 2)

Proof. We will simply compare this walk to the usual walk on the box, and use the result we
obtained previously that the relaxation time for the lazy simple random walk on the box was
O (d n 2). The first thing to observe is that if we set E ′ and E to be the edges of the old and new
box respectively, if an old edge (x , y ) ∈ E ′ is given, we can come up with a path Γx y of edges in
E (see the diagram) by going up, and then traversing one of the remaining edges at odd height,
and then going down (or vice-versa). Thus |Γx y | ≤ 3. Moreover, there will be at most 3 E -paths
that contain e (the E path that goes down like a ∪, the one that goes up like a ∩ and the one
that is the edge itself). Moreover, since trivially |E | ≤ |E ′|, we get that B ≲ 1 and so the theorem
above applies and we get that trelnew =O (d n 2). ♥

Γx y

Figure 11.3: Setup for box with edges removed
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Figure 11.4: Comparison Technique and Induced Chains: The diagram that says it all (I’m sorry I
didn’t do this diagram in tikzcd)

Here is an example extracted from a homework problem that was too good and illustrative to be left
out:

Example 11.21 (Comparison Technique and Induced Chains) Consider the subset A of the box
[0, n ]∩Z2 obtained by removing the vertices with even coordinates. Run a SRW on A, show that
γA ≳ 1

n 2 .

Proof. The proof idea is to perform a two-step comparison. We will consider three chains: The
SRW on A, the induced chain on A, and the original SRW on BOX= [0, 1]∩Z2, see figure. Labelling
γBOX, γInd, and γA the spectral gaps of the SRW on the Box, the induced chain and the SRW
on A respectively, we immediately get from the Theorem on Induced Chains in the Appendix
that γInd ≥ γBOX. Moreover, we found that the spectral gap of the LSRW on the box satisfied
γLSRW ≳ 1

n 2 , and since the spectral gaps of the lazy and non-lazy chains are of the same order,
we have that γBOX ≳ 1

n 2 . Therefore, all that remains to show is that γA ≳ γI nd , and since we are
dealing with two chains with the same state space but different transition probabilities, we can
apply the Comparison Method. First note that for any given edge e = (x , y ) ∈ EInd, there is a very
clear way of producing an EA-path Γx y , simply let Γx y be the shortest path along edges of A that
connects x and y . We distinguish therefore, 4 kinds of paths:
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In red is denoted the path long the induced chain, and in blue the corresponding EA-path. Recall
that the induced chain represents the SRW on the original box, but only watched at the times
that it spends at A, so it could be for example, that the original chain starts at a point x , leaves
A, and returns to x immediately, thus giving the self-loop seen in the diagram. Now that we have
established the validity to use the Comparison Theorem, we proceed to compute the congestion
ratio

B =max
e∈EA

 

1

QA(e )

∑

x ,y :e∈Γx y

|Γx y |QInd(x , y )

!

And from the Comparison Theorem if we show that B = O (1), then it will follow that γInd ≲ γA.
As we need to upper bound B , we set off to compute the following tasks:

1. Bound |Γx y |. This is easy, by looking at the diagrams its easy to see that |Γx y | ≤ 8.

2. Upper bound QInd := πInd(x )PInd(x , y ). We know from the Theorem in the appendix that
πInd = π(x )/π(A) for x ∈ A. Since π is the invariant distribution for the original box, its
easy to see that π is just the degree biased distribution π(x ) = degBOX(x )/2|EBOX|. By
looking at the original box its obvious that 2 ≤ degBOX(x ) ≤ 4 for all x , and moreover,
|EBOX| ≥ 2|VBOX| × 1/2, where the 2 comes from the minimum degree of a vertex, and the
1/2 comes from double counting vertices. From this it is clear that, noting that |VBOX|= n 2,
that πInd(x ) ≲ 1

n 2 . Since PInd(x , y ) ≤ 1, we obviously also have that QInd(x , y ) ≲ 1
n 2 for all

(x , y ) ∈ EInd.

3. Lower bound QA: Since A is a SRW on a graph, πA is degree biased, πA(x ) = degA(x )/2|EA |.
Naturally degA(x )≥ 1 and since to obtain EA we removed some edges from the box, we have
that |EA |< |EBOX|. However, noting that the maximum degree in the box is 4, we have that
|EBOX| ≤ 4|VBOX| ≲ n 2. Therefore |EA | ≲ n 2, and we also have that πA(x ) ≳ 1

n 2 . Now, since
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PA(x , y )≥ 1/4 for any edge, we have that QA(x , y )≳ 1
n 2 , so the QInd and QA will cancel each

other out in the upper bound for B .

4. All that’s left for us to determine that B = O (1) is to show that for a fixed e ∈ EA, the
number of EA-paths Γx y that contain e is bounded above by a constant. To upper bound
the number of such paths (we are going to do a brutal bound here), note that an edge e ∈ EA

belongs to 2 "Cells" (see diagram), in each of these cells, there are 8 vertices, each of which
can be connected via a Γ path to no more than 8 other vertices of the same cell (actually
there are less than 8 vertices, but we are just trying to get any bound here), of course, out
of all of these Γ paths, some will contain e and some will not, but regardless, from a single
cell, there will be at most 82 paths containing e . Since e is contained in 2 cells, at most
82 ·2=O (1) paths contain e . (This is a brutal bound I know)

That’s, it we have shown that B =O (1). ♥
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Here’s a summary of these last two chapters:

• As explained in the previous summary, by defining γ(P ) through the variational character-
isation, we found ways to upper bound the mixing time.

• We then wished to study chains obtained by slightly perturbing some “nice" chains. The
first step was to show that if one could compare Dirichlet forms, say E ′ ≤ AE , then γ′ ≲ γ.
In light of the above bulletpoint, if the chains are reversible, then E ′ and E are the forms
of the old and new chain respectively, then tmix(ε)≲ 1

γ′ , and so we are also able to obtain
bounds on the new mixing time, if we know γ′, i.e: the spectral gap of the old chain.

• We would therefore like to know how to do two things: lower bound γ′, (i.e: upper bound
1/γ′), and be able to perform the bound E ′ ≤ AE for some constant A, for this we found
the following:

1. The canonical path method: which by defining the congestion ratio

B =max
e∈E

 

1

Q (e )

∑

x ,y :e∈Γx y

|Γx y |π(x )π(y )

!

of a chain, Theorem 11.13 gives that γ≥ 1/B .

2. The comparison method: which essentially says that if you have two chains on the
same graph, but to obtain the new chain you remove some edges, then by computing
an analogous congestion ratio:

B =max
e∈E

1

Q (e )

∑

x ,y :e∈Γx y

|Γx y |Q ′(e ),

one can obtain the desired bound E ′ ≤ BE . Where a dash represents the original
chain.
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Figure 11.5: A set A with a massive π-measure but a very small conductance.

11.3 Bottleneck ratio

So far we have not seen a great deal of methods of lower bounding mixing times. We have found the
(as I like to call it) "dirty approach" where you show that the possible locations of the chain after
t steps do not form a significant proportion of the state space in terms of π-measure, i.e: formally,
we found sets A such that P[X t ∈ A] was high but π(A) was small. Another way, seen in the example
sheet 1, was the diameter bound, where for a transition matrix P on Ω, we constructed a graph with
vertex set Ω and an edge (x , y ) if one of P (x , y ) or P (y , x ) was strictly greater than zero, and if the
diameter of this graph was L , we concluded that for any ε< 1/2, tmix(ε)≥ L

2 . We now see yet another
way to lower bound mixing time (and upper bound it too), which also in some sense captures some of
the geometry of the chain.

Definition 11.22 (Bottleneck Ratio) The bottleneck ratio (known as the Cheeger constant) is
defined to be

Φ∗ = min
A⊆Ω:π(A)≤1/2

Q (A, Ac )
π(A)

≡ min
A⊆Ω:π(A)≤1/2

∑

x∈A,y ∈Ac π(x )P (x , y )

π(A)

We also define the conductance of a set A ⊆Ω to be Φ(A) = Q (A,Ac )
π(A)
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Example 11.23 (Bottleneck Ratio of a SRW on a Graph) If we consider the simple random walk
on a graph (V , E ), we have that

Q (x , y ) =
deg(x )

2|E |
︸ ︷︷ ︸

π(x )

×
1(x ∼ y )
deg(x )
︸ ︷︷ ︸

P (x ,y )

=
1(x ∼ y )

2|E |

And so, for a set A ⊆V , we have that

Q (A, Ac ) =
1

2|E |

∑

x∈A,y ∈Ac

1(x ∼ y ) =
|∂A|
2|E |

Therefore
Φ(A) =

|∂A|
∑

x∈A deg(x )
:=
|∂A|

Vol(A)

(And we would have 2Vol(A) if the walk were lazy) This gives a nice interpretation of the bottleneck
ratio, as the ratio between surface area and volume of a subset of the graph. Imagine heat trapped
in a body, if the surface is very small compared to the volume of the body, heat will have a hard
time escaping.

Main idea: Q (A, B ) measures the probability of going from A to B in one step, when starting from the
invariant distribution.Therefore Φ(A) is precisely the probability that a particle with starting distribution
πA exits the chain in one step: PπA

[X1 ∈ Ac ] = Pπ[X0∈A,X1∈Ac ]
π(A)

More formally, the relationship between tmix and the bottleneck ratio is the following:

Theorem 11.24 (Bottleneck and mixing time)

tmix ≥
1

4Φ∗

Main idea: The key is that by convexity of TV we know that d (t )≥


µP t −π




TV for any distribution
µ. So we can use µ=πA where A is the set of worst conductance. Then intuitively a dirty bound will
do because A is a big set that is hard to escape in one go. To extend this to PπA

[X t ∈ Ac ] use union
bound.
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Figure 11.6: Two tori with a single vertex v ∗ identified, thus gluing them.

Proof. By convexity of TV we know that



µP t (·)−π(·)




TV =











∑

y ∈Ω
µ(y )P t (y , ·)−π(·)











TV

≤
∑

y ∈Ω
µ(y )



P t (y , ·)−π(·)




TV

≤max
x∈Ω



P t (x , ·)−π(x )




TV

∑

y

µ(y ) = d (t )

Now we apply µ=πA and see that using the set A that attains the infimum in Φ∗

d (t )≥π(Ac )−PπA
(X t ∈ Ac )≥

1

2
−PπA

(X t ∈ Ac )

We now apply a union bound on this probability: if X t ∈ Ac , then for some 0 ≤ s < t , it must be
that X s ∈ A and X s+1 /∈ A. Therefore

PπA
(X t ∈ Ac ) =Pπ(X0 ∈ A, X t ∈ Ac )

=Pπ

�t−1
⋃

s=0

{X s ∈ A, X s+1 ∈ Ac }
�

≤
t−1
∑

s=0

Pπ(X s ∈ A, X s+1 ∈ Ac )

Since the chain is started with π, (Xn+s ) has the same distribution as (Xn ) (stationarity of π), we
have that this sum upstairs is equal to t Pπ(X0 ∈ A, X1 ∈ Ac ) = t Q (A, Ac ) Therefore

π(A)PπA
(X t ∈ Ac ) =

Pπ(X0 ∈ A, X t ∈ Ac )
π(A)

≤ t
Q (A, Ac )
π(A)

= tΦ∗

Thus taking t = (4Φ∗)−1 gives that d (t )≥ 1/4 so tmix ≥ (4Φ∗)−1. ♥

Example 11.25 (Glued torus) Consider two tori glued together at a single vertex v ∗. Let us lower
bound its mixing time:
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Solution. Let V1 and V2 be the left and right tori respectively, and consider the subset of this
glued graph A defined by A =V1 \{v ∗}. Since there are 2d edges connecting v ∗ to V1, we see that
|∂A|= 2d , and since A has n d −1 vertices, each with degree 2d , π(A) = 2d (n d −1), therefore

Φ∗ ≤Φ(A) =
2d

2d (n d −1)
,

and so tmix ≳ 1
n d−1 ♥

Example 11.26 (Binary tree) In previous examples we talked about the mixing time of the lazy
simple random walk on the binary tree of n vertices. We now give an alternative proof for the
lower bound that tmix ≳ n using Isoperimetry:

Proof. Let S be the right-hand side of the tree. Since there are n −1 edges, and deg(x )≤ 3

π(x ) =
deg(x )
2(n −1)

≤
3

2(n −1)
.

Moreover, P (x , y ) = 1
deg(x ) 1{x ∼ y } ≤ 1{x ∼ y }, from which we gather than in fact

Q (S ,S c ) =
∑

x∈S ,y ∈S c

π(x )P (x , y )≤
3

2(n −1)
|∂S |=

3

2(n −1)
.

Finally, we note that

π(S ) =
∑

x∈S

π(x )≤
3

2(n −1)
|S |=

3(n +1)
4(n −1)

,

from which it now follows clearly that Φ(S )≲ 1/n , and so tmix ≳ n . ♥
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We now get an inequality that bounds γ in terms of Φ∗. This following inequality is very powerful and
qualitatively tells us that bottlenecks are the only major obstruction to fast mixings. For this we will
need to invoke the power of the Dirichlet form.

Theorem 11.27 (Cheeger’s inequality) Let P be reversible with respect to π. Let γ be the
spectral gap. Then

Φ2
∗

2
≤ γ≤ 2Φ∗

Observe that if the chain exhibits a big bottleneck (Φ∗ is small), then γ is also small (from the upper
bound), which means that the mixing will be slow. Conversely, if there are no bottlenecks (Φ∗ is big,
then γ will also be big (lower bound), which means the mixing will be quick.
Main idea: For the upper bound, use variational characterisation of γ and consider the function
f (x ) = 1A(x ) for some set with π(A)≤ 1/2.

Upper bound. • Upper bound: consider the function f (x ) = 1A(x ). Plugging in the variational
characterisation of the spectral gap, which is allowed because f (x ) is non-constant, gives
that

γ≤
E ( f )

Varπ[ f ]
=

∑

x ,y ∈Ωπ(x )P (x , y )[ f (x )− f (y )]2
∑

x ,y ∈Ωπ(x )π(y )[ f (x )− f (y )]2

Let us manually compute, say the denominator, and then it will be clear how the numerator
also follows:

∑

x ,y

π(x )π(y )[1A(x )−1A(y )]
2 =

∑

x∈A,y ∈Ac

%+
∑

x∈Ac ,y ∈A

%+
∑

x∈A,y ∈A

%+
∑

x∈Ac ,y ∈Ac

%= 2
∑

x∈A,y ∈Ac

%

In here we have used the fact that in the last two sums, the indicators will both be the same
and so will cancel always each other out, and then to make the first two sums equal, we just
observed that the summands are symmetric in x↔ y . This last sum will be equal to

∑

x∈Ac ,y ∈A

π(x )π(y ) =
∑

x∈Ac

π(x )
∑

y ∈A

π(y ) =π(Ac )π(A)

Similarly the numerator will be 2Q (A, Ac ). I.e:

γ≤
Q (A, Ac )
π(A)π(Ac )

This worked for any A, so let us choose any A with π(A)≤ 1/2, so that π(Ac )≥ 1/2, and as
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such
γ≤

2Q (A, Ac )
π(A)

Since this holds for all A with π(A)≤ 1/2, in particular we have that γ≤ 2Φ∗
♥

Main idea: For the lower bound there are two steps

1. Find a non-negative f with π({ f > 0})≤ 1/2 and γ≥ E ( f )∥ f ∥2

2

. For this consider f = f2 ∨0 where f2

is the second eigenvector.

2. Show that for any function ψ≥ 0 we have that E (ψ)∥ψ∥2

2

≥ h (ψ)2

2 for some suitable h .

Proof of lower bound. We prove two steps

• Step 1.

We show there exists a non-negative function f such that π({ f > 0}) ≤ 1/2, and γ ≥ E ( f )∥ f ∥2

2

. The

function in question will be the eigenfunction f2 corresponding to eigenvalue λ2. Suppose without
loss of generality that π({ f2 > 0}) ≤ 1/2, otherwise consider the function − f2. Now let f = f2 ∨ 0.
Then we claim that [(I −P ) f ](x ) ≤ γ f (x ). Indeed: If f (x ) = 0 then there’s nothing to prove. If
f (x )> 0, then f (x ) = f2(x ) and so

((I −P ) f )(x ) = f2(x )− (P f )(x )≤ f2(x )− (P f2)(x ) = γ f2(x ) = γ f (x )

This inequality holds because generally f ≥ f2, and

(P f )(x ) =
∑

y

P (x , y ) f (y )≥
∑

y

P (x , y ) f2(y ) = (P f2)(x ).

Now we can plug in the Dirichlet form:

E ( f ) =



(I −P ) f , f
�

π
≤ γ




f , f
�

π
= γ



 f




2

2

• Step 2.

Fix a non-negative function ψ≥ 0, and for every t > 0, define St = {x :ψ(x )> t }. Let

h (ψ) = inf
∅ ̸=A⊆{x :ψ(x )>0}

Q (A, Ac )
π(A)
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Then if for some t you have that St ̸=∅, then it also follows that (using reversibility) that

h (ψ)≤
Q (St ,S c

t )
π(St )

=
Q (S c

t ,St )
π(St )

=
1

π(St )

∑

ψ(x )≤t ,ψ(y )>t

Q (x , y )

Then we have that

h (ψ)


ψ




2

2
:= h (ψ)

∑

x∈Ω
ψ(x )2π(x )

= h (ψ)
∑

x∈Ω
π(x )

∫ ψ(x )

0

2t d t

= h (ψ)
∑

x∈Ω
π(x )

∫ ∞

0

1(t <ψ(x ))2t d t

= h (ψ)

∫ ∞

0

2t
∑

x∈Ω:t<ψ(x )

π(x )d t

= h (ψ)

∫ ∞

0

2tπ({x : t <ψ(x )})d t = h (ψ)

∫ ∞

0

2tπ(St )d t

≤
∫ ∞

0

2t
∑

ψ(x )≤t ,ψ(y )>t

Q (x , y )d t =

∫ ∞

0

2t
∑

ψ(x )<ψ(y )

1(ψ(x )≤ t <ψ(y ))Q (x , y )d t

=
∑

ψ(x )<ψ(y )

(ψ(y )2−ψ(x )2)Q (x , y ) =
1

2

∑

x ,y ∈Ω
|ψ(x )2−ψ(y )2|Q (x , y )

=
1

2

∑

x ,y

|ψ(y )−ψ(x )|
Æ

Q (x , y ) · |ψ(y ) +ψ(x )|
Æ

Q (x , y )

(1)
≤

1

2

√

√

∑

x ,y

(ψ(x ) +ψ(y ))2Q (x , y )
√

√

∑

x ,y

(ψ(x )−ψ(y ))2Q (x , y )

(2)
≤

1

2

Æ

2E (ψ)

√

√

√

2

�

∑

x ,y

ψ(x )2π(x )P (x , y ) +
∑

x ,y

ψ(y )2π(y )P (y , x )

�

=
Æ

2E (ψ)


ψ




2

Where in step (1) we used Cauchy-Schwarz and in step (2) we used the fact that (a+b )2 ≤ 2(a 2+b 2).
The proof of the lower bound now follows immediately. Indeed: We have just shown that for a
function ψ≥ 0,

E (ψ)


ψ




2

2

≥
h (ψ)2

2

and in section one we showed that there is a function f ≥ 0 with π{ f > 0}< 1/2 such that γ≥ E ( f )∥ f ∥2

2

,

thus in combination:

γ≥
1

2
inf

A⊆{ f >0}

Q (A, Ac )
π(A)

≥
1

2
inf

A:π(A)≤1/2

Q (A, Ac )
π(A)

=
1

2
Φ∗
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♥

Example 11.28 (Agreement with previous examples) Recall that we proved that for the LSRW
on Zn we had that trel ≍ n 2. Recalling that for the Lazy Simple Random Walk, we have that

Φ(A) =
|∂A|

2Vol(A)

it is easy to check that the smallest Φ(A) can be over all A with π(A) ≤ 1/2, corresponds to the
line segment of length n/2, which has a boundary of two vertices, and has a volume of n/2 so we
get that

Φ∗ ≍
1

n

Thus we see that the lower bound of Cheeger’s inequality is achieved up to constants here. To see
an example where the upper bound is attained, consider the LSRW on the hypercube {0, 1}n and
let the set A = {(x1, · · · , xn ) : x1 = 0}. Clearly this is just half of the hypercube and so π(A) = 1/2.
Moreover, the probability of exiting it, is the probability of x1 changing to a 1, which is of 1/2n .
Therefore Φ∗ ≤ 1/2n . We showed that γ= 1/n and so it must be that Φ∗ = 1/2n and we conclude
that the upper bound is sharp.
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11.4 Expander graphs

We have shown that when a graph has a narrow bottleneck, i.e: Φ∗(G )≪ 1, the walk mixes slowly.
Now we study the following question: how efficiently can a family of graphs avoid bottlenecks?

Definition 11.29 (Bottleneck ratio of a SRW on a graph) Let G be a graph. We denote by
Φ∗(G ) the bottleneck ratio of the simple random walk on G .

Definition 11.30 (Expander graph ) A sequence Gn = (Vn , En ) of graphs, is called (d ,α)-regular
expander family if:

• limn→∞ |Vn |=∞.

• Gn is d -regular, i.e: if for each n ∈N, and each v ∈Vn , we have that deg(v ) = d

• The bottleneck ratios satisfy Φ∗(Gn )≥α for all n .

We call the family (∆,α) expander if instead of requiring regularity on the degrees we just require
the degrees to be bounded by ∆, and we say the family is α expander if there exists some ∆ so
that the graph family is (∆,α) expander.

Proposition 11.31 (Mixing time of expanders) Let Gn be an α-expander family. Then the mixing
time of the lazy simple random walk on Gn satisfies tmix =O (log |V (Gn )|)

Main idea: From definition of Expander Graph, we have that γSRW ≥ α2/2, now use the fact that
γLSRW =

1
2γSRW and the inequality that bounds tmix above by trel and then estimate πmin.

Proof. From the lower bound in Chegger’s inequality and the assumption of α-expander, we have
that

γSRW ≥
Φ2
∗(Gn )

2
≥
α2

2

Now we note that (labelling P ′ for the lazy matrix) γLSRW = inf f with some regularity EP ′( f ) and EP ′( f ) =

�

I − P+I
2

�

f , f
�

= 1
2




(I +P ) f , f
�

= 1
2EP ( f ), we have that γSRW = 2γLSRW . Moreover, note that for a

lazy chain we have that γ∗ = γ, so by the bound on the mixing time with relaxation time we see
that

tmix
′ ≤ trel

′ log
4

πmin
≤

4

α2
log

4

πmin
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We know that the invariant distribution πn satisfies

πn (x ) =
deg(x )
2|En |

but we can estimate |En | ≤∆|Vn |/2. Indeed: the total number of edges is at most the number of
vertices times the degree of each vertex, but since doing this we double count each edge, we can
divide by 2. This gives

πmin ≥
1

∆|Vn |

so plugging back in we get that

tmix ≤
4

α2
log(4∆|Vn |) =O (log |Vn |)

♥

In fact we can show that expanders have the fastest mixing time among all regular graphs

Proposition 11.32 Let G be a bounded degree graph, then tmix ≳ log |Vn |

Proof. We recall the result from ES1 Q7, which we have cited already at the start of a previous
section: let G = (V , E ) be a finite connected graph with diameter D . Let X be a (lazy) simple
random walk on G . Then for all ε< 1/2, we have that

tmix(ε)≥D /2

Now we just aim to show that if G is a graph with bounded degrees, its diameter D satisfies
D ≳ log |V (Gn )|. This will finish the claim. We will actually prove the following:

Claim: Let G be a graph whose degrees are bounded above by ∆. Fix x ∈V , then

#{y ∈V : dist(x , y ) = r } ≤∆r .

Proof of Claim: the proof is by induction. At r = 0, it is clear, because the only vertex y ∈ V

with dist(x , y ) = 0 is x itself. Now assume the claim holds for some r = k . To show the claim
holds for r = k +1, we note that since there are at most ∆r vertices at a distance k and each of
these vertices can produce at most ∆ vertices going out to a distance k +1, the total number of
vertices at distance k +1 must be at most ∆k+1

Now we can finish the proof of the Proposition, because using our claim, the number of vertices
at a distance at most r from x will be at most 1+∆+∆2+ · · ·+∆r ≤∆r+1. However, by definition
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x

dist= k

≤∆

Figure 11.7: The diagram that says it all of the Proof of Claim of Theorem Expanders Have Fastest
Mixing Time

of diameter, the the number of vertices at a distance D from x is exactly |V (Gn )|, and so we have
that

|V (Gn )| ≤∆D+1

and rearranging we have that D ≳ log |V (Gn )| ♥
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Theorem 11.33 There exists a random graph model Gn with |Vn | ≥ n , Gn is 3-regular and for
some α> 0,

P(Φ∗(Gn )≥α)→ 1

Main idea: The proof is by construction. A bipartite graph family with Vn = An ∪Bn is specified, and
then edges are set so as to make the graph 3 regular (this might yield a multigraph). We then show
that with this construction, with a very high probability, every small enough subset of A will have a
large enough number of neighbours in B , this will show that the bottleneck ration cannot be too small.

Proof. Let our vertex set Vn = An∪Bn where An = {a1, · · · , an}, and Bn = {b1, · · · , bn}. We construct
our edge set

En = {(ai , bi ), (ai , bσ1(i )), (ai , bσ2(i )) : 1≤ i ≤ n}

Where σ1,σ2 are drawn uniformly at random from the symmetric group Sn . It is clear that this
graph will be 3-regular and that |Vn | →∞, so we will now show that

P(Φ∗(Gn )> 0.01)→ 1

We approach this by first showing that for n large enough, with high probability, every subset of
A that has size at most k = n/2, must have more than (1+δ)k neighbours. Indeed, let S ⊆ A be
any subset of A with |S |= k ≤ n/2. Recall that

N (S ) = {v ∈V \S : v ∼w for some w ∈ S}

By the pairing of vertices we have done, since ai ∼ bi for all i , we automatically have that N (S )≥ k ,
so the probability

P(|N (S )| ≤ (1+δ)k )

is less than or equal to probability that if we pick any set of surplus δk vertices in B , the edges
specified by σ1 and σ2 all fall within that set or within the k vertices that are already linked. There
are

�

n
δk

�

ways to specify a set of δk surplus edges from B , and now let’s calculate the probability
that the edges specified by σ1 all fall within either this new set of size δk , or back in the vertices
that are already linked. This is easy to compute, simply

�

k+δk
k

�

�

n
k

�

(Remember that σ1 is specifying k edges of S). Therefore, since σ2 is an iid copy, we conclude
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that

P(|N (S )| ≤ (1+δ)k )≤
�

n

δk

�

��k+δk
k

�

�

n
k

�

�2

Now by union bound:

P(for some S , |S | ≤ n/2 and |N (S )| ≤ (1+δ)k )≤
n/2
∑

k=1

�

n

k

��

n

δk

�

��k+δk
k

�

�

n
k

�

�2

By some magic (ES3), it can be shown that this probability tends to zero as n →∞ for δ small
enough, so

P (any S ⊆ A, |S | ≤ n/2, has that |N (S )|> (1+δ)k )→ 1

We now finish by showing that on the event

�

any S ⊆ A, |S | ≤ n/2, has that |N (S )|> (1+δ)k
	

we have that Φ∗(Gn )>δ/2. Recall that (since |Vn |= 2n):

Φ∗(Gn ) = min
S⊆Vn ,|S |≤n

|N (S )|
|S |

so we are going to start by picking any S ⊆ Vn with size |S | ≤ n . Let A′ = A ∩S and B ′ = B ∩S ,
without loss of generality we can assume |A′| ≥ |B ′|. We distinguish between two cases

• If |A′| ≤ n/2: then we can apply the above argument, and see that |N (A′)| > (1+ δ)|A′|.
Therefore A′ has more than

(1+δ)|A′| − |B ′|

neighbours in B \B ′, and since |A′| ≥ |S |/2 (because |A′| ≥ |B ′| wlog), then

(1+δ)|A′| − |B ′| ≥δ|S |/2

in other words, there are more than δ|S |/2 edges going from S to S c , so Φ(S )≥δ/2.

• If |A′| > n/2, then choose a subset A′′ ⊆ A′ of size ⌊n/2⌋, so we can apply the hypothesis
again, and deduce that A′′ has more than δ|S |/2 neighbours in B \B ′, which in turn obviously
implies that A has more than that amount, and as such the amount of edges going from S

to S c is once again more than δ|S |/2 , so we reach the same conclusion.

♥
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Remark 11.34 We have shown a family of expander graphs exists, but the graphs we have
constructed are multigraphs, it can be shown that a family of regular graphs can also be obtained
by performing some minor modifications to our construction. But I shall not include this proof.
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Chapter 12

Spectral profile and isoperimetric profile

12.1 Spectral Profile

In this section we will define the spectral profile, a generalisation of the Poincaré constant. The idea is
that the definition of the Poincaré constant takes into account all (non-constant) functions on the state
space to R, but perhaps a more detail inspection can be obtained by restricting to functions which are
supported on some set of π measure πmin < r ≤ 1. We will see how we will obtain analogous inequalities
for the mixing times, which will be tighter. In particular, we have the corresponding inequalities

Poincaré Constant Theme Spectral Profile

�

Varπ[P ∗ f ]≤ (1−γ(P P ∗))Varπ[ f ]
� Variational

Contraction

�

Varπ[P ∗ f ]≤
�

1− 1
2ΛP P ∗

�

4(Eπ[ f ])2
Varπ[ f ]

��

Varπ[ f ]
�

�

(d2(t ))2 ≤ (1−γ(P P ∗))2 1
πmin

� �

L 2
�

D i s t a n c e
�

d2(t )≤ 4
VP P ∗ (t /2)

�

�

tmix(ε)≤ 2
γ(P P ∗) log

�

1
2ε
p
πmin

��

Mixing Time
�

tmix
(∞)(ε)≤ 2

 

∫ 4/ε

4πmin

d u
αuΛ(u )

£�

Table 12.1: Comparison of Poincaré Constant and Spectral Profile Equations by Theme

Definition 12.1 Let P be a transition matrix, and let r ≥πmin, the spectral profile ΛP (r ) is given
by

ΛP (r )≡Λ(r ) = inf
πmin≤π(A)≤r

λP (A)

Where λP (A) is defined by

λP (A) = inf
f ∈C0+(A)

E ( f )
Varπ( f )

and C +0 (A) = { f ≥ 0 : supp( f )⊆ A, f non-constant}

125
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Remark 12.2 We have the following two observations

• ΛP (r ) ≥ γ(P ): this is because in the Poincaré constant, the infimum is taken over all non-
constant functions, whereas when computing ΛP (r ) we take the infimum of an analogous
quantity to the Poincaré constant that takes into account a smaller subset of functions.

• Λp (r ) is non-increasing in r : this is obvious because if r is larger, then when taking the
infimum to compute ΛP (r ) there are more options to include and so the infimum cannot be
larger.

Lemma 12.3 (Variational contraction: Spectral profile, �) For a non-negative function f :Ω→R+,
we have that

E ( f )
Varπ( f )

≥
1

2
ΛP

�

4Eπ[ f ]2

Varπ[ f ]

�

which in turn implies a variational contraction result:

Varπ[ f ]−Varπ[P ∗ f ]≥
1

2
Varπ[ f ]ΛP P ∗

�

4Eπ[ f ]2

Varπ[ f ]

�

Main idea: Show that E ( f )≥Varπ[( f −c )+]Λ(π{ f > c }) and then show that Varπ[( f −c )+]≥Varπ[ f ]−
2c Eπ[ f ]. Then use Markov’s inequality wih c = Varπ[ f ]

4Eπ[ f ]

Proof. Let us show the first inequality. First we have that for any 0≤ c ≤max f ,

E ( f ) (1)= E ( f − c )
(2)
≥ E (( f − c )+)
(3)
≥ Varπ[( f − c )+] inf

g∈c +0 {x : f (x )>c }

E (g )
Varπ[g ]

(4)
≥ Varπ[( f − c )+]Λ(π{ f > c }).

Where (1) comes from the fact that that E ( f ) is translation invariant (since E ( f ) =
∑

x ,y { f (x )−
f (y )}2π(x )P (x , y )). Step (2) comes from the fact that (a − b )2 ≥ (a+ − b +)2, (and so plugging
in the expression of E ( f ) in the previous gray comment gives step (2)). Step (3) comes from
the fact that ( f − c )+ is a non-negative function supported on the set where f (x ) > c . Step (4)
comes from the fact that λ(A)≥Λ(π(A)) (as Λ(r ) takes the infimum over all sets of mass at most r ).

Now if a , b ≥ 0, then naturally we have that ((a − b )+)2 ≥ a 2−2b a and (a − b )+ ≤ a . (Just check
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cases a ≥ b or b > a ) Now we compute

Varπ[( f − c )+] := Eπ[(( f − c )+)2]−
�

Eπ[( f − c )+]
�2

≥ Eπ[ f
2]−2c Eπ[ f ]−

�

Eπ[ f ]
�2

≥Varπ[ f ]−2c Eπ[ f ]

And so by choosing c = Varπ[ f ]
4Eπ f (Which can be easily checked - by expanding it - that it is no larger

than fmax . Therefore, putting this all together:

E ( f , f )
(1)
≥ (Varπ[ f ]−2c Eπ[ f ])Λ

�

π{ f > c }
�

(2)
≥ (Varπ[ f ]−2c Eπ[ f ])Λ

�

Eπ[ f ]
c

�

(3)
=

1

2
Varπ[ f ]Λ

�

4(Eπ[ f ])2

Varπ[ f ]

�

Where step (1) comes from mashing all the inequalities together, step (2) comes from the fact that
π{ f > c } ≤ Eπ[ f ]

c by Markov’s inequality, and the fact that Λ(r ) is non-increasing (taking infimum
over more things). Step (3) comes from the definition of c . Now the second statement follows
immediately:

Varπ[ f ]−Varπ[P ∗ f ]
(1)
=



f , f
�

−



P ∗ f , P ∗ f
�

(2)
=



(I −P P ∗) f , f
�

= EP P ∗( f )

Where step (1) comes from the fact that Eπ[ f ] = Eπ[P ∗ f ], and step (2) comes from the fact that
P ∗ is the adjunct operator of P . Now applying the inequality obtained above on E finishes the
claim. ♥

Theorem 12.4 (Bound on L 2 distance via spectral profile) For a chain Q with invariant distri-
bution µ, define VQ (t ) to be the quantity defined by

∫ VQ (t )

4µmin

d u

uΛQ (u )
= t

Then for a Markov chain P with P ∗P and P P ∗ both irreducible, we have that

(d2(t ))
2 ≤

4

VP P ∗(t /2)
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Main idea: We know that we can express d2(t )2 as Varπ(P ∗t fx ). This latter quantity can be thought
of as a function of t . Extending linearly allows us to look at the value of the derivative. From this we
can rearrange and integrate over time to obtain a t , and remove this derivative. Careful manipulation
gives the result.

Proof. To bound d2(t ) we study






P t (x ,·)
π(·) −1







2

2
which can be expressed as a variance, let us go over

the computation again for the sake of clarity, recall that fx =
1({x })
π(x ) :









P t (x , ·)
π(·)

−1









2

2

=
∑

y ∈Ω

�

P t (x , y )
π(y )

−1
�2

π(y )

=
∑

y ∈Ω

�

P t (x , y )
π(y )

�2

π(y )−1 (Expanding the bracket)

=
∑

y ∈Ω

�

P ∗t (y , x )
π(x )

�2

π(y )−1 (Time reversing)

=
∑

y ∈Ω

�

P ∗t fx

�2
π(y )−1 (Previous computation)

=Varπ[P ∗t fx ] (Since Eπ[P
∗t fx ] = 1)

Then in view of Lemma 12.3 (Variational contraction for spectral profile) we have that

Varπ
�

P ∗(P ∗t fx )
�

−Varπ
�

P ∗t fx

�

≤−
1

2
Varπ(P ∗t fx )ΛP P ∗

�

4

Varπ(P ∗t fx )

�

Now we let Ix (m ) = Varπ[P ∗m fx ], and we note that Ix is non-increasing (due to variational
contraction). We can extend Ix linearly so that for t ∈ (m , m +1)

Ix (t ) = Ix (m ) + (t −m )(Ix (m +1)− Ix (m ))

Therefore for t ∈ (m , m +1), using the variational contraction Lemma again we have that

I ′x (t ) = Ix (m +1)− Ix (m )≤−
1

2
Ix (m )ΛP P ∗

�

4

Ix (m )

�

Now since t > m , we have that Ix (t ) ≤ Ix (m ), and similarly ΛP P ∗(4/Ix (m )) ≥ ΛP P ∗(4/Ix (t )), so
putting it all together we have that

I ′x (t )≤−
1

2
Ix (t )ΛP P ∗

�

4

Ix (t )

�
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Rearranging gives
∫ t

0

I ′x (t )

Ix (t )ΛP P ∗
�

4
Ix (t )

�d t ≤−
1

2
t

Performing the substitution u = 4/Ix (t ) to clear the argument of ΛP P ∗ gives that

1

2
t ≤

∫ 4/Ix (t )

4/Ix (0)

d u

uΛP P ∗(u )

Now it is easy to verify that

Ix (0) =Varπ( fx ) =
1

π(x )
−1≤

1

πmin
−1≤

1

πmin

So we have that
1

2
t ≤

∫ 4/Ix (t )

4πmin

d u

uΛP P ∗(u )

But recall that by definition of VP P ∗

∫ V (t /2)

4πmin

d u

uΛP P ∗(u )
=

t

2
≤
∫ 4/Ix (t )

4πmin

d u

uΛP P ∗(u )

Now comparing the integrals, and using the fact that the integrand is non-negative, we immediately
get that

V (t /2)≤ 4/Ix (t )

Rearranging and using the definition of Ix (t ) gives:

VP P ∗(t /2)≤
4

Ix (t )
=

4

Varπ(P ∗t fx )
=

4

(d2(t )2)

This gives the desired result.
♥

Remark 12.5 This computation was long, but in summary, we know that in time

∫ 4/ε

4πmin

d u

uΛP P ∗(u )

The L 2 distance drops down to ε. Since L 2 distance upper bounds L 1 (and hence total variation)
distance, we also get a bound on the total variation distance, however this is only useful if we can
find the spectral profile of P P ∗ and we don’t know whether this is easier to do than finding the
spectral profile of P . The following result gives a way to bound mixing time if we can only compute
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the spectral profile of P .

Corollary 12.6 (Mixing time and spectral profile) Suppose that there exists a constant α> 0 for
which P (x , x )≥ α for all x (for example, when P is α-lazy), then for ε > 0, the L∞ mixing time
satisfies

tmix
(∞) ≤ 2

¢

∫ 4/ε

4πmin

d u

αuΛP (u )

¥

≤ 2

¢

∫ 4/M

4πmin

d u

αuΛP (u )

¥

+2
¡

1

αγ(P )
log(M /ε)

¤

Main idea: First we note a relation between d∞ and d2. Since we know by the previous theorem that
d2 depends on VP P ∗, we wish to find a comparison between VP and VP P ∗. This can be done because
the simple observation that P ∗(x , x ) = P (x , x ) gives a comparison between EP P ∗ and EP .

Proof. Recall that d∞(2t ) can be expressed as

�

�

�

�

P 2t (x , y )
π(y )

−1

�

�

�

�

=

�

�

�

�

�

∑

z∈Ω

P (x , z )P (z , y )
π(y )

−1

�

�

�

�

�

=

�

�

�

�

�

∑

z∈Ω

�

P (x , z )
π(z )

−1
��

P (z , y )
π(y )

−1
�

π(z )

�

�

�

�

�

(Standard trick)

=

�

�

�

�

�

∑

z∈Ω

�

P (x , z )
π(z )

−1
��

P ∗(y , z )
π(z )

−1
�

π(z )

�

�

�

�

�

(Time reversal)

≤


P t (x , ·)−π




2



P ∗t (y , ·)−π




2
(Cauchy-Schwarz)

Using the previous Theorem, which allows us to characterise L 2 distance in terms of VP P ∗ we get
that

�

�

�

�

P 2t (x , y )
π(y )

−1

�

�

�

�

≤
√

√ 4

VP P ∗(t /2)
4

VP ∗P (t /2)

With this in mind, we wish to relate VP P ∗ (and VP ∗P ) to VP . This is done by comparing the Dirichlet
forms, and in turn, this can be done first noting that since P ∗(x , x ) = P (x , x ) ≥ α, we see that
(This is a trick that appears on ES2)

P P ∗(x , y )π(x ) =
∑

z∈Ω
P (x , z )P ∗(z , y )π(x )

≥
�

P (x , x )P ∗(x , y ) +P (x , y )P ∗(y , y )
�

π(x )

≥α
�

P (y , x )π(y ) +P (x , y )π(x )
�
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and so we can plug into the Dirichlet form:

EP P ∗( f )≥α
1

2

∑

x ,y

( f (x )− f (y ))2
�

P (x , y )π(x ) +P (y , x )π(y )
�

= 2αEP ( f ) (Splitting and relabelling indices)

This comparison of the Dirichlet form automatically gives a comparison on the Spectral profile:
ΛP P ∗(r )≥ 2αΛP (r ). Now using the definition of VP (αt ) we see that

αt =

∫ VP (αt )

4πmin

d u

uΛP (u )
≥ 2α

∫ VP (αt )

4πmin

d u

uΛP P ∗(u )

i.e: we have that
t

2
≥
∫ VP (αt )

4πmin

d u

uΛP P ∗(u )

which means (since the integrand is non-negative) that

VP P ∗(t /2)≥V (αt )

Of course a similar argument implies the same for VP ∗P . Now plugging back into the expression
that related d∞(2t ) to VP P ∗ and VP ∗P gives that

�

�

�

�

P 2t (x , y )
π(y )

−1

�

�

�

�

≤
4

VP (αt )

And so if we require that
�

�

�

�

P 2t (x , y )
π(y )

−1

�

�

�

�

≤ ε

then we can require that
4

VP (αt )
≤ ε

and this is equivalent to asking that

t ≥

¢

∫ 4/ε

4πmin

d u

αuΛ(u )

¥

as required. ♥

We now have found a general upper bound on the mixing time, but the question remains as to whether
this will give any better bounds on the mixing time compared to anything we had before, and we also
have the problem of computing an infimum over all non-negative functions supported on a certain
set, this clearly doesn’t seem very computationally friendly. It turns out that we have a spectral
representation of the spectral profile, which much in a similar manner to how the spectral gap, which
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could easily be computed by finding eingenvalues, was the same as the Poincaré constant for reversible
chains, will give us a way to estimate Λ(u ) by looking at eigenvalues of a certain matrix.

Lemma 12.7 (Spectral representation of the spectral profile ) For any A ⊆Ω and transition matrix
P , we define

λ0(A) = inf
f ∈c0(A)

EPA
( f )



 f




2

2

PA(i , j ) = P (i , j ) if i , j ∈ A, 0 otherwise.

Where c0 = { f : supp( f )⊆ A, f non-constant}. For every chain we have that

λ0(A)≤λ(A)≤
1

1−π(A)
λ0(A)

Moreover, for r ≥πmin, define Λ0(r ) = infπ(A)≤r λ0(A). Then for a reversible chain we have that

Λ0(r )≤Λ(r )≤
1

1− r
Λ0(r )

and in the reversible case, we also have that λ0(A) is the smallest eigenvalue of the matrix I −PA

Proof. ES3 ♥

We have another useful result for computing the spectral profile.

Lemma 12.8 (Spectral profile is the infimum over functions with connected support) Suppose
that for a set A ⊆Ω we have the decomposition into connected components

A =
k
⋃

i=1

Ai

Then λ(A) =mini≤k λ(Ai ).

Proof. From definition of λ, it is clear that λ(A) ≤ λ(Ai ) and as such λ(A) ≤mini≤k Ai . We now
need to show that λ(A)≥mini≤k λ(Ai ). Since by assumption the (Ai )s are disjoint, we have that for
any function f defined on A, f =

∑k
i=1 f 1(Ai )≡

∑k
i=1 fi . From this we can compute the ingredients

needed to compute λ(A):
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• Variance:

Varπ( f ) =Varπ

�

k
∑

i=1

fi

�

= E





�

k
∑

i=1

f 1(Ai )

�2


−

�

k
∑

i=1

E
�

f 1(Ai )
�

�2

= E







k
∑

i=1

f 2
i +

∑

i ̸= j

f 2 1(Ai )1(A j )
︸ ︷︷ ︸

δi , j






−

�

k
∑

i=1

E
�

f 1(Ai )
�

�2

=
k
∑

i=1

E
�

f 2
i

�

−
k
∑

i=1

E
�

fi

�2−
∑

i ̸= j

E
�

fi

�

E
�

f j

�

︸ ︷︷ ︸

≥0

≤
k
∑

i=1

Varπ( fi )

• Dirichlet Form: it is clear that by linearity of inner product on first entry: E ( f ) =
∑k

i=1E ( fi )

Then putting it all together

λ(A) = inf
f ∈c +0 (A)

∑k
i=1E ( fi )

Varπ( f )

Using the fact that for any fi λ(Ai )≤
E ( fi )

Varπ( fi )
, we have that

λ(A)≥ inf
f ∈c +0 (A)

∑k
i=1λ(Ai )Varπ( fi )

Varπ( f )
≥ inf

i≤k
λ(Ai )

�

inf
f ∈c +0 (A)

∑k
i=1 Varπ( fi )
Varπ( f )

�

≥ inf
i≤k
λ(Ai )

♥

We will now revisit the example of the lazy random walk on Z/nZ but through the lens of the Spectral
Profile.

Example 12.9 (LSRW on Z/nZ revisited) The Lazy Simple Random Walk on Z/nZ has a mixing
time of

tmix ≲ n 2

Proof. We are going to use the previous results. In particular, by Lemma 12.8, we only need to
bound λ(A) for connected sets A, and by Lemma 12.7, it suffices to bound λ0(A) for such sets.
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Since connected sets of the cycle are simply lines, the matrix PA looks like

PA =













1/2 1/4 0 · · ·
1/4 1/2 1/4 · · ·

0 1/4 1/2 · · ·

0 0 1/4
...













It is an exercise in linear algebra that the smallest eigenvalue of the matrix I −PA is given by

λ0(A) =
1

2

�

1− cos
π

|A|+1

�

Therefore

Λ0(r ) = inf
π(A)≤r
· · ·= inf

|A|≤r n

1

2

�

1− cos
π

|A|+1

�

=
1

2

�

1− cos
π

⌊r n ⌋+1

�

≍
1

(r n )2

And using Lemma 12.7, we see Λ(r )≳ 1
(r n )2 , so using Corollary 12.6 we can bound the mixing time,

using M = 8 and α= 1/2 (lazy chain) by

tmix(ε)≤ tmix
(∞)(ε)≲

∫ 1/2

4/n

n 2u 2

u
d u +n 2 log(1/ε)≲ n 2 log(1/ε)

♥

Of course, we already knew from other techniques that for the LSRW on Z/nZ, the mixing time was
O (n 2), now we see a nice application of this, which is that we can actually use the Spectral profile to
bound the mixing time of a LSRW on a modified cycle, i.e. a cycle with more edges added.

Example 12.10 (Mixing time of modified cycle ) Consider a LSRW on Z/nZ, to which we add
any edges we want, but such that any vertex has degree at most ∆ > 2. Then we also have that
tmix(ε)≲ n 2 log(1/ε)

Main idea: Here is the overview: let Λ and eΛ be the spectral profiles of the LSRW on Gn = Z/nZ

and the modified graph respectively, and define γ and eγ for the spectral gaps respectively. We are
going to show that eΛ(r ) ≳ Λ(r ) and that eγ ≳ γ. From this, Theorem 12.6 and the comoputatio nof
the previousu example, will tell us that gtmix

(∞)
= O (n 2). To compare the quantities we are interested

in, we will exploit the fact that we can give bounds on eπ(x ) and will allow us conclude eE ≳ E and
Var

eπ[ f ]≲Varπ[ f ], then we will compare the spectral profiles and the spectral gaps.
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Proof. Let P be the LSRW on the normal cycle, and eP be the LSRW on the modified cycle. We
are going to compare the spectral profiles of these two random walks by comparing variances and
Dirichlet forms. First of all, we note the following bounds on the invariant distribution eπ:

1

∆n
≤ eπ(x )≤

∆

n

Indeed: since ßπ(x ) = deg(x )
2|E | we can on the one hand say that deg(x ) ≤ ∆ and |E | ≥ n (this is an

obviously brutal bound, but its all we need), and from this the upper bound follows. For the lower
bound, we note that deg(x )≥ 2 and |E | ≤∆n . From this the lower bound follows. It is also easy
to see that eP (x , y )≥ 1/(2∆) (since x has at most ∆ neighbors. With this in mind, we note that

∆2
eπ(x ) eP (x , y )≥

1

2n
≥π(x )P (x , y )

and so we can compare Dirichlet forms:

2E ( f ) =
∑

x ,y

π(x )P (x , y )( f (x )− f (y ))2 ≤∆2
∑

x ,y

eπ(x ) eP (x , y )(( f (x )− f (y ))2 = 2∆2
eE ( f )

Now we can compare variances, we recall that we have a technique for comparing variances with
respect to two measures π and eπ, but let me repeat the argument because these calculations need
to be really nailed down

Var
eπ( f ) =

∑

x

eπ(x )
�

f (x )−E
eπ[ f ]

�2

≤
∑

x

eπ(x )( f (x )−Eπ[ f ])
2 (Minimising argument, see 11.11 )

=
∑

x

eπ(x )
π(x )

π(x )( f (x )−Eπ[ f ])
2

≤max
x

�

eπ(x )
π(x )

�

Varπ( f )

And from the upper bound on eπ(x ), we see that

max
x

eπ(x )
π(x )
≤∆

So putting into the definition of eλ(A), we get that

eλ(A) = inf
···

eE ( f )
Var

eπ( f )
≳λ(A)
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Now we can compare spectral profiles and since eπ(A)≥ 1
∆π(A), we have that

{eπ(A)< r } ⊆ {π(A)<∆r }

we see that
eΛ(r ) = inf

eπ(A)<r
eλ(A)≳ inf

π(A)<∆r
λ(A) =Λ(∆r )≳

1

(n r 2)

Now all left for us to be able to apply Theorem 12.6 is to compare Dirichlet constants eγ and γ,
but using the definition of the Poincaré constant and the bounds we have derived on the Dirichlet
form and the variance it follows that eγ≳ γ, so using now finally Theorem 12.6, it follows that the
mixing time of this modified chain is also O (n 2)

♥

Remark 12.11 This is finally an example of where the spectral profile provides a better bound
than the previous techniques, because if we relied only on comparing Poincaré constants, we would
have had to use Theorem 11.8 and we would have had to pay an extra price of log(1/

p
πmin)

Before moving on, we include a summary of this chapter so far:
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1. We define for a subset A ⊆ Ω, λ(A) = inf f ∈C +0 (A)
E ( f )

Varπ( f ) . Where C +0 (A) is the set of non-
negative non-constant functions supported on A. We then define

Λ(u ) = inf
π(A)≤u

λ(A),

this should be seen as a generalisation of the Poincaré constant.

2. In Lemma 12.3 we see an inequality that is analogous to the Poincaré inequality of the
Spectral techniques section:

Varπ( f )−Varπ(P ∗ f )≥
1

2
Varπ( f )Λ

�

4Eπ( f )2

Varπ( f )

�

3. By now considering a piece-wise linear extension of Varπ(P ∗t fx ), where fx (·) = 1{x }/π(·),
and using this variational contraction, we reach the following conclusion: if we let V (t ) be
the number for which

t =

∫ V (t )

4πmin

d u

uΛ(u )
,

then d2(t )2 ≤ 4
VP P ∗ (t /2)

.

4. By now inspecting d∞(2t ), we see that if the chain is lazy (we use the lazyness to compare
Dirichlet forms of P P ∗ and P , we have that

tmix(ε)≲
∫ 4/ε

4πmin

d u

uΛ(u )
≲
∫ 4/M

4πmin

d u

uΛ(u )
+

1

γP
log(M /ε).

5. For this to be useful we need to be able to control Λ(u ), but taking infimum over sets
of functions is not easily done, so we have spectral characterisation: if we let λ0(A) =

inf f ∈C0(A)
EPA ( f )

∥ f ∥2

2

, where PA(i , j ) = P (i , j )1{i , j ∈ A}, and define Λ0(r ) = infπ(A)≤r λ0(r ), we have

that
Λ0(r )≤Λ(r )≤

1

1− r
Λ0(r ).

Moreover, λ0(A) is also the smallest eigenvalue of the transition matrix I −PA.

6. Finally, it is easy to show that to compute the infimum Λ0(r ) = infπ(A)≤r λ0(r ), it suffices to
consider connected sets, this was the content of Lemma 12.8.

We now learn about another way of bounding the spectral profile, that instead of relying on comparing
Dirichlet forms and variances, relies on the underlying geometry of the chains. This is quite similar
to how the Bottleneck ratio bounded the Poincaré constant through Cheeger’s inequality, and in fact,
this new technique, the Isoperimetric Profile, is nothing but a direct generalisation of the Bottleneck
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ratio, and it will also lead to a somewhat general version of Cheeger’s inequality.

12.2 Isoperimetric Profile

Recall how the Bottleneck ratio was defined as the worst possible conductance of any non-empty set
in the chain, this of course admits an immediate generalisation, very similar in spirit to the definition
of the Spectral profile:

Definition 12.12 (Isoperimetric profile) Let P be a transition matrix, the Isoperimetric profile is
the function Φ∗ : [πmin,∞)→R given by

Φ∗(r ) =







infπmin≤π(A)≤r Φ(A) r ≤ 1/2

Φ∗(1/2) r > 1/2

Here we see the corresponding result to Cheeger’s inequality for the Isoperimetric profile

Theorem 12.13 (Generalised Cheeger’s Inequality) For r ∈ [πmin, 1/2), we have that

Φ2
∗(r )
2
≤Λ(r )≤

Φ∗(r )
1− r

Proof. [Finish this section once ES3 falls] ♥

The following corollary, which follows from the lower bound of Λ(r ) given by the Generalised Cheeger’s
Inequality and the bound of the Poincaré constant by the Spectral profile and then bounding this by
the Isoperimetric profile, gives us a useful way to bound mixing times

Corollary 12.14 (Mixing time and Isoperimetric Profile) Suppose that for some α > 0 we have
that P (x , x )≥α (as is the case for α-lazy chains), then for ε> 0, the L∞ mixing time (and hence
the rest of mixing times) satisfy

tmix(ε)≤ tmix
(2)(ε)≤ tmix

(∞)(ε)≤ 2

¢

∫ 4/ε

4πmin

2d u

αuΦ2
∗(u )

¥
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And in a similar spirit to Theorem 12.6, we also have that

tmix
(∞) ≤ 2

¢

∫ 4/M

4πmin

2d u

αuΦ2
∗(u )

¥

+2

�

2

αΦ2
∗

log(M /ε)

�

Proof. The proof follows by lower bounding the spectral profile and Poincaré constant in Corollary
12.6 by the isoperimetric profile and the bottleneck ratio as per Generalised Cheeger’s inequality
and Cheeger’s inequality.

♥

An example of an application of this Theorem is a bound on the mixing time of a special class of
graphs

Example 12.15 (Small set expander mixing time) A family of graphs Gn is called a (∆,α, c )-small
set expander family if for all n we have that the maximal degree in Gn is ∆ and that Φ∗(c ) ≥ α.
Consider a LSRW on a small set expander family. The mixing time satisfies

tmix
(n )(ε)≲ log n + trel

(n ) log(1/ε)

Proof. We apply the Mixing-time and Isoperimetric Profile result, which states that for any M > 0,

tmix
(n )(ε)≲

∫ 4/M

4πmin

d u

uΦ2
∗(u )

+
1

γ(P )
log(M /ε)

Therefore, by the small set expander property, we have some c > 0 such that Φ∗(c ) ≳ 1, and as
the chain is lazy and reversible, 1/γ(P ) is actually trel, so by combining all of this, we have that
setting M = 4/c :

tmix
(n )(ε)≲

∫ c

4πmin

d u

u
+ trel

(n ) log(1/ε)

= log(c )− log(4πmin) + trel log(1/ε)

≲ log n + trel log(1/ε)

Where we have used that π(x ) = deg(x )
2|E | ≍

1
n

♥

As a final application of the techniques involving the Isoperimetric profile, we give bounds on the
transition probabilities of LSRW on bounded degree graphs
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Proposition 12.16 (Transition probabilities for random walks) Let G be a connected graph on
n vertices with degree bounded by ∆ and let P be the transition matrix of a LSRW on G . Then
for all t ∈N, all vertices x and y we have that

|P t (x , y )−π(y )|≲
∆2

p
t

Proof. We first show a bound on the L∞ mixing time, and then apply it to get the desired bound.
To bound the L∞ mixing time, we will employ the Isoperimetric Profile bound, which will become
useful for the simple structure of this graph will make it feasible to obtain appropriate bounds for
Φ∗(r ). We start by proving a lower bound on Φ∗(A), the bottleneck ratio, for a set A. For this we
will employ a brutal bound.

Φ∗(A) =
Q (A, Ac )
π(A)

≥Q (A, Ac ) =
|∂A|

2E (A)
≥

1

2E (A)

Where the first inequality comes from brutally noting that π(A) ≤ 1, the middle equality is by
a computation done in a previous example, and the final inequality comes from the fact that
since the graph is connected, any set A will have at least one edge coming out of it. Also
E (A) :=

∑

x∈A deg(x ). We can now relate Φ(A) to π(A). Indeed: π(A) = E (A)
2|E | , so by rearranging we

have that
Φ∗(u ) = inf

π(A)≤u
Φ(A)≥

1

4π(A)|E |
=

1

4u |E |

With this in mind, we can plug this into the Isoperimetric Profile Integral, and see that for M ≥ 8

(This is so that what’s going into Φ∗ is at most 1/2)

tmix
(∞)(M )≲

∫ 4/M

4/πmin

d x

xΦ∗(x )2
≲
∫ 4/M

4/πmin

d x

x
�

1
∆n x

�2 ≲
∆2n 2

M 2

This last inequality is because πmin ≍ 1
n so it doesn’t really matter. From this, we have that there

is some constant C with
tmix

(∞)(M )≤C
∆2n 2

M 2

So for a fixed time t , we have that choosing

M =
2∆n
p

C
p

t

Gives, without loss of generality (Just choose C larger if needed), that M ≥ 8, and that

t = 4C
∆2n 2

M 2

∆2n 2

M 2
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Which means that


P t (x , ·)−π(·)




∞ ≤
2∆n
p

C
p

t

From this, we can employ the definition of L∞ distance, and see that for any x , y , we have that

�

�P t (x , y )−π(y )
�

�≤π(y )
2∆n
p

C
p

t

Now, noting that this being a random walk on a graph we have that for all x :

π(x ) =
deg(x )

2|E |
≤
∆

n

We can rewrite the above as

�

�P t (x , y )−π(y )
�

�≤
2∆2
p

C
p

t
≲
∆2

p
t

♥

The summary for this second part of the chapter is shorter.

1. If we define Φ∗(u ) = infπ(A)≤u Φ(A), where Φ(A) =Q (A, Ac )/π(A) is the usual bottleneck ratio,
we then achieve a generalised Cheeger Inequality:

Φ2
∗(u )
2
≤Λ(u )≤

Φ∗(u )
1−u

.

This, and in particular the lower bound, gives us a way, in combination with the earlier
part of this chapter, to bound mixing times using the geometry of the chain:

tmix(ε)≲
∫ 4/ε

4πmin

d u

uΦ∗(u )
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Chapter 13

Geometric Techniques

13.1 Varopoulos-Carne bound

Definition 13.1 (Distance of states ) Let x , y ∈Ω be two states of a Markov chain P . We define
the distance as

dist(x , y ) =min{t : P t (x , y )> 0}

Remark 13.2 (Distance of states is a metric) The function dist(x , y ) is a metric if the chain is
reversible.

Proof. Non-negativity is obvious, if the chain is reversible, then

P t (x , y ) =
π(y )
π(x )

P t (y , x )

and since π is always positive, we have that P t (x , y ) > 0 if and only if P t (y , x ) > 0 which means
that dist(x , y ) and dist(y , x ) take infimum over the same set. As for the triangle inequality, all
we need to show is that t := dist(x , y ) + dist(y , z ) has that P t (x , z ) > 0, then it will follow that
t ≥ dist(x , z ). For this:

P t (x , z ) =
∑

w

P dist(x ,y )(x , w )P dist(y ,z )(w , z )

= P dist(x ,y )(x , y )P dist(y ,z )(y , z )
︸ ︷︷ ︸

>0

+
∑

w ̸=y

P dist(x ,y )(x , w )P dist(y ,z )(w , z )

︸ ︷︷ ︸

≥0

> 0

♥

We would like some control on how far the walk gets after t steps, and for this we will show a bound on

143
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P t (x , y ) in terms of dist(x , y ). For proving a general result it will be useful to first study the following
bound for a SRW on Z.

Proposition 13.3 (Distance of a SRW on Z from origin) Let X t be a SRW on Z from the origin.
Then for all t , d ∈N, we have that

P(|X t | ≥ d )≤ 2 exp

�

−
d 2

2t

�

Main idea: Use a Chernoff bound

Proof. We first note that since X t is symmetric, we have that P[|X t | ≥ d ] = P[X t ≥ d ] +P[X t ≤
−d ]=2P[X t ≥ d ], and so to compute this quantity we can use a Chernoff Bound:

P[X t ≥ d ] =P [exp(λX t )≥ exp(λd )]

≤ exp(−λd )E[exp(λX t )] (Markov’s Inequality)

= exp(−λd )E

�

exp

�

λ
t
∑

i=1

ηi

��

= exp(−λd )
t
∏

i=1

E[exp(ληi )]

= exp(−λd )
�

exp(λ) +exp(−λ)
2

�t

(!)
≤ exp(−λd )exp

�

λ2t

2

�

(!!)
≤ exp

�

−
d 2

2t

�

Where step (!) comes from the following useful found:

exp(λ) +exp(−λ)
2

=
∞
∑

i=0

λ2k

(2k )!
≤
∞
∑

i=0

λ2k

2k k !
= exp

�

λ2

2

�

where the inequality comes from the fact that (2k )! = (2k )(2k − 1) · · ·k ! ≥ 2× 2× · · · × k !. Step (!!)
simply comes from minimising −λd +λ2t /2, which is minimised for λ= d /t . ♥

We now have a general result for transition probabilities of reversible chains
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Theorem 13.4 (Varopoulos-Carne bound) Let P be reversible with invariant distribution π. Then
for all states x , y and all t ∈N, we have that

P t (x , y )≤
√

√π(y )
π(x )

P(|Zt | ≥ dist(x , y ))≤ 2

√

√π(y )
π(x )

exp

�

−
dist(x , y )2

2t

�

Where Zt is a SRW on Z started at the origin.

Main idea: We use Chebyshev’s polynomials, which give the key result that

z t =
t
∑

k=0

P[|Zt |= k ]qk (z )

Then we can use this polynomial expression for P instead of z , and then finally show that

qk (P )(x , y )≤
√

√π(y )
π(x )

This comes from the fact that whenever a polynomial h has that h [−1, 1]⊆ [−1, 1], we have that




h (P ) f , g
�

≤


 f




2



g




2

Then we can use h = qk , f = 1x and g = 1y and the claim follows.

Proof. Define the Chebyshev polynomials {qk}k≥0:

qk+1(z ) := 2z qk (z )−qk−1(z ) k ≥ 1,

With initial conditions q0(z ) = 1 and q1(z ) = z . We are going to show the following: if {Zt } is a
simple random walk on Z, then as polynomials, we have the equality

z t =
t
∑

k=0

P[|Zt |= k ]qk (z ).

We recall the trigonometric identity

2 cos(kθ )cos(θ ) = cos((k +1)θ ) + cos((k −1)θ )
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which shows that qk (cosθ ) = cos(kθ ) for all θ ∈R and k ∈N. Now we observe that

(cosθ )t =
�

exp(iθ ) +exp(−iθ )
2

�t

= E[exp(iθZt )] = E[cos(θZt )]+E[i sin(θZt )]

=
t
∑

k=−t

P[Zt = k ] (cos(θk ) + i sin(θk ))

(!)
=

t
∑

k=0

P[|Zt |= k ]cos(θk ) =
t
∑

k=0

P[|Zt |= k ]qk (cosθ )

For step (!), we note that since sin(x ) = −sin(x ), all the sin(kθ )’s in the sum will disappear,
similarly, since cos(−x ) = cos(x ), the terms P[Zt = k ]cos(θk ) and P[Zt =−k ]cos(−θk ) pair up to
be P[|Zt | = k ]cos(θk ). Therefore, we have verified that for infinitely many values of z (as the
equalities held for all θ ∈R), we have that

z t =
t
∑

k=0

P[|Zt |= k ]qk (z )

and if two polynomials agree on infinitely many values, they must be the same polynomial. Moving
on, we apply this identity to our matrix P , to see that

P t (x , y ) =
t
∑

k=dist(x ,y )

P[|Zt |= k ]qk (P )(x , y )

(The reason for this new lower bound on the sum is that since qk has degree k and by definition
of dist(x , y ), whenever k ≤ dist(x , y ), qk (P )(x , y ) = 0). It now remains to show that for all k ,

qk (P )(x , y )≤
√

√π(y )
π(x )

The first observation we need is that
�

�




qk (P ) f , g
�

π

�

�≤


 f




2



g




2
, this we will prove at the end of

this proof to not get messy calculations here now. Then in particular we can take f = 1y and
g = 1x , and have that π(x )qk (P )(x , y ) ≤

p

π(x )π(y ), which gives the desired inequality and thus
finishes the claim. Let us now show the remaining: let {φi } be an orthonormal basis of eigenvectors



13.1. VAROPOULOS-CARNE BOUND 147

of P and define ai =



f ,φi

�

and bi =



g ,φi

�

�

�




qk (P ) f , g
��

�=

�

�

�

�

�

*

qk (P )
∑

i

aiφi ,
∑

j

b jφ j

+�

�

�

�

�

=

�

�

�

�

�

∑

i , j

ai b j




qk (P )φi ,φ j

�

�

�

�

�

�

=

�

�

�

�

�

∑

i , j

ai b j qk (λi )



φi ,φ j

�

�

�

�

�

�

=

�

�

�

�

�

∑

i

ai bi qk (λi )

�

�

�

�

�

(1)
≤
∑

i

|ai bi |

(2)
≤


 f




2



g




2

Where (1) is from the fact that since λi ∈ [−1, 1] and we know that qk (cosθ ) = cos(kθ ), it follows
that qk ([−1, 1])⊆ [−1, 1], and so |qk (λi )| ≤ 1. Step (2) is Cauchy-Schwarz. ♥

Remark 13.5 Let us admire for a second the VC bound, because it quantifies the following
statement: If two states x and y are geometrically very far away, the probability to transition from
x to y in t steps will be very low for small values of t but as t increases, the upper bound will
start to relax.

Remark 13.6 (On the assumption of reversibility) Reversibility really is crucial in the VC bound:

Sketch. Indeed, consider the biased random walk on Z/nZ. By symmetry of the chain, π is
uniform, so by checking detail balance equations it is easy to see that the chain is not reversible.
Suppose that the chain has a drift to the right, as in the diagram, and is started at 0.

Then for large t (if n is still larger than t ), the Strong Law of Large Numbers tells us that with
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x

y
Ω

Bd−1(x )

Figure 13.1: Diffusive bound: the diagram that says it all

probability 1, X t will be very close to c t for some constant c . However, choosing a c ′ < c and
plugging into the VC bound, given that time is very large, would give a very small probability of
the walk being past the c ′t mark, contradicting the fact that the SLLN has prescribed that the
X t will be arount the c t mark. ♥

Now we have a straightforward bound on the mixing time from the VC bound:

Corollary 13.7 (Diffusive bound) For any ε ∈ (0, 1/2) we have that for large enough n , if P is a
lazy simple random walk on a simple n vertex graph, then

tmix(ε)≥
diam(P )2

16 log n

Main idea: We are going to use a "dirty bound", letting x and y be the states that attain the
diameter of the state-space, the key idea is to split the state-space by considering the balls around x

and y of radius approximately half the diameter, then we will show that these balls are disjoint, hence
they can’t both have mass more than 1/2, so we can control the mass of one of the balls, say the one
centred at x . Similarly, since the balls give us a good control on the distance from x , using the VC
bound, we can control the probability of exiting the ball around x in t steps, which gives us the lower
bound on distance to stationarity.

Proof. Let x and y be two states such that dist(x , y ) = diam(P ) (need not be unique but we
don’t care). Then set d = ⌈diam(P )/2⌉. It is clear that d < diam(P )/2+ 1 (convince yourself
that ⌈x ⌉ < x + 1), then rearranging gives that diam(P ) > 2(d − 1). using this, we can show that
Bd−1(x ) := {z : dist(x , z ) ≤ d − 1} and Bd−1(y ) are disjoint. Indeed: if z ∈ Bd−1(x )∩Bd−1(y ), then
dist(x , y ) ≤ dist(x , z ) +dist(z , y ) ≤ (d − 1) + (d − 1) = 2(d − 1) < diam(P ), but we chose x and y to
attain the diameter, so we get a contradiction. Since these two balls are disjoint, it must follow



13.2. PATH COUPLING 149

than not both of them can have π-measure of strictly more than 1/2, so without loss of generality,
we just say that π(Bd−1(x )) ≤ 1/2, i.e: π(Bc

d−1(x )) ≥ 1/2. Now we try to control the probability
that the walk started at x exits Bd−1(x ) in time t :

P t (x , Bc
d−1(x )) =

∑

w∈Bc
d−1(x )

P t (x , w )

(1)
≤ 2

∑

w∈Bc
d−1(x )

√

√π(w )
π(x )

exp

�

−
dist(x , w )2

2t

�

(2)
≤ 2

∑

w∈Bc
d−1(x )

p
n exp

�

−
diam(P )2

8t

�

(3)
≤ 2n 3/2 exp

�

−
diam(P )2

8t

�

Where (1) is the VC bound, (2) comes from the fact that π(z ) = deg(z )/n , and deg(w )/deg(x )

can be bounded above by n because 1≤ deg(z )≤ n (the upper bound on deg(z ) comes from the
hypothesis of simple graph, i.e: no double edges, the lower bound comes from the fact that we
always work with irreducible chains). Moreover, since w ∈Bc

d−1(x ), it follows that dist(x , w )≥ d =

⌈diam(P )/2⌉ ≥ diam(P )/2. Then step (3) comes from the fact that |Bc
d−1(x )| ≤ n (this is a brutal

bound). Combining all this together:

d (t )≥


P t (x , ·)−π




TV

≥
�

�P t
�

x , Bc
d−1(x )

�

−π
�

Bc
d−1(x )

��

�≥
1

2
−2n 3/2 exp

�

−
diam(P )2

8t

�

Now if we choose t ≤ diam(P )2/(16 log n ). we have that d (t ) ≥ 1/2− 2
p

n , which for a fixed
ε< 1/2, is eventually greater than ε, and so the claim follows. ♥

13.2 Path Coupling

Notice how the TV distance is blind to the geometric distances between states. Indeed: suppose that
you have two states x and y that are reachable from each other in one step. Then in some sense,
these two states are geometrically close, but if we consider the point masses δx and δy , these two
distributions are at maximal distance in the eyes of TV. This brings us to the following definition:

Definition 13.8 (Transportation metric) Let ρ be a metric on a state space Ω. We define the
transportation metric between two distributions µ,ν ∈P (Ω) as:

ρK (µ,ν) = inf
�

E[ρ(X , Y )] : (X , Y ) a coupling of µ,ν
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�

q :
∑

x q (x , ·) = ν(·)
	

¦

q :
∑

y q (·, y ) =µ(·)
©

Figure 13.2: The picture that says it all: ρ-optimal coupling

Remark 13.9 If µ= δx and ν= δy , then ρK (µ,ν) =ρ(x , y ) because a coupling of µ and ν must
be the constants x and y . Moreover, if ρ(x , y ) = 1(x ̸= y ), then ρK (µ,ν) =



µ−ν




TV.

Remark 13.10 (Is a metric required?) If instead of having ρ be a metric we just require it to
be a non-negative function that satisfies the triangle inequality, then all of the results that are to
follow would also hold, just without symmetry, this more general version could be more useful in
cases where we want to consider a distance defined by ρ(x , y ) =min{t : P t (x , y )> 0}, which need
not be symmetric, if the chain is not reversible.

We begin with a Lemma that is analogous to the existence of a TV-optimal coupling.

Lemma 13.11 (Optimal ρ-coupling) There exists a coupling q∗ of µ and ν such that

ρK (µ,ν) =
∑

(x ,y )∈Ω2

q∗(x , y )ρ(x , y )=E[ρ(X , Y )]

Where (X , Y )∼ q∗, i.e: that the infimum in the definition of ρK is attained.

Proof. The proof is by compactness. Indeed, a coupling q is nothing than a vector in the subspace
of [0, 1]Ω×Ω. The fact that it is a probability measure, constrains q to live in the simplex of
[0, 1]Ω×Ω− 1 dimensions. This is a compact set. Indeed: it is clearly bounded, and moreover, the
conditions of having the corresponding marginals make it closed. Indeed: consider the following
subset A of the simplex:

A = {q :
∑

x

q (·, x ) =µ(·)}

I claim this is closed. Indeed, suppose that {qn} is a sequence in A with limit q in the simplex.
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Let us show that q ∈ A. This is simple, we just need to check the marginal conditions:

∑

x

q (·, x ) =
∑

x

lim
n→∞

qn (·, x ) = lim
n→∞

∑

x

qn (·, x ) =µ(·)

Where the limit was swapped due to finiteness. We have just established then, that the set of
couplings of µ and ν form a compact subset of [0, 1]Ω×Ω. Therefore, since the map:

q 7→
∑

x ,y

ρ(x , y )q (x , y )

is continuous in q , it follows that its infimum is attained by our desired q∗. Of course we should
also say that the set we are working in is non-empty, but an example of such a coupling is just the
product measure µ⊗ν. ♥

Of course there is something crucial that we need to justify now:

Lemma 13.12 (Transportation metric is a metric) The function ρK turns (P (Ω),ρK ) into a metric
space.

Main idea: Non-negativity and symmetry are obvious. To show that ρK (µ,ν) = 0 if and only if µ= ν,
show that if ρK (µ,ν) = 0, then their optimal coupling must be supported on the diagonal, and then
show that this implies that µ = ν. Conversely, if µ = ν, just take the coupling (X , X ) of (µ,ν), it is
clear that E[ρ(X , X )] = 0. For the triangle inequality. Let p (x , y ) and q (y , z ) be a ρ-optimal coupling
of (µ,ν) and (ν,η), then

r (x , y , z ) =
p (x , y )q (y , z )

v (y )

is a coupling of (µ,ν,η). From this one finishes the claim using the triangle inequality of the distance
ρ.

Proof. We check each thing separately.

• Non-negativity: obvious. Moreover, if ρK (µ,ν) = 0, then for the optimal coupling, we have
that

∑

(x ,y )

ρ(x , y )q∗(x , y ) = 0

so if ρ(x , y ) > 0, then q∗(x , y ) = 0, which means that q∗ has support on the diagonal
{(x , x ) : x ∈Ω}, which means that µ= ν. Indeed:

µ(x ) =
∑

y

q∗(x , y ) = q∗(x , x ) =
∑

y

q∗(y , x ) = ν(x )
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Conversely, suppose that µ= ν. Then a coupling of µ and ν is simply to take the diagonal
random variable (X , X ) where X ∼ µ. Then since ρK is the infimum over all couplings, it
follows that

0≤ρK (µ,ν)≤ E[ρ(X , X )] = 0

Therefore ρK (µ,ν) = 0

• Symmetry: follows from symmetry of ρ. (This is the only place where symmetry will be
used, hence why morally we could drop symmetry from ρ)

• Triangle inequality: let µ,ν,η ∈ P (Ω), then let p (x , y ) be an optimal ρ-coupling of µ and
ν, and let q (y , z ) be an optimal ρ-coupling of ν and η. Define

r (x , y , z ) =
p (x , y )q (y , z )

ν(y )

Then this is easily seen by summing on the marginals that r is a coupling of µ,ν,η and if we
let (X , Y , Z )∼ r , then (X , Z ) is a coupling of µ and η, indeed: let’s maybe for completeness
check the one for µ:

∑

z ,y

p (x , y )q (y , z )
ν(y )

=
∑

y

p (x , y )ν(y )
ν(y )

=µ(x )

and by the triangle inequality on ρ, we have that

E[ρ(X , Z )]≤ E[ρ(X , Y )]+E[ρ(Y , Z )] =ρK (µ,ν) +ρK (ν,η)

since (X , Z ) is a coupling of µ and η, it follows that ρK (µ,η)≤ E[ρ(X , Z )], which by combining
with the expression above gives the triangle inequality.

♥

x

y

ξ

ℓ( ) = ℓ(ξ)

Figure 13.3: A silly figure to take some space
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We now define a class of metrics on graphs:

Definition 13.13 (Path metric) For a connected graph G = (V , E ), and a length function ℓ : E →
R+ satisfying that for all (x , y ) ∈ E , ℓ(x , y )≥ 1, we define a path metric corresponding to l to be

ρ(x , y ) =min

¨

r−1
∑

i=0

ℓ(xi , xi+1) : x0 = x , x1, x2, · · · , xr = y is a path x → y

«

where of course a path from x to y is understood to be a sequence of vertices that are connected.

We now use this new path metric in conjunction with the transportation metric defined before to
bound the total variation distance:

Proposition 13.14 (Transportation metric of a path metric bounds the TV distance) Let µ,ν ∈
P (V ) and let G = (V , E ) be a connected graph and let ρ be a path metric corresponding to some
length function ℓ on G . Then



µ−ν




TV ≤ρK (µ,ν)

Where ρK is the transportation metric induced by ρ.

Proof. Let (X , Y ) be a coupling for µ,ν, then



µ−ν




TV ≤P(X ̸= Y ) = E[1(X ̸= Y )]

But since ℓ≥ 1, and the graph is connected, any two vertices x and y will have a path between it
of length at least 1. It follows that E[1(X ̸= Y )]≤ E[ρ(X , Y )]. Then minimising over all couplings
(X , Y ) gives the expression. ♥

Now we present a Theorem first discovered by Bubley and Dyer in 1997, which can be used to bound
the mixing time under some regularity conditions:

Theorem 13.15 (Mixing time bound in terms of the transportation metric) Let G = (V , E ) be a
graph with distance function ℓ. Suppose that X takes values on V . Let ρ be the corresponding
path metric. Suppose that for all edges (x , y ) ∈ E , we have that there exists some coupling (X1, Y1)

of P (x , ·) and P (y , ·) such that for some α:

Ex ,y [ρ(X1, Y1)]≤ exp(−α)ρ(x , y ) (⋆)

Then for any µ,ν ∈P (V ), we have that

ρK (µP,νP )≤ exp(−α)ρK (µ,ν) (⋆⋆)
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In particular,
d (t )≤ exp(−αt )diam(V ) (⋆ ⋆ ⋆)

and if α> 0, then
tmix(ε)≤

1

α

�

log diam V + log(1/ε)
�

Main idea: First show the result for µ and ν being point masses (of not necessarily adjacent points).
To do so simply consider the path of shortest length from them and apply the hypothesis along with
the triangle inequality. Then technically inequality (⋆ ⋆ ⋆) already follows but, to prove inequality (⋆⋆),
combine the optimal coupling θx y for P (x , ·) and P (y , ·) found in part (⋆) with an optimal coupling η
of (µ,ν). Then setting

θ (w , z ) =
∑

x ,y

η(x , y )θx y (w , z )

gives a coupling of µP,νP . And so using the result of part (⋆) and optimality of η finishes the claim.

Proof. We first establish the inequality (⋆⋆) for point masses µ=δx and ν=δy . Let x = x0 ∼ x1 ∼
· · · ∼ xk = y be the path from x to y of shortest length. Then by the triangle inequality:

ρK (µP,νP ) =ρK (P (x , ·), P (y , ·))≤
k−1
∑

i=0

ρK (P (xi , ·), P (xi+1, ·))

By hypothesis, for each xi ∼ xi+1, there exists a coupling satisfying (⋆), and since ρK (P (xi , ·), P (xi+1, ·))
is the infimum over such couplings, we deduce that

ρK (P (xi , ·), P (xi+1, ·))≤ exp(−α)ρ(xi , xi+1)

By definition of ρ(xi , xi+1) being the infimum over path lengths, we have that ρ(xi , xi+1)≤ ℓ(xi , xi+1)

(it is not necessary that the direct edge from xi to xi+1 minimises path distance, it could be that
some more long winded route in terms of edges is actually "cheaper"), so putting it all together

ρK (P (x , ·), P (y , ·))≤ exp(−α)
k−1
∑

i=0

ℓ(xi , xi+1) = exp(−α)ρ(x , y )

Where this last equality comes from the assumption that the path x0 ∼ x1 ∼ · · · xk is the one
attaining the infimum in the path metric, thus proving (⋆⋆) for point masses. We now extend to
general measures. The goal is to show that

ρK (µP,νP )≤ e −αρK (µ,ν)

So we will start by trying to find a coupling for µP and νP . Note that for any (x , y ) we have the
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existence of a coupling θx y of P (x , ·), P (y , ·) such that Eθx y
[ρ(X , Y )]≤ e −αρ(x , y ) (Indeed, by the

Point Mass result, we have shown that for any x , y , we have that ρK (P (x , ·), P (y , ·))≤ e −αρ(x , y ),
but since there always is a ρK optimal coupling, we have our desired θx y ), and since we know
there exists some optimal coupling η of µ, ν, we can try combining these couplings to obtain a
coupling of µP,νP . The probability distribution we will consider is

θ :=
∑

x ,y

η(x , y )θx ,y

Let us show this is indeed a coupling of µP and νP . (We will only show it for µP for simplicity.

∑

z∈Ω
θ (ω, z ) =

∑

z∈Ω

∑

x ,y ∈Ω
η(x , y )θx y (ω, z )

=
∑

x ,y

η(x , y )
∑

z

θx y (ω, z )

=
∑

x ,y

η(x , y )P (x ,ω) =
∑

x

µ(x )P (x ,ω)

= (µP )(ω)

Therefore, putting this all together:

ρK (µP,νP )≤
∑

u ,v

ρ(u , v )θ (u , v ) (θ is a coupling of µP,νP )

=
∑

u ,v

∑

x ,y

η(x , y )θx y (u , v )ρ(u , v )

=
∑

x ,y

η(x , y )Eθx y
[ρ(X , Y )]

≤ e −α
∑

x ,y

η(x , y )ρ(x , y ) (point mass result)

= e −αρK (µ,ν) (η is optimal)

To prove (⋆ ⋆ ⋆) we simply note that

d (t )≤ d̄ (t ) =max
x ,y



P t (x , ·)−P t (y , ·)




TV

≤max
x ,y
ρK (P

t (x , ·), P t (y , ·))

=max
x ,y
ρK (1x P t ,1y P t )

≤max
x ,y

e −αtρ(x , y ) = e −αt diam(V )

♥

We now present a specific application of the above theory related to graph colourings.
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x y

x ∈ S y /∈ S

Figure 13.4: A proper colouring and a non-proper colouring of a graph with 4 vertices.

Definition 13.16 (Proper colourings, Glauber dynamics) Let G = (V , E ) be a graph. A proper
vertex colouring of G with q colours is a function x ∈ {1, · · · , q }V such that whenever two vertices
v ∼w are neighbours, we require x (v ) ̸= x (w ). We let S be the set of proper colourings:

S = {x ∈ {1, · · · , q }V : x (u ) ̸= x (v ), if u ∼ v }

We define a Markov chain on S , the set of all proper colourings, using the Glauber dynamics,
starting from a colouring x ∈ S :

1. Pick uniformly at random a vertex w ∈V

2. Update its colour to be, uniformly at random, from the allowed colours, i.e: from the colours
not taken by any of its neighbours.

Example 13.17 (Star graph) Consider the star graph of size n , i.e: one central node v ∗ with
n − 1 vertices coming out of it. As an initial example to get comfortable with Glauber dynamics
and proper colourings, we will recap the tools of lower bounding mixing times with the Bottleneck
ratio. Since these kinds of examples have two layers of abstraction, it is quite complicated to
visualise the isoperimetry.

Explanation. Consider the subset A ⊆ S of proper q -colourings such that the root vertex has the
label 1, i.e: A = {x ∈ S : x (v ∗) = 1}. We now attempt to compute

Q (A, Ac ) =
∑

x∈A,y ∈Ac

π(x )P (x , y ).

Note that π(x ) is naturally 1/|S |, since the invariant distribution is uniform. Moreover, we have
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Figure 13.5: The star graph

that P (x , y ) ≤ 1/n , since y /∈ A means that in particular, vertex v ∗ was chosen to be updated to
go from x to y (we have an inequality because we would also have to guarantee that y (v ∗) ̸= 1).
Finally, the size of A×Ac is at most (q −1)(q −2)n−1, since the value of y (v ∗) could take at most
q − 1 values, and the remaining leaves, of which there are n − 1 of them, each can have q − 2

different colours (neither 1, nor whatever y (v ∗) is). Hence we have that

Q (A, Ac )≤
1

|S |n
(q −1)(q −2)n−1,

and since π(A) = (q −1)n−1, since each of the n −1 leaves can take q −1 choices, we see that

Φ(A)≤
(q −1)(q −2)n−1

n (q −1)n−1
,

from which now by rearranging and using the lower bound on mixing time using the Bottleneck
ratio, we see that

tmix ≳
n (q −2)
(q −1)2

exp(n/q −1)

. ♥

After this initial example, we now use the theory of Geometric Techniques to bound mixing times of
Glauber dynamics under certain regularity conditions.

Theorem 13.18 (Mixing time of Glauber dynamics on proper colourings) Let G be a graph of n

vertices with maximum degree ∆. Let q > 2∆, then the mixing time has

tmix(ε)≤
¡

q∆

q −2∆
n log(n − logε)

¤

.

Proof. We consider the graph of all colourings and extend Glauber dynamics to this graph. Given
colourings x , y , we use the metric ρ(x , y ) =

∑

v∈V 1({x (v ) ̸= y (v )}). Two colourings are deemed
neighbours if and only if ρ(x , y ) = 1, i.e: they differ in exactly one vertex. Note that this neigh-
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bouring rule defines a graph different from the graph defined by the transition of the chain, but
Theorem 13.15 did not require the chain to be irreducible, and since we start on the set of proper
colourings, we will remain in the set of proper colourings S .

We wish to define a coupling (X1, Y1) for when X0 = x , Y0 = y are two proper colourings with
ρ(x , y ) = 1, and show that Ex y [ρ(X1, Y1)]≤ e −αρ(x , y ) = e −α, for some α, then we will be able to
apply Theorem 13.15. We describe how the coupling evolves:

Let v be the vertex where x and y differ. We pick, uniformly at random, the same vertex w in
both configurations. If w is not a neighbour of v , then we can update both chains to the same
colour, and this would be a correct coupling since Aw (x ) = Aw (y ), and the distance would remain
at 1. (Recall that Aw ( f ) is the allowed colours that f can take at vertex w ).

Suppose on the other hand, that v is a neighbour of w . Suppose without loss of generality that
|Aw (x )| ≤ |Aw (y )|. We pick a colour U uniformly at random from Aw (y ).

• If U ̸= x (v ): then we update both x (w ) and y (w ) to U , and see that the distance remains
at 1:

• If U = x (v ), then we distinguish two cases, in both of which the distance will increase to 2.

1. If |Aw (x )|= |Aw (y )|, then set x (w ) = y (v ), and y (w ) =U :
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Item If |Aw (x )|< |Aw (y )|, then set x (w ) at random from Aw (x ), and y (w ) =U .

Finally we note that if w = v , then we can update both to be the same, and the distance will fall
to zero. Now notice that the only cases where x and y differ at w is when the colour U that
was chosen uniformly at random from Aw (y ) was equal to w (v ). This happens with probability
1/|Aw (y )|, and since Aw (y ) = q −deg(w )≥ q −∆, we have that 1/|Aw (y )| ≤ 1/(q −∆)

Now we notice that the distance ρ(x , y ) increases to 2 when we pick a neighbour of v , this happens
with probability deg(v )/n , and we update it differently in both configurations, which happens with
probability 1/|Aw (y )|. The distance goes to zero if we pick v , which happens with probability 1/n .
Therefore the probability that we remain at distance 1, is going to be 1 minus the probability that
it goes to zero minus the probability that it goes to two, i.e: 1− 1

n −
deg(v )

n
1

|Aw (y )| . Putting this all
together we have that

Ex ,y [ρ(X1, Y1)]≤ 1−
1

n
+

deg(v )
n

1

|Aw (y )|
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Now we use the bound that |Aw (y )| ≥ q −∆, and deg(v )≤∆, to get that

Ex ,y [ρ(X1, Y1)]≤ e −α/n

where α= q−2∆
q−∆ , which is in (0, 1) by assumption of q > 2∆. This establishes the claim.

♥

Example 13.19 (Exclusion process) Consider the following Interacting Particle System: on the
complete graph K2n , there are n white and n black particles. At each time, an edge is chosen at
random and the particles swap. The mixing time is of order n log n .

Proof. Maybe one day when I have time. For now find on written notes. ♥
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Hit-Mix

In this section we will use hitting times to bound mixing times. Recall the definition that the hitting
time for a set A is given by

TA = inf{t ≥ 0 : X t ∈ A}

Definition 14.1 (Hit time) Let P be a finite irreducible chain with invariant distribution π. For
any α,ε ∈ (0, 1) and t ≥ 0, we define the maximal probability of not hitting a set of size at least α
by time t starting from x as:

px (α, t ) =max{Px (TA > t ) : A ⊆ S ,π(A)≥α}

Then we also set p (α, t ) =maxx px (α, t ), and define the ε−hitα time starting from x and from the
worst starting point as

hitα,x (ε) =min
�

t : px (α, t )≤ ε
	

hitα(ε) =min
�

t : p (α, t )≤ ε
	

In plain English: hitα(ε) is the least time, for which the chain has hit all sets of size at least α with
probability at least 1−ε. Alternatively, it is the least time for which the probability of not having hit
some set of size at least α is at most ε. The intuition now is clear: if the chain hasn’t hit some large
set by time t , it can’t be well mixed.

Proposition 14.2 (Lower bound on mixing time by hit time) For any chain, we have that for any
ε ∈ (0, 1), δ ∈ (0, 1−ε):

tmix(ε)≥ hitε+δ(1−δ)

Main idea: The intuition for the connection with mixing times is the following: if the chain is ε-mixed
by time t , then starting from any x , P t (x , ·) and π(·) are very close in the TV sense, so if A is a set with

161
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π(A)≫ ε, then it can’t be that P t (x , A)≪ 1. Indeed: this is because P t (x , A) ≥ π(A)−ε by definition
of TV.

Proof. Let t = tmix(ε). Then by definition of TV distance, we have that for any set A with
π-measure at least δ+ε, and for any x ∈Ω, we have that π(A)−P t (x , A)≤ ε, i.e:

P t (x , A)≥π(A)−ε=δ

But also, Px (TA ≤ t )≥ P t (x , A)≥δ, so we have that

Px (TA > t )< 1−δ

and since this holds for any x , it follows that hitε+δ(1−δ)≤ t . ♥

14.1 Properties of hit-time

Now we have some result that will be useful in computations:

Proposition 14.3 (Submultiplicativity of hit-times) For any α,ε,δ ∈ (0, 1) we have that

hitα(εδ)≤ hitα(ε) +hitα(δ)

Proof. Let A ⊆ S be of π-measure at least α. Let x ∈Ω, and t , s ≥ 0. Then if starting from x , A

hasn’t been hit by time t + s , then it definitely hasn’t been hit by time t , and wherever the chain
was at time t , say z , using the Markov Property, the chain started from z did not hit A by time
s , i.e:

Px (TA > t + s )≤Px (TA > t )max
z∈Ω

Pz (TA > s )≤ p (α, t )p (α, s )

Therefore p (α, t + s ) ≤ p (α, t )p (α, s ). Now take t = hitα(ε) and s = hitα(δ), then by definition
p (α, t )<ε, and p (α, s )<δ, which means that p (α, t + s )<εδ which means that hitα(εδ)≤ t + s =

hitα(ε) +hitα(δ). ♥

Proposition 14.4 (Hit-time is decreasing in α) Let δ ∈ (0, 1) be given, any 0<α≤β ≤ 1. Then

hitβ (δ)≤ hitα(δ)

Main idea: What its saying is that waiting to be 1−δ sure that you have visited all small sets, is
going to take much longer than waiting to be 1−δ sure that you have visited all large sets. The proof
is once again a formal restatement of this.
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Proof. It is easy to see that
max
π(A)≥β
{· · · } ≤ max

π(A)≥α
{· · · }

(There are less sets of size at least β than there are sets of size at least α), so this means that
p (β , t )≤ p (α, t ), and so when p (α, t ) drops below δ, so does p (β , t ). ♥

Above we have shown the rather trivial fact that hitting times hitα(ε) are decreasing in α, i.e: if α≤β ,
we can lower bound hitα with hitβ . It turns out, that in the case of reversible chains, even if we are
looking at smaller sets (i.e. α ≤ β), we can still upper bound hitα by only looking at the larger sets
with π(A)≥β , but we must pay a price: this price will be that you have to be even more certain that
you have hit all sets of size β , as well as paying an extra factor of trel. These two factors of course
increase waiting time and this is what gives the upper bound. We now state the result formally.

Proposition 14.5 (Hit time bound with smaller sets) For a reversible chain with relaxation time
trel, and any 0<ε<δ < 1, and 0<α≤β < 1, we have the following comparison:

hitα(δ)≤ hitβ (δ−ε)
︸ ︷︷ ︸

more certain

+
¡

α−1 trel log
�

1−α
(1−β )ε

�¤

︸ ︷︷ ︸

extra price of trel

To prove this we first need the following Lemma:

Lemma 14.6 For a reversible transition matrix P with invariant distribution π and relaxation time
trel, we have that for any non-empty A and all times t ≥ 0:

Pπ(TA > t )≤π(Ac )exp
�

−
tπ(A)

trel

�

(⋆)

In particular, for any c , w > 0, let B = B (A, w , c ) =
�

y ∈Ω : Py

�

TA >
�

trel w
π(A)

��

≥ c
	

. Then:

π(B )≤
π(Ac )
e w c

(⋆⋆) and π(A)Eπ[TA]≤ trelπ(A
c ) (⋆ ⋆ ⋆)

Proof. We first recall the result from ES2 Q10 that states that if B = Ac is a connected set, then

PπB
(TA > t )≤

�

1−
π(A)
trel

�t

Where for a set X , πX is π conditioned on being in X , i.e: πX (x ) =
π(x )1(X )
π(X ) . This pretty much
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already gives (⋆) but we ned to fix the case when Ac is not connected. To do this, we express

Ac =
k
⋃

j=1

C j

where each C j is one of the connected components of Ac . Then since each Ci is connected, its
obvious that (C c

i )
c is connected, so we may apply the Example Sheet result and see that

Pπ(TA > t ) =PπA
(TA > t )

︸ ︷︷ ︸

=0 (†)

πA(A) +
k
∑

i=1

π(Ci )PπCi
(TA > t )

=
k
∑

i=1

π(Ci )PπCi
(TC c

i
> t )

Where step (†) comes from the fact that since ≥ 0, the probability that starting from A, not having
hit A by a time strictly greater than 0 clearly has probability zero. The last equality comes from
the fact that if you start in Ci , one of the connected components of Ac , not having hit A by time
t is equivalent to not having exited Ci by time t . So now using the Example Sheet question gives:

Pπ(TA > t )≤
k
∑

i=1

π(Ci )

�

1−
π(C c

i )
trel

�t

≤
k
∑

i=1

π(Ci )
�

1−
π(A)
trel

�t

(Since π(C c
i )≥π(A))

=π(Ac )
�

1−
π(A)
trel

�t

≤π(Ac )exp
�

−
tπ(A)

trel

�

.

This shows (⋆). To show the further implications, we note that when t = t (A, w ) =
�

trel w
π(A)

�

,

π(B )c ≤π(B )PπB
(TA > t ) (definition of B )

≤Pπ(TA > t ) (Since A = B ∪ (A \B ))

≤π(Ac )exp
�

−
tπ(A)

trel

�

(by (⋆))

≤π(Ac )e −w

Where this last inequality was obtained by the fact that
�

trel w
π(A)

�

≥ trel w
π(A) . This proves the first
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inequality of the "moreover" part. For the second inequality we simply note that

Eπ[TA] =
∞
∑

t=0

Pπ(TA > t )

≤
∞
∑

t=0

π(Ac )
�

1−
π(A)
trel

�t

≤π(Ac )
trel
π(A)

Where the last inequality comes from the geometric series. ♥

We can now prove Proposition 14.5.

Proof of Proposition 14.5. Take A to be with π(A)≥α. Define:

bA = {x ∈Ω : Px (TA > s )≤ ε}

Where s =
�

trel w
π(A)

�

. Quite naturally, A ⊆ bA, because if you start at A, the probability that you haven’t
hit A by time s is zero which is less than or equal to ε. Note from the bound

π(B )≤
π(Ac )
e w c

that when choosing B = bAc , we can take complements and note that

π( bA)≥ 1−
π(Ac )
e w c

and by making s large enough (i.e: w large enough), we can get this as close as we want to 1.
Therefore there exists some s such that π( bA)≥β . Moreover, by definition of bA, whenever we start
from bA, we reach A by time s with probability 1−ε. With this choice of s , pick t = hitβ (δ−ε),
and we see that

max
x∈Ω

Px (TA > s + t )≤max
x∈Ω

Px

�

T
bA > t ∪T

XT
bA

A > s
�

≤max
x∈Ω

Px (TbA > t ) +max
x∈ bA

Px (TA > s )

≤ (δ−ε) +ε=δ

Where in the first inequality we have used the fact that if A is not reached by time s+t then either
bA hasn’t been reached by time t or the chain started from wherever it was at time T

bA takes more
than s to hit A. For the second inequality we have used a union bound and the Strong Markov
Property, and for the third inequality, we have used the fact that the definition of t = hitβ (δ−ε)
implies that for any set of size at least β (like bA), the probability that by time t we haven’t reached
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the set is at most δ−ε. For the second summand, we have used the observation that when started
from bA, the chain hits A in time at most s with probability 1−ε. This immediately implies that,
since π(A)≥ α by assumption, then hitα(δ)≤ t + s = hitβ (δ−ε) + s . We are almost done, now we
just need to bound s . In fact, we can just show that taking s =

 

α−1 trel log
�

1−α
(1−β )ε

�£

, we will still
have π( bA) ≥ β , and then the whole proof above will still work and we will get the desired upper
bound. This is just a slightly tedious computation in the inequality

π( bA)≥ 1−
π(Ac )
e w c

where w = sπ(A)
trel

. ♥
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Here’s a quick summary of what we’ve seen so far:

• If we have an irreducible Markov chain X on a state space Ω, we can talk about the hitα(ε)
time, formally defined as

hitα(ε) =min
n

t : max
x
{Px (TA > t ) :π(A)≥α}<ε

o

.

In plain English: the first time t at which we are 1−ε certain that we have hit any set of
size at least α by time t when starting from the worst possible point.

• Intuitively it is clear that there should be a connection between mixing and hitting times:
if t < thitε+δ(1−δ), then there is some starting point x and some set of mass at least ε+δ
such that the probability of having it is by time t from x is at most δ. Combining these
two things it easily follows that the distance to stationarity at time t is at least ε, or in
other words: tmix(ε)≥ thitε+δ(1−δ).

• We also have some properties of hit times, some more immediate than others:

1. The hit times are monotone decreasing in size: this is not a surprise, since increasing
the size reduces the set over which the maximum is being taken. Formally: if α≤β ,
then

thitα(ε)≥ thitβ (ε).

2. An easy application of the Markov Property is that if we haven’t hit a set A by time
t +s , then in particular, we haven’t hit it by time t , and then the chain started afresh
hasn’t hit A by time s , i.e: maxx Px (TA > t + s )≤ (maxx Px (TA > t )) (maxz Pz (TA > s )).
This immediately gives that

thitα(εδ)≤ thitα(ε) + thitα(δ).

3. A more technical argument can also be used to show that in contrast to bullet point
1. we can also have an “increasing inequality" on the sizes of the sets, but only if we
reduce our certainty on the hitting probability and pay a price of trel:

thitα(δ)≤ thitδ(δ−ε) +C (α,β ,ε) trel .
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14.2 An upper bound on mixing time

In the previous section we saw a lower bound for the mixing time in terms of the hitting times.
In this section we present a rather long proof that gives an upper bound. In particular, we will
see that when P is a reversible irreducible transition matrix, then there is some C (α,ε,δ) such
that:

tmix((ε+δ)∧1)≤ hit1−α(ε) +C (α,ε,δ) trel,

and in particular, when α ↓ 0, then C (α,ε,δ) ↑, and vice-versa: when α ↑ 1, then C (α,ε,δ) ↓.

Let us start by stating two results:

Lemma 14.7 (Generalised Poincaré Inequality) For a reversible transition matrix P with invariant
distribution π and any f : S →R we have that for all ≥ 0:

Varπ(P t f )≤ e −2t / trel Varπ( f ).

Proof. Example Sheet 2 Question 5 (a). ♥

Lemma 14.8 (Starr’s maximal inequality) For a reversible irreducible and finite transition matrix
P with invariant distribution π, p ∈ (1,∞) and p ∗ its conjugate exponent, we have that for all
f :Ω→R,



 f ∗




p
≤ p ∗



 f




+

Where f ∗ :Ω→R is the maximal function at even times, i.e:

f ∗(x ) = sup
t≥0
|(P 2t f )(x )|= sup

t≥0
|Ex [ f (X2t )]|

The key to this proof are the so-called Good sets. In plain English, a good set for A ⊆Ω is a set that
satisfies the property that when the chain is started from the Good set, the chain will hit A by some
time s with probability close to π(A). If we can show that the Good sets are large, e.g: say that the
good set for A has π-mass 1−δ, then by time t = thit1−δ+s we will be in A with probability close to
π(A) plus some small error, from which we will see that |P t (x , A)−π(A)| will be small.

Definition 14.9 (Good set) Let A ⊆Ω be a set. Then for a fixed s > 0 define σs = exp
�

− s
trel

�p

Varπ(1A).
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Then for m > 0, we define the Good set for A:

Gs (A, m ) =
�

y ∈Ω : |P t (y , A)−π(A)|<mσs for t ≥ s
	

We will now state the proposition which will be key in establishing the hit-mix bound.

Proposition 14.10 (Good sets are large) Let P be irreducible and reversible. Then for all A ⊆Ω,
s ≥ 0 and m > 0, we have that

π(Gs (A, m ))≥ 1−8m−2

Proof. Start by defining fs (x ) = P s (x , A)−π(A) = P s (1(A)−π(A))(x ). Then using the notation of
Starr’s inequality:

f ∗s (x ) = sup
t≥0
|P 2t fs (x )|= sup

t≥0
|P 2t+s (x , A)−π(A)|

and
(P fs )

∗(x ) = sup
t≥0
|P 2t+1+s (x , A)−π(A)|.

And so using this notation, we see that

Gs (A, m ) =
�

y : f ∗s (y )<mσs and (P fs )
∗(x )<mσs

	

this is because taking the supremum of t ≥ 0, will cover all even times after s (this will be done
by f ∗s ) as well as all odd times (done by (P fs )∗), and so by a union bound:

1−π(Gs (A, m ))≤π({ f ∗s (x )≥mσs }) +π({(P fs )
∗(x )≥mσs })

This gives us an upper bound on the π-measure of Gs (A, m ). All left to do is understand the
π-measure of the sets on the right hand side of the inequality, and here is where we will use the
Generalised Poincaré Inequality (GPI) as well as Starr’s inequality. First we need to note that

Eπ[ fs ] =
∑

x

π(x ){P s (x , A)−π(A)}= (πP s )(A)−π(A) = 0

which also means by standard arguments that Eπ[P fs ] = 0. This allows us to express the variances
of both fs and P fs directly as ℓ2 norms, and so we have the following:



P fs





2

2

(1)
≤


 fs





2

2

(2)
= Varπ(P s f0)
(3)
≤ e −2s/ trel Varπ( f0)
(4)
= e −2s/ trelπ(A)(1−π(A)) =:σ2

s
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Where (1) comes from GPI, (2) comes from the definition f0 := 1(A)−π(A) as well as the fact that
Eπ[ f0] is trivially checked to be zero, (3) comes again from GPI, (4) comes from direct computation
of Eπ[ f 2

0 ] = Eπ[1(A)−21(A)π(A) +π(A)]. Hence we compute the π-measures of the sets we need:

π({ f ∗s (x )≥mσs }
(1)
= π({( f ∗s (x ))

2 ≥m 2σ2
2})

(2)
≤

Eπ[( f ∗s )
2]

m 2σ2
2

(3)
=



 f ∗s




2

2

m 2σ2
s

(4)
≤
(2


 fs





2

2
)

m 2σ2
s

(5)
≤

4

m 2

Where (1) comes from f ∗s being non-negative, (2) comes from Markov’s inequality, (3) comes from
definition of ℓ2 norm, (4) comes from Starr’s inequality using the fact that the conjugate exponent
of 2 is 2, and (5) comes from the bound we obtained above. We could repeat the argument above
for π({(P fs )∗(x ) ≥mσs }) and use the fact that above we have shown (in step (1) of the previous
argument) that



P fs





2

2
≤


 fs





2

2
, and so we can insert this in step (3) of this argument. This shows

that π({(P fs )∗(x )≥mσs })≤ 4/m 2 and so the proof follows. ♥

We are finally ready to prove the hit-mix bound:

Theorem 14.11 Let P be a reversible irreducible transition matrix, then there is some C (α,ε,δ)

such that:
tmix((ε+δ)∧1)≤ hit1−α(ε) +C (α,ε,δ) trel

Proof. Firs, fix the value of x (it exists because everything’s finite), such that d (t+s ) = ∥P t+s (x , ·)−π(·)∥TV.
Then the goal is going to be to find the values of t , s such that π(A)−P t+s (x , A)≤ ε+δ. We will
do so by considering a good set for A, given by

G =Gs

�

A,
p

8/α
�

From Proposition Good sets are large, we have that π(G )≥ 1−α, and we will now proceed to lower
bound P t+s (x , A), as this will produce the desired upper bound. We will do this by conditioning
on having hit the good set by time t . Naturally:

P t+s (x , A)≥Px (TG ≤ t )Px (X t+s ∈ A | TG ≤ t )

We now make our choice of t . If we set t = hit1−α(ε), then since G has π-measure 1−α, it follows
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that Px (TG ≤ t )≥ 1−ε. Now we continue by lower bounding Px (X t+s ∈ A | TG ≤ t ). This will be the
heart of the proof:

Px (X t+s ∈ A | TG ≤ t )
(1)
=

t
∑

u=0

∑

y ∈G

Px (X t+s ∈ A, TG = u , Xu = y | TG ≤ t )

(2)
=

t
∑

u=0

∑

y ∈G

Px (X t+s ∈ A | TG = u , Xu = y , TG ≤ t )Px (TG = u , Xu = y | TG ≤ t )

(3)
=

t
∑

u=0

∑

y ∈G

Py (X t+s−u ∈ A)Px (TG = u , Xu = y | TG ≤ t )

(4)
≥

t
∑

u=0

∑

y ∈G

�

π(A)−

√

√ 8

α
σs

�

Px (TG = u , Xu = y | TG ≤ t )

(5)
= π(A)−

√

√ 8

α
σs

Where (1) comes from the Law of Total Probability, (2) comes from definition of conditional
probability, (3) comes from the Markov Property, more precisely, if u is the present, given the
present, we can shift the Markov chain and forget of everything that has happened up until now,
which includes the event TG = u (which is an event determined by the present). Then (4) comes
from the fact that y ∈G , and since G is a good set, the probability that we hit A at some time
later than or equal to s (note that t − u ≥ 0) is bonded below by the measure of A minus mσs ,
and in the definition of G we chose m to be that square root. Step (5) comes from pulling out
the constant factor out of the sum and noting that the sums account for all possible things so it
will be equal to 1. Putting all this together we get that

P t+s (x , A)≥ (1−ε)

�

π(A)−

√

√ 8

α
σs

�

Now we make the smart choice of s , in particular, for

s =

�

1

2
trel

�

log

�

2(1−ε)2

αεδ

�

∨0

��

we get that

π(A)−P t+s (x , A)≤ ε+δ

there is no substance in the calculation above, hence why I skip it. This finishes showing that

tmix({ε+δ}∧1)≤ hit1−α(ε) +

�

1

2
trel

�

log

�

2(1−ε)2

αεδ

�

∨0

��
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as required (note for completeness that we take the minimum with one because the maximum TV
distance could be is 1). ♥

14.3 Hit cutoff

Recall from our discussion on cutoff that chains without the product condition, i.e: without trel≪ tmix,
one cannot have mixing time cutoff. Given that we have seen how hit times and mixing times are
almost of the same order (up to paying an extra factor of trel), it makes sense that there is an a parallel
discussion of cutoff that one can make with hit times.

Definition 14.12 (Hit cutoff) For α ∈ (0, 1), a sequence of chains exhibits hitα cutoff if for all
ε ∈ (0, 1/4), we have that

hitα(ε)−hitα(1−ε)≪ hitα(1/4)

If the chain exhibits hitα cutoff for all α ∈ (0, 1) we say that the chain exhibits hit cutoff.

Remark 14.13 In the definition above, of course we should have written hit(n )α instead of hitα to
indicate that this is a property of the sequence of chains as n→∞.

We now see that if a sequence of chains has the product condition, then hitα cutoff and hit cutoff are
the same.

Proposition 14.14 (hitα cutoff gives hit cutoff on reversible product condition chains) For a
sequence of reversible Markov chains which satisfy the product condition, i.e: trel≪ tmix, we have
that the chain exhibits hitα cutoff for some α if and only if it exhibits hit cutoff.

Moreover, hitα(1/4)≍ tmix. And if there is hit cutoff, then

lim
n→∞

hit(n )α (1/4)

hit(n )1/2(1/4)
= 1

for any α ∈ (0, 1)

Proof. Let us first show that hitα(1/4) ≍ tmix. Fix α ∈ (0, 1). Before diving into a proof, we note
that this is “morally obvious" because we have seen how to upper bound hit times by mixing times
at the start of the chapter, and we later saw a way of lower bounding hit times by mixing times
with an extra factor of trel. Since we are assuming the product condition holds, this factor of trel
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is negligible. We have the following trivial observation:

(1−3α/4)4α
−1
≤ e −3 ≤ 1/4

Recall that if p < q , then hitα(p )≥ hitα(q ). So

hitα(1/4)≤ hitα({1−3α/4}4α
−1
)

(2)
≤ 4α−1 hitα(1−3α/4)
(3)
≤ 4α−1 tmix(α/4)
(4)
≤ C (α) tmix

Where in (2) we have used the fact that hit times are submultiplicative, to lower the exponent as
a sum of hit times, in (3) we have used the fact that hitε+δ(1−δ)≤ tmix(ε), and so writing ε+δ=α
and δ = 3α/4 gives ε = α/4. For (4) we have used the fact that tmix(ε) ≤ ⌈− log2(ε)⌉ tmix. To show
the other bound we have that by the Hit-Mix bound (Theorem 14.11),

tmix(1/4)≤ hitα(1/8) +C (1−α, 1/8, 1/8) trel

But we can bound hitα(1/8)≤ hitα(1/16)≤ 2hitα(1/4), and so we have that

tmix ≤ 2hitα(1/4) +C trel

So by the product condition we have the desired result that hitα(1/4) ≍ tmix. We now show how
having hitα cutoff implies having cutoff for any α. To do so fix 0<α< β < 1, we shall show that
hitα cutoff occurs if and only if hitβ cutoff occurs.

Recall that we know how to compare hitα and hitβ with the following:

hitα(δ)≤ hitβ (δ−ε) +C (α,β ,ε) trel

so if we fix ε ∈ (0, 1/8), we have that

• hitα(1−ε)≤ hitβ (1−2ε) +C (α,β ,ε) trel

• hitα(2ε)≤ hitβ (ε) +C (α,β ,ε) trel

Moreover, since hitα is decreasing in α (as its going to take less to have hit all large sets than it
takes to hit small sets), we have that

• hitβ (2ε)≤ hitα(2ε)≤ hitα(ε).
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• hitβ (1−ε)≤ hitβ (1−2ε)≤ hitα(1−2ε).

Putting this all together you have that

hitβ (2ε)−hitβ (1−2ε)≤ hitα(ε)−hitα(1−ε)−C (α,β ,ε) trel .

and
hitα(2ε)−hitα(1−2ε)≤ hitβ (ε)−hitβ (1−ε) +C (α,β ,ε) trel .

Now its easy to check that say, if there is β cutoff, then the right hand side of the second inequality
is o (hitβ (1/4)) but since by the first part we know that hitβ (1/4) ≍ hitα(1/4) ≍ tmix, then the right
hand side of the second inequality is o (hitα(1/4)) which means there is α cutoff. One can do the
same argument to show the other direction. Now finally to show that

lim
n→∞

hit(n )α (1/4)

hit(n )1/2(1/4)
= 1

for any α ∈ (0, 1), we start by assuming α < 1/2, then once again since we can compare hitα and
hit1/2 times by paying a multiple of trel, we have that

hitα(1/4+ε)−C trel ≤ hit1/2(1/4)≤ hitα(1/4)

Now we observe the following: since ε≤ 1/4, we automatically get that

1

4
+ε ∈ (ε, 1−ε),

whence it follows that hitα
�

1
4 +ε

�

∈ [hitα(1−ε),hitα(ε)]. But in a similar spirit, 1
4 ∈ (ε, 1−ε) as well,

and so hitα
�

1
4

�

∈ [hitα(1−ε),hitα(ε)] too. Since we are assuming cutoff holds this window has order
o (hitα(1/4)), which means that

|hitα(1/4)−hitα(1/4+ε)| ≤ o (hitα(1/4)),

and in particular hitα(1/4+ε)≥ (1−o (1))hitα(1/4), thus showing the limit. The case for α≥ 1/2 is
similar. ♥

With this result one could now show the following, which is the main result of this section. We skip
the proof due to a massive lack of energy.

Theorem 14.15 (Hit cutoff and cutoff are equivalent under the product condition in reversible
chains) Consider a reversible chain with product condition. Then for any α, the chain exhibits hitα
cutoff if and only if it exhibits cutoff.
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Let us summarise this section:

• We start by making an analogous definition of cutoff for hitting times: we say that a
sequence of chains exhibits hitα cutoff if for any ε ∈ (0, 1/2):

thitα(ε)− thitα(1−ε)≪ thitα(1/4).

In plain English, this just says that the window of time during which the chain goes from
very unlikely to have hit ≥α sets, until it is very likely to have hit them, has a width that
grows negligibly when compared to the growth of the thitα(1/4) time.

• Motivated by the fact that we saw how to compare mixing and hit times up to a factor
of trel, we set off to show that under the hypothesis of product condition (trel≪ tmix), we
have an equivalence of cutoff and thit cutoff: doing so involved a few steps:

1. For any α: hitα(1/4) ≍ tmix(1/4). This essentially comes from using the fact that we
can compare hitα and tmix up to relaxation time, and then use the product condition.

2. To show that here is α-hit cutoff if and only if there is hit cutoff, we show that for
say α ≤ β there is hitα cutoff if and only if there is hitβ cutoff. For this we simply
compare hitα to hitβ using both the monotone decreasing property of size, and the
comparison with an extra factor of trel.

3. Finally we have that if there is hit-α cutoff, then hitα(1/4)/hit 1
2
(1/4)→ 1. This is done

say by first assuming α< 1/2, and sandwiching hit1/2(1/4) on both sides. Monotonicity
gives hit1/2(1/4)≤ hitα(1/4), and then with cutoff and comparing different sizes up to
trel, we see that

(1−o (1))hitα(1/4)≤ hit1/2(1/4).
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14.4 Trees

We have discussed a few times already how the product condition, i.e: trel≪ tmix is indeed a necessary
condition for mixing time cutoff to hold. We haven’t yet shown whether the converse holds. In general
it turns out not to, but in the specific case of random walks on trees, we can actually prove that product
condition is equivalent to cutoff. The key to this will be the result of the previous section, where we
showed that given product condition holds, hit cutoff is equivalent to mixing time cutoff.

Definition 14.16 (Markov chain on trees) Recall that a Markov chain transition matrix P on a
tree T = (V , E ) (i.e: a graph with no cycles), is reversible with respect to its invariant measure. A
vertex v ∈ V is called a central vertex if each connected component of T \ {v }, has π-measure at
most 1/2. Fix a central vertex o of T (this always exists) and call it a root. We write x ≺ y if
x is on the path from o to y . For any x , we also label ℓ(x ) = (x0 = x , x1, · · · , xk = 0) the (unique)
path from x to o . We call x1 a parent of vertex x and label it px = x1. We also define a subtree
from u , Tu to be Tu = {v ∈ T : u ∈ ℓ(v )}. Finally we define the ε hitting time of o as

τo (ε) =min{t : Px (To > t )≤ ε,∀x ∈V }

In plain words: τo (ε) is the least time you have to wait so that the probability of hitting the root
starting from anywhere is no less than 1−ε.

Remark 14.17 The fact that for every tree there is at least one and at most two central vertices
is proven in ES4.

Lemma 14.18 (Comparison of τo and hit1/2) Let sδ = ⌈4 trel log(4δ/9)⌉. Then for all 0<δ< ε< 1,

τo (ε)≤ hit1/2(ε)≤τo (ε−δ) + sδ

Proof. Fix any x ∈ V . Let Ax be the union of {o} and all the connected components of T \ {o}
that do not contain x . Then since the connected component that contains x has π-measure less
than or equal to 1/2, it must be that π(Ax )≥ 1/2. Moreover, since T is a tree, hitting Ax in time
less than or equal to t is equivalent to hitting o with time less than or equal to t , and as such
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τo (ε)≤ hit1/2(ε). Indeed,

τo (ε) =min{t : Px (To > t )≤ ε,∀x }

=min{t : Px (TAx
> t )≤ ε,∀x }

≤min
§

t : max
π(A)≤1/2

Px (TA > t )≤ ε,∀x
ª

= hit1/2(ε).

This establishes the first inequality. For the second, fix x ∈ V , and A ⊆ V with π(A)≥ 1/2. Then
we have that

{TA >τo (ε−δ) + sδ} ⊆ {To >τo (ε−δ)}∪ {starting from o , TA > sδ}

using the Markov property and a union bound it follows that

Px (TA >τo (ε−δ) + sδ)≤Px (To >τo (ε−δ))+Po (TA > sδ)

≤ ε−δ+Po (TA > sδ)

Where in the second inequality we have used the definition of τo . Therefore we must now show
the bound Po (TA > sδ)<δ. If o ∈ A, then the probability is zero, so it is trivially true. Now consider
o /∈ A. We now have the following claim.

Claim: T \ {o} can be split as T \ {o} = T1 ∪ T2 where both T1 and T2 are each unions of the
connected components of T \ {o}, and each π(T1) and π(T2) is ≤ 2/3.

Proof of Claim: Label the connected components of T \ {o} as U1,U2, · · · ,Uk in order of size.
i.e: π(U1)≥π(U2)≥ · · ·π(Uk ). If there are only two such components, say U1 and U2, by definition
of o , it must be that π(U1),π(U2)≤ 1/2 and as such we are done. Otherwise, suppose that k ≥ 3.
Note that for any j ≥ 3, π(Uj )≤ 1/3, otherwise, the sums of the sizes would go over 1. Consider
any splitting T \ {o}= T1 ∪T2 where U1 ∈ T1 and U2 ∈ T2. Then if one of T1 or T2, say without loss
of generality has π(T1) ≥ 2/3, then it must be that π(T2) ≤ 1/3. Now grab any Uj ∈ T1 with j ≥ 3

and move it to T2. We have decreased the size of T1, and the size of T2 is of course at most 2/3

(because originally the size was at most 1/3 and now we have added a component Uj of size at
most 1/3). If π(T1) is still ≥ 2/3, then repeat, get a component Uj ∈ T1 with j ≥ 3 and move it to
T2. It will still be the case that we have decreased the size of T1 whilst not increasing the size of
T2 above 2/3. The picture is something like this:
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o

T1

T2

U1

U2

Uk

We can keep repeating this until eventually π(T1) must drop below 2/3. If at a certain iteration
of this algorithm, we have that suddenly π(T2) has increased from size ≤ 2/3 to size ≥ 2/3, then it
must be that after this step, π(T1)≤ 1/3, and so we can undo this last step, and now we will have
that both T1 and T2 have sizes at most 2/3. Claim proven.

Now back to the main argument, we can split our original set A which was arbitrary and assumed
to be of size ≥ 1/2 into the components that live in T1 and T2, say Ai = Ti ∩A. Of course it must
be that sine A1 ∪A2 = A, it can’t be that the size of both A1 and A2 are simultaneously less than
1/4.

o

T1

T2

A1

A2

A = A1 ∪A2

So say without loss of generality that π(A1)≥ 1/4. Note that if starting at zero you haven’t hit A

by time sδ, then you for sure haven’t hit A1, so we have the following

Po (TA > sδ)≤Po (TA1
> sδ)

≤PπT2∪{o}
(TA1

> sδ)

≤π(T2 ∪{o})−1Pπ(TA1
> sδ)

Where the first inequality was explain above, the second inequality comes from the fact that if
starting at o you haven’t hit A1 by time sδ, then you also haven’t hit A1 when starting any-
where in T2 ∪ {0}, and the third inequality comes from the law of total probability, i.e: Pπ(· · · ) =
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PπT2∪{0}
(· · · )π(T2 ∪{0}) +PπT1

(· · · )π(T1)
︸ ︷︷ ︸

≥0

. Rejoice for we are almost done, now upper bound

Pπ(TA1
> sδ)≤π(Ac

1 )exp
�

−
sδπ(A1)

trel

�

Since π(T1) ≤ 2/3, then π(T2 ∪ {o}) ≥ 1/3, and using the value of sδ we defined at the very start,
we have shown finally that

Px (TA >τo (ε−δ) + sδ)≤ ε

which means that hit1/2(ε)≤τo (ε−δ) + sδ as we intended to prove. ♥

We can now state the main result of this section.

Theorem 14.19 (Cutoff for Markov chains on trees) For a Markov chain on a tree T = (V , E )

with |V | ≥ 3, and for all ε≤ 1/4, we have that

tmix(ε)− tmix(1−ε)≲
p

ε−1 tmix trel

We first need the following

Lemma 14.20 For a Markov chain on a tree T = (V , E ) with |V | ≥ 3, we have that

tmix(ε)− tmix(1−ε)≲τo (ε)−τo (1−ε)

Proof. come back to this ♥

This means that to prove the Theorem, it is enough to show that τo (ε)−τo (1−ε)≲
Æ

tmix trel
ε . To show

this, we will inspect how τo is concentrated around its mean. To show concentration around its mean
we need to be able to bound the variance of hitting times:

Proposition 14.21 Let P be reversible and irreducible with invariant distribution π. Let A be a
non-empty and proper subset of Ω, and define the distribution ψAc on Ac by

ψAc (y ) =PπA
(X1 = y | X1 ∈ Ac )

, i.e: the distribution where you are after one time step in Ac given that you exited A. Then for
all t ≥ 1:

PπAc (TA = t )
Φ(Ac )

=PψAc (TA ≥ t ).
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Where Φ(A) is the conductance of a set, i.e: Φ(A) = Q (A,Ac )
π(A) . This implies that

EψAc [TA] =
1

Φ(Ac )
and EψAc [T

2
A ] = EψAc [TA](2EπAc [TA]−1)≤

2EψAc [TA] trel
π(A)

Proof. To prove the first equality, we start by noticing that

{TA = t }= {X0 /∈ A, · · · , X t−1 /∈ A, X t ∈ A}

and
{T +A = t +1}= {X1 /∈ A, · · · , X t /∈ A, X t+1 ∈ A}

Stationarity of π means that
Pπ(TA = t ) =Pπ(T

+
A = t +1)

and so for all t ≥ 1, we can computue

π(Ac )PπAc (TA = t ) =Pπ(TA = t ) =Pπ(T
+

A = t +1)

=Pπ(X1 /∈ A, · · · , X t /∈ A, X t+1 ∈ A)

=Pπ(X1 /∈ A, · · · , X t /∈ A)−Pπ(X1 /∈ A, · · · , X t+1 /∈ A)

=Pπ(X1 /∈ A, · · · , X t /∈ A)−Pπ(X0 /∈ A, · · · , X t /∈ A)

=Pπ(X0 ∈ A, X1 /∈ A, · · ·X t /∈ A)
(1)
= π(A)Φ(A)PψAc (X1 /∈ A, · · · , X t /∈ A)
(2)
= π(A)Φ(A)PψAc (TA ≥ t )

Where (1) comes from the fact that we have conditioned on having exited A in one step of the
chain, and as such had to multiply by the probability of having exited the chain in one step which
is precisely π(A)Φ(A). Equality (2) comes from the fact that PψAc (X1 /∈ A, · · · , X t /∈ A) is alternatively
written as

PX1∼ψAc (X1 /∈ A, · · · , X t /∈ A)

and as such we can shift indices back and now (2) can easily be seen. This completes the first
equality because Q (A, Ac ) =Q (Ac , A) due to reversibility and as such Φ(A)π(A) =Φ(Ac )π(Ac ). With
the first equality in mind, we can now compute the expectations, this is not too bad:

EψAc [TA] =
∞
∑

t=0

PψAc (TA ≥ t ) =
1

Φ(Ac )

∞
∑

t=0

PπAc (TA = t ) =
1

Φ(Ac )

For the second one, we note the following trick:
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Trick: If a random variable takes values in N, just as we had E[X ] =
∑

t≥1 P(X ≥ t ), we also have
that E[X 2] =

∑

t≥1(2t −1)P(X ≥ t ).

Proof of trick: this follows immediately after noting that t 2 =
∑t

s=1(2s −1).

Back to the computation, we now have that

EψAc [T
2

A ] =
∑

s≥1

(2s −1)PψAc (TA ≥ s )

=
∑

s≥1

(2s −1)
PAc (TA = s )
Φ(Ac )

=
2EπAc [TA]−1

Φ(Ac )

≤
2EψAc [TA] trel

π(A)

Where the only mysterious step is the last one, and in here we have used the fact that Φ(Ac ) has
just been shown to be 1

EψAc
and we know from Lemma 14.6, we can bound (noting that if you

start from A, EπA
[TA] = 0:

EπAc [TA] =
1

π(Ac )
Eπ[TA]≤

1

π(Ac )
π(Ac )

trel
π(A)

.

♥

This gives the following Lemma:

Lemma 14.22 (Expected hitting time of the parent) For u ̸= o , and writing pu for the parent
vertex of u , and Tu is the subtree of the vertices that connect o to u , we have that

Eu [Tu ] =
π(Tpu

)

π(u )P (u , pu )
and Eu [T

2
pu
] = 2Eu [Tpu

]EπTu
[Tpu
]−Eu [Tpu

]

Proof. We wish to use the previous proposition, and as such we need to cleverly choose a set A.
We will use A to be the chain of vertices that connect o with the parent of u :

o

· · · pu

u

A

Ac
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Now we note that if you start at A, and the distribution of where you are in one step conditioned
on having reached Ac in one step is precisely a point mass at u . Moreover, if you start at u , the
hitting time to reach set A is precisely the hitting time of pu . Therefore

EψAc [TA] = Eu [Tpu
] =

π(Tu )
π(u )P (u , pu )

as required. The second result also follows immediately now. ♥

With this in mind, we can now provide a concentration on the hitting time of an ancestor, we can give
something slightly more general:

Proposition 14.23 (Concentration of hitting time) Let y ≺ x , i.e: y is in the path from o to x .
Let c > 0 and define

σx y =
q

4Ex [Ty ] trel

Then
Varx [Ty ]≤σ2

x y

In particular, by Markov’s inequality we have the concentration inequalities:

Px

�

Ty ≥ Ex [Ty ] + cσx y

�

≤
1

1+ c 2
Px

�

Ty ≤ Ex [Ty ]− cσx y

�

≤
1

1+ c 2

Proof. Consider the path from x to y :

v0 = x ≻ v1 ≻ · · · ≻ vk = y

The key idea is that the variance of the hitting time of y starting from x is the sum of the variances
of hitting time of vi+1 starting from vi because all of these random variables are independent.
Therefore

Varx [Ty ]
(1)
=

k−1
∑

i=0

Varvi
[Tvi+1

]

(2)
≤

k−1
∑

i=0

Evi
[T 2

vi+1
]

(3)
≤

k−1
∑

i=0

4 trel Evi
[Tvi+1

]

(4)
=σ2

x y

Where (1) comes from the discussion above, (2) comes from the fact that Var[X ] = E[X 2]−E[X ]2.
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Step (3) comes from the fact that from the previous Lemma and Proposition 14.21

Eu [T
2

pu
] = 2Eu [Tpu

]EπTu
[Tpu
]−Eu [Tpu

]≤
2Eu [Tpu

] trel
π(T c

u )

and when u = vi , pu = vi+1 so this quantity can be brutally upper bounded by 4Evi
[Tvi+1

] trel. Step
(4) comes from the fact that the expected hitting time of y starting at x is the sum of the expected
hitting times along the path from x to y . To show the last two inequalities, which just to remark
are slightly better than Chebyshev’s inequality (hence why we can’t directly use this inequality),
we make the following computation:

Px

�

Ty −Ex [Ty ]≥ cσx y

�

=Px

�

Ty −Ex [Ty ] +
σx y

c
≥ cσx y +

σx y

c

�

=Px

�

h

Ty −Ex [Ty ] +
σx y

c

i2

≥
h

cσx y +
σx y

c

i2�

≤
1

�

cσx y +
σx y

c

�2 Ex

�

h

Ty −Ex [Ty ] +
σx y

c

i2�

=
1

�

cσx y +
σx y

c

�2



Ex

�

�

Ty −Ex [Ty ]
�2
�

+2
σx y

c
Ex [Ty −Ex [Ty ]]
︸ ︷︷ ︸

0

+
σ2

x y

c 2





=
1

�

cσx y +
σx y

c

�2

�

Varx [Ty ] +
σ2

x y

c 2

�

(!)
≤

1
�

cσx y +
σx y

c

�2

�

σ2
x y +

σ2
x y

c 2

�

=
1

1+ c 2

The only non-trivial step is (!), where we used the inequality on variance which we just proved
above. The other inequality follows by identical calculations.

♥

Armed with these concentration inequalities we are ready to prove the main result of this section,
namely that the product condition on trees is in fact sufficient for cutoff.

Proof of Theorem 14.19. We divide the proof into steps:

1. For any x ∈V , Ex [To ]≤ 4 tmix:

If x = 0, there’s nothing to prove. Suppose that x ̸= o , then let Cx be the connected
component of T \ {o} that contains x , and let A = T \Cx :
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o

· · · x

· · ·

Cx

A

We will cleverly bound Ex [To ] as follows. Let τA be the random variable defined as follows

τA =min{k : Xk tmix ∈ A}

Since the only way to reach A by starting from x is by going through o , we can safely say
that

To ≤τA tmix . (⋆)

We also have the observation that since Cx is a connected component of T \{o}, by definition
of a root note, it follows that π(Cx )≤ 1/2, so in particular π(A)≥ 1/2. Moreover, by definition
of the mixing time, we have that for any starting point y ∈V , |P tmix(y , A)−π(A)| ≤ 1/4 so

P tmix(y , A)≥π(A)−
1

4
≥

1

4
.

In other words, Py (X tmix ∈ A) < 1
4 . This means that we can bound τA by making repeated

walks of length tmix starting at the endpoints of the previous walks to bound τA stochastically
by a geometric random variable with parameter 1/4. (Indeed, a failure of such a trial occurs
with probability less than 3/4), therefore Ex [τA] ≤ 4. And combining with (⋆) we get that
Ex [To ]≤ 4 trel.

2. Bound τo (ε) and τo (1−ε):

Start by fixing ε ∈ (0, 1/4], and consider the worst expected time to hit the root, τ :=

maxx∈V Ex [To ]. Define also the constant κε :=
p

4ε−1τ trel, which as a preliminary obser-
vation, note that κε ≍

p
trel. Let also c =

p
ε−1−1. Then we have the following: for any
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y ∈V

Py

�

To ≥τ+ c
p

4τ trel
� (1)
≤ Py






To ≥ Ey [To ] + c

q

4Ey [To ] trel
︸ ︷︷ ︸

σx y







(2)
≤

1

1+ c 2
= ε

Where (1) comes from the fact that if starting from y you haven’t hit the root by time
τ+ c

p

4τ trel, given that τ ≥ Ey [To ], you definitely haven’t hit the root by time Ey [To ] +

c
Æ

4Ey [To ] trel. Step (2) comes from the concentration inequalities developed in the Propo-
sition 14.23. Now we may quickly recall that τo (ε) is defined as

τo (ε) =min
�

t : Py (To > t )≤ ε for all y ∈V
	

And so from this it follows that τo (ε) ≤ τ+ c
p

4τ trel ≤ τ+κε, where in this last inequality
we noted that c :=

p
ε−1−1 <

p
ε−1. We have now upper bounded τo (ε), to complete the

proof we need to use Lemma 14.20, and so we also need to lower bound τo (1−ε). To do
this, we will use the second concentration inequality we developed in Proposition 14.23.

Let x be the vertex which attains the maximum in the definition of τ := maxx∈V Ex [To ].
Then by an immediate application of the second concentration inequality, we obtain that

Px

�

T0 ≤τ− c
p

4τ trel
�

≤
1

1+ c 2
:= ε

which in particular means that

max
y ∈V

Py

�

To >τ− c
p

4τ trel
�

≥Px

�

T0 >τ− c
p

4τ trel
�

> 1−ε

Quickly noting again that of course, τo (1−ε) is defined as

τo (1−ε) =min
§

t : max
y ∈V

Py (To > t )≤ 1−ε
ª

It must be that τ(1−ε)>τ− c
p

4τ trel >τ−κε.

3. Finish off:
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Lemma 14.20

tmix(ε)− tmix(1−ε)
(1)
≲ τo (ε)−τ(1−ε)
(2)
≲ τ+κε−τ+κε
(3)
= 4

p

ε−1τ trel
(4)
≲
p

ε−1 tmix trel

Where (1) comes from Lemma 14.20, (2) comes from the bounds we have just established
on κε, (3) comes from the definition of κε, and (4) comes from the fact that since for any
x , we showed in the first part of this long proof that Ex [To ] ≤ 4 tmix, it follows in particular
that τ≤ 4 tmix which shows of course that τ≲ tmix

♥



Chapter 15

Electrical Networks

In this chapter we work with reversible Markov Chains only. We will develop a way of thinking about
Markov chains in terms of electrical networks, in particular, by thinking of Markov chains as weighted
random walks on graphs.

Definition 15.1 (Conductance and resistance) Let G = (V , E ) be an undirected graph and let
{c (e )}e∈E be a collection of non-negative real numbers, which we call conductances. For an edge
e = (x , y ) we write c (x , y ) = c (e ) = c (y , x ) and we call the reciprocal r (e ) = 1/c (e ) the resistance
of an edge e .

A Markov chain can be defined on G with the conductances {c (e )}e∈E by setting

P (x , y ) =
c (x , y )

∑

x∼z c (x , z )
≡

c (x , y )
c (x )

Remark 15.2 (Invariant distribution and reversibility) For a Markov chain described as above if
we set CG =

∑

x∈V c (x ), then we can check that π(x ) = c (x )
cG

is the invariant distribution. Indeed:

(πP )(x ) =
∑

y ∈Ω
π(x )P (x , y )

=
∑

y ∈Ω

c (x )
CG
×

c (x , y )
c (x )

=
∑

y ∈Ω

c (x , y )
CG

=
c (x )
CG

=π(x )

And moreover, we can also check that π is in detailed balance with P , hence establishing that the

187
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chain is reversible. Indeed:

π(x )P (x , y ) =
c (x )
cG

c (x , y )
c (x )

=
c (y )
cG

c (y , x )
c (y )

=π(y )P (y , x )

Moreover, any reversible chain can be represented as a weighted random walk on a graph by setting
the conductances to be what we previously understood as conductances: c (x , y ) = π(x )P (x , y ).
Then the assumption of reversibility ensures that c (x , y ) = c (y , x ). Moreover, with this definition,
c (x ) =

∑

y c (x , y ) =
∑

y π(x )P (x , y ) =π(x ), so the transition probabilities of the weighted random
walk coincide with P (x , y ).

Definition 15.3 (Harmonic function) A function f : V →R is called harmonic for P at a vertex
x ∈V is

f (x ) =
∑

y ∈V

P (x , y ) f (y ),

or in more compact notation, if f satisfies f (x ) = (P f )(x ). A function is called harmonic if it is
harmonic at all vertices x ∈V , i.e: if we have that as functions: f = P f .

Remark 15.4 This definition of Harmonic coincides with the intuition from Analysis, it just says
that the value of the function at a point x is equal to the average of the function after one step
of the chain.

Harmonic functions enjoy a special extension property:

Proposition 15.5 (Unique extension of harmonic functions) Let X be an irreducible Markov chain
on Ω with transition matrix P . Let B ⊆Ω be a set and let f : B → R be a function defined on B .
Then the function defined by

h (x ) = Ex

�

f (XTB
)
�

is the unique extension h :Ω→R of f which is harmonic in Ω \B .

Proof. We first check that h indeed extends f . If x ∈ B , then the hitting time TB = 0 and so since
the expectation is for the chains started at x , we have that Ex

�

f (XTB
)
�

= f (x ). Now we check that
h is indeed harmonic on Ω \B . For this we will condition on the first step of the chain started at
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x , (1), and then use the Markov Property, (2):

h (x )
(1)
=
∑

y ∈Ω
P (x , y )Ex

�

f (XTB
) | X1 = y

�

(2)
=
∑

y ∈Ω
P (x , y )Ey

�

f (XTB
)
�

= (P h )(x )

as required. Now we check uniqueness of the extension. Suppose two functions h and h ′ satisfy
these properties. Then let g = h − h ′. It is easy to see that harmonic functions form a vector
space, indeed, if f and g are harmonic with respect to P , then

[P (α f +βg )](x ) =α(P f )(x ) +β (P g )(x ) = (α f +βg )(x )

So g is also harmonic on S \B . Since we have assumed both functions extend f , it must be that
g ≡ 0 on B . Now we have the following argument. We will show that maxy g (y ) ≤ 0 and that
miny g (y )≥ 0. Therefore g ≡ 0 on all Ω.

Assume maxy g (y )> 0 and let a = argmaxy g (y ). Then suppose that there exists some neighbour
x of a (i.e: P (a , x )> 0) with g (x )< g (a ). Then

g (a ) =
∑

y ∈Ω
P (a , y )g (y ) = g (x )

︸︷︷︸

<g (a )

P (a , x ) +
∑

y ̸=x

P (a , y )g (y )

︸ ︷︷ ︸

≤g (a )
∑

y ̸=x P (a ,y )

< g (a )
∑

y

P (a , y ) = g (a )

which is a contradiction. Therefore, for any neighbour x of a , we must have that g (x ) = g (a )> 0.
We could now repeat this argument with the fact that x = argmaxy g (y ), which shows that for
any connected path that contains a , all vertices v in said path must have g (v ) > 0. But since
the chain is irreducible, it must be that there is some path that leads to B , but we know that on
B , the function g is equivalent to zero, which contradicts the above. We could now repeat the
argument switching maximums for minimums and show the other required inequality. This shows
that g ≡ 0 and as such h = h ′. ♥
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div(a )≥ 0 div(x ) = 0

div(b )≤ 0

Figure 15.1: Flow from a to b , an illustration

Definition 15.6 (Flow and divergence) A flow θ on G = (V , E ) is a function defined on the set
of directed edges {(x , y )}x∼y for which

θ (x , y ) =−θ (y , x )

The divergence of the flow θ at a vertex x is given by

div(θ )(x ) =
∑

y∼x

θ (x , y )

We say a is a source and b is a sink for what we call a flow from a to b θ , if it satisfies
Kirchhoff’s node law:

div(θ )(x ) = 0 for any x /∈ {a , b }

and divθ (a )≥ 0. For a flow from a to b , we define its strength, to be ∥θ ∥ := divθ (a ), and we call
it a unit flow if ∥θ ∥= 1.

Remark 15.7 (Kirchhoff’s Law and Flows from a to b ) Observe that

∑

x∈V

divθ (x ) =
∑

x∈V

∑

y ∈x

θ (x , y ) =
∑

(x ,y )∈E

θ (x , y ) +θ (y , x ) = 0

Therefore, by assumption of Kirchhoff’s Law being satisfied, when we have a flow from a to b ,
then divθ (a ) =−divθ (b ).
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Definition 15.8 (Voltage, Current flow) Given two nodes a , b , a voltage between a and b is a
Harmonic function on V \ {a , b } (And due to the harmonic extension theorem, it always exists for
any given pair of boundary conditions W (a ), W (b ), and is in fact unique).

Given a voltage W , we define a current flow I , a function of directed edges:

I (x , y ) =
W (x )−W (y )

r (x , y )
= c (x , y )[W (x )−W (y )]

It is not a surprise that a current flow is a flow, since I (x , y ) =−I (y , x )

It is easy to check that given a current I , and a cycle of directed edges (x1, x2), · · · , (xk , xk+1
︸︷︷︸

x1

), we have

that:
k
∑

i=1

r (xi , xi+1)I (xi , xi+1) = 0

We refer to this condition as the cycle law.

Proposition 15.9 (A flow that satisfies cycle law is a current flow) Let θ be a flow from a to z

that satisfies the cycle law and I be a current flow from a to z . If ∥θ ∥= ∥I ∥, then θ = I .

Main idea: We consider the function f = θ − I , and by Harmonicity of voltage, show that divI (x ) = 0

for all x ∈ V \ {a , b } and hence div f (x ) = 0 for all x . Moreover, since both θ and I satisfy the cycle
law, then so does f . Now we can show that f is identically zero: pick any edge (x1, x2), if f assigns
a positive value to it, then by Kirchhoff Law, it must be that there is some edge (x2, x3) with strictly
positive flow. Continue and eventually you return to (x1, x2), violating Cycle Law.

Proof. Let f = θ − I . Let us check that f satisfies Kirchoff’s node law at all nodes. If x /∈ {a , z },
then

div f (x ) =
∑

y∼x

θ (x , y )− I (x , y ) = divθ (x )−divI (x )

From the definition of θ being a flow from a to b it follows that divθ (x ) = 0, so all left to check
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is that divI (x ) = 0, this comes from the fact that voltage is harmonic. Indeed:

divI (x ) =
∑

y∼x

W (x )−W (y )
r (x , y )

=
∑

y∼x

c (x , y )W (x )− c (x , y )W (y )

=W (x )c (x )−
∑

y∼x

c (x , y )W (y ) = 0

Where the last equality comes from the definition of transition probabilities in an electrical
network and W being harmonic. If x ∈ {a , z }, then we first note that by the remark above,
div f (a ) = −div f (z ), and since ∥θ ∥ = ∥I ∥, then the divergences agree at a , so div f (a ) = 0, and
hence div f (x ) = 0 for all x ∈V . Since θ is assumed to satisfy the cycle law and I being a current
flow automatically satisfies the cycle law it follows that f satisfies the cycle law too.

Now suppose that θ ̸= I , we may suppose WLOG that there is some edge (x1, x2) such that
f (x1, x2) > 0. Then by Kirchoff’s Law, we have that since the flow f coming into x2 from x1 is
positive, there must be some edge x3, for which the flow going out of x2 into x3 is positive, i.e:
f (x2, x3) > 0. Repeating this step as many times as needed and using the fact that the electrical
grid is finite by assumption, gives that eventually we will reach a vertex we have already visited,
and thus have created a cycle x1, x2, · · · , xk , xk+1 = x1 with f (xi , xi+1) > 0. This violates the cycle
law, which states that

k
∑

i=1

r (xi , xi+1) f (xi , xi+1) = 0

♥

Remark 15.10 The take home message of this proposition is that there is a unique unit current
flow. To be pedantic, since we have shown that a current flow I satisfies Kirchhoff’s Law on
vertices distinct from a and b , it also follows that I is a flow from a to b .
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a z

W (a ) W (z )

∥I ∥

W (a ) W (z )

a z

∥I ∥ ?

Figure 15.2: Effective resistance, the meaning behind the definition

15.1 Effective Resistance

Consider the following thought experiment: you have an electrical network (V , E ) with resistances
{r (e )}e∈E . You plug in a voltage W from a to z . This voltage creates a current flow I from a to z ,
with strength ∥I ∥= divI (a ). Suppose we were to replace the entire network by one single edge from a

to z , what resistance would we need to assign this edge so that the strength of the current on this new
network coincided with the strength of the current on the previous network? We call this resistance
Reff(a , z ) and by a trivial calculation we get the next definition:

Definition 15.11 (Effective resistance) For a graph G = (V , E ) with resistances {r (e )}e∈E , and
a , z ∈V , the effective resistance between said edges is

Reff(a , z ) =
W (a )−W (z )
∥I ∥

Where W is any voltage from a to z , and I is the current corresponding to it. The effective
conductance is defined as Ceff = 1/Reff.

Proposition 15.12 (Effective resistance is well defined) Effective resistance is a property of a
graph and not of the choice of voltage.

Main idea: The key aspect of this proof relies on the fact that any voltage W from a to z is an
affine transformation of the simplest voltage, the one with W0(a ) = 1 and W0(z ) = 0.

Proof. Let us make the following observation:

• The space of Harmonic functions for P is closed under affine transformations. Indeed: if f
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is Harmonic for P , and A, B are real constants, then

(P (A f +B ))(x ) =
∑

y

AP (x , y ) f (y ) +B P (x , y ) = A(P f )(x ) +B = A f (x ) +B

Then, if W is any voltage from a to z with boundary conditions W (a ) = A and W (z ) = Z , we can
construct the following affine transformation of W0, the voltage with W0(a ) = 1 and W0(z ) = 0:

(A−Z )W0(z ) +Z

It is clear that the boundary conditions of this new function agree with the boundary conditions
of our voltage W . Moreover, since this function is an affine transformation of the voltage W0, it
follows by uniqueness of Harmonic functions that

W (z ) = (A−Z )W0(z ) +Z

(Note that this is powerful as it holds for all voltages!) Define now ∥I0∥ to be the strength of the
current flow on the network associated with the voltage W0, and let ∥I ∥ be the strength of the
current associated to the given voltage W . We can now calculate that

∥I ∥=
∑

x∼a

W (a )−W (x )
r (a , x )

=
∑

x∼a

(A−Z )(W0(a )−W0(x ))
r (a , x )

= (A−Z )∥I0∥

Therefore, for any voltage from a to z :

W (a )−W (z )
∥I ∥

=
1

∥I0∥

♥

We now start to provide probabilistic connections between electrical networks and random walks. In
particular we will use the effective resistance from a to z to calculate the probability that a Markov
Chain started at a hits a vertex z before returning to a :

Proposition 15.13 (Effective resistance and escape probability) Let X be a reversible chain on
a graph G = (V , E ) and let {ce }e∈E ,{re }e∈E be the conductances and resistances respectively. Then
for any a , z ∈V , we have that

Pa (Tz < T +a ) =
1

c (a )Reff(a , z )
=:

Ceff(a , z )
c (a )

Main idea: The function f (x ) = Px [Tz < Ta ] is harmonic on V \ {a , z }, and since it has the same
boundary conditions as an affine transformation of a voltage, it can be expressed as such. Then we
can just compute Pa [Tz < T +a ] with a simple computation.
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Proof. Let f (x ) =Px [Tz < Ta ]. We start by making the following two observations:

• f (x ) is Harmonic on V \ {a , z }: this is a routine trick:

f (x ) =Px [Tz < Ta ]

=
∑

y

Px [X1 = y ]Px [Tz < Ta | X1 = y ]

(!)
=
∑

y

P (x , y )Py [Tz < Ta ] = (P f )(x )

Where step (!) comes from the Markov Property to change the measure Px [·|X1 = y ] into the
measure Py [·] and Tz remains unchanged, because x /∈ {a , z }. (Indeed, if we were trying to
perform this trick with the probability Px [T +z < Ta ], it would have not worked because T +z is
the first non-zero time, whereas Tz is the first time including time equals zero).

• f (x ) has the same boundary conditions as 1−W0(x ), where W0(x ) is the "unit voltage"
between a and z . (i.e: W0(a ) = 1 = 1−W0(z )), therefore, given that 1−W0(x ) is an affine
transformation of a harmonic function, it is also harmonic, and therefore by the uniqueness
result f (x ) = 1−W0(x ).

From this we are ready to prove the result:

Pa [Tz < T +a ] =
∑

y

P (a , y )Py [Tz < Ta ]

=
∑

y

c (a , y )
c (a )

(1−W0(y ))

=
1

c (a )

∑

y

W0(a )−W0(y )
r (a , y )

=
∥I0∥
c (a )

and recall from the computation we did in the proof of Effective Resistance is Well Defined:
Reff(a , z ) = 1/∥I0∥. This finishes the claim. ♥

Remark 15.14 The interpretation of this result is that the probability of visiting z before returning
to a is inversely proportional to the effective resistance between a and z . A big effective resistance
signifies a higher probability of returning to a before ever visiting z . The normalisation constant
is to account for the degree of a .



196 CHAPTER 15. ELECTRICAL NETWORKS
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Figure 15.3: Simplifying electrical networks: conductances in parallel and resistances in series

We now define Green’s function, which counts the expected number of times that a random walk
started at a will hit x before a stopping time T rings.

Definition 15.15 (Green’s function) For any stopping time T we define a Green’s function for
the Random Walk stopped at T by

GT (a , x ) = Ea

� ∞
∑

i=1

1({X i = x }∩ {i < T })

�

i.e: simply the function that counts how many times you’ve been in state x , having started from
a , until the clock rings.

Corollary 15.16 (Green’s function and effective resistance) For a reversible chain X , we have
that

GTz
(a , a ) = c (a )Reff(a , z ).

Proof. By the Strong Markov Property, started from a , the chain will visit z before returning to
a with probability 1

c (a )Reff(a ,z ) . If it returns to a , since Ta is a stopping time, we can restart the
chain there, and the probability of visiting z again before returning to a is again 1

c (a )Reff(a ,z ) . From
this argument it is evident that GTz

(a , a )∼Geo(1/c (a )Reff(a , z )). Hence the result follows. ♥

The reason this result is quite useful is that we have the following simplification rules that make
calculating effective resistance quite easy:

Proposition 15.17 (Simplifying the electrical network: conductances in parallel) Let e1 and e2

be edges with conductances c1 and c2 respectively. Suppose these edges share endpoints v1 and v2

(i.e a multigraph). Then both edges can be replaced with a single edge e of conductance c1+ c2
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without affecting the rest of the network, that is to say: all voltages in V and currents in E \{e1, e2}
are unchanged, and I (e ) = I (e1) + I (e2).

Proof. By looking at the diagram, it is clear that the transition probabilities of this new graph
are in fact the same as the one we had before. Since the construction of a voltage (and hence its
unicity) depends only on the transition probabilities and the boundary values, it follows that the
voltage W on all vertices is the same. If we take any edge l other than {e1, e2}, it is clear that
r (l ) hasn’t changed, therefore I (l ) remains also unchanged. Finally, if e = (x , y ) is the new edge
I (e ) = c (e )[W (y )−W (x )] = (c (e1) + c (e2))[W (y )−W (x )] = I (e1) + I (e2). ♥

Proposition 15.18 (Simplifying the electrical network: resistances in series) Lt v ∈V be a vertex
of degree 2. Let v1 and v2 be its neighbouring vertices, then the edges (v1, v ) and (v2, v ) can be
replaced by a single edge of resistance r (v1, v )+ r (v, v2). All the voltages in V \{v } are unchanged,
and all currents in E \ {(v1, v ), (v, v2)} are unchanged. Moreover, I (v1, v2) = I (v1, v ) = I (v, v2)

Proposition 15.19 (Simplifying the electrical network: short circuiting) Suppose two vertices
x1 and x2 have the same voltage, then one can identify them as a single vertex z (morally this
corresponds to adding a wire of zero resistance or infinite conductance, hence the name of the
proposition) while keeping all edges and without changing the voltage or current.

Let us introduce the following Lemma.

Lemma 15.20 (Self loops don’t affect voltage) Suppose a network has a voltage W from a to
b , and suppose y ∈ V has voltage W (y ), then if we add a self-loop of conductance 1 to y , its
voltage remains the same

Proof. We simply use the characterisation of voltage as W (y ) = Ey [W (XT {a ,b })]. If we add a
self-loop with conductance 1, a priori we have a new voltage W ′ and if we expand this:

W ′(y ) =
∑

x∼y

c (x , y )
c (y ) +1

W ′(x ) =
1

c (y ) +1
W ′(y ) +

∑

x ̸=y ,y∼x

1

c (y ) +1
W ′(x )

Rearranging gives that

W ′(y ) =
1

c (y )

∑

y∼x :x ̸=y

c (x , y )W ′(y )

Therefore our new voltage W ′ satisfies the exact same equations as W so they are the same. ♥
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Figure 15.4: Effective resistance on trees

Example 15.21 (Tree) Let T be a finite connected tree which has resistance 1 on each edge.
Then we have that for two vertices a and b , Reff(a , b ) equals the graph distance between a and
b .

Proof. We are going to simplify the network. Consider any vertex x that is not on the geodesic
from a to b , let y be the closest vertex to x that lies on the geodesic. Since W (x ) = Ex [W (XT {a ,b })]

it is clear that this will be also the same as Ey [W (XT {a ,b })] because starting the walk at x , in order
to get to {a , b }, we must go through y . Therefore, we can glue x to y , which gives a self-loop at
y . However, by the previous Lemma, we can just ignore this loop, as it doesn’t affect the voltage.
Repeating this, we can kill all vertices that are not on the direct path from a to b , now we can
just iterate the Resistances in Series Lemma. ♥

Remark 15.22 Just to be super clear, I claim that the effective resistance between a and z in the
first diagram is equal to the effective resistance in the last one. Indeed: effective resistance between
a and z is precisely W (a )−W (z )

∥I ∥ , however, since after the looping business we have not altered the
voltages nor the resistances, ∥I ∥ , W (a ), W (z ) stay the same. Then one can start simplifying, to
express Reff(a , z ) = Reff(a , y ) +Reff(y , z ). This (alegedly) follows from the Resistors in Series Add
Lemma, but let’s show it. By choosing the unit voltage W0 from a to z its clear that

Reff(a , z ) =
1

∥I0∥

and ∥I0∥ = I (a , y ) = 1−W0(y )
r (a ,y ) . Note that since I is a flow, I (a , y ) = I (y , z ) = I . Now we claim that

if we remove y and put an edge with the appropriate resistance r (a , y ) + r (y , z ), we also have
that ∥I0∥ := I (a , z ) equals I . Indeed: (r (a , y ) + r (y , z ))I = (1−W ) + (W −0) = 1, which shows that
I = 1−0

r (a ,z ) as required. Now you can keep iterating this and you get that Reff(a , b ) is the distance
from a to b .
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Definition 15.23 (Energy) Let θ be a flow on a finite connected graph G . We define its energy
by

E (θ ) =
∑

e∈E

(θ (e ))2r (e ),

The following Theorem gives an equivalent characterisation of effective resistance as the minimal
energy of unit flows:

Theorem 15.24 (Thomson’s principle) For all a , z ∈V , we have that

Reff(a , z ) = inf{E (θ ) : ∥θ ∥= 1 is a flow from a to b }

Moreover this infimum is uniquely attained by the unit current flow from a to z .

Proof. Let I be the unit current flow from a to z with associated voltage W . We have the
following:

E (I ) =
1

2

∑

x ,y :x∼y

I (x , y )2r (x , y )

(1)
=

1

2

∑

x ,y :x∼y

I (x , y )(W (x )−W (y ))

(2)
=

∑

x ,y :x∼y

I (x , y )W (x )

(3)
=
∑

x∈V

W (x )divI (x )

(4)
=W (a )−W (z )
(5)
= Reff(a , z )

Where (1) comes from Ohm’s Law, (2) comes from noting that I (x , y ) = −I (y , x ) and relabelling
indices on the second sum, (3) comes from the fact that summing over all edges (x , y ) amounts
to summing over all vertices x and then summing over all connections from x , as well as the
definition of divergence, (4) comes from the fact that I is a flow from a to z , so the divergence
at any x /∈ {a , z } is zero, as well as the fact that −divI (z ) = divI (a ) = 1, and (5) comes from the
definition of effective resistance using the fact that I is assumed to be unit strength.

We now show that for any other unit flow from a to z (the key difference is that it may not be
a current flow) J we have that E (J ) ≥ E (I ). Define the flow K = J − I , and notice that it has
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strength zero by assumption of both I and J being flows from a to z . Then

E (J ) :=
∑

e∈E

J (e )2r (e )

:=
∑

e∈E

[I (e ) +K (e )]2r (e )

=
∑

e∈E

I (e )2r (e ) +
∑

e∈E

K (e )2r (e ) +2
∑

e∈E

I (e )K (e )r (e )

(1)
= E (I ) +E (K ) +

∑

x ,y :x∼y

(W (x )−W (y ))K (x , y )

(2)
= E (I ) +E (K ) +2

∑

x ,y :x∼y

W (x )K (x , y )

(3)
= E (I ) +E (K ) +2

∑

x∈V

W (x )divK (x )

(4)
= E (I ) +E (K )

Where step (1) comes from the fact that when summing over all pairs (x , y ) where x ∼ y counts
all edges twice, as well as using the definition of I (x , y ). Step (2) comes from distributing and
using anti-symmetry of K (x , y ) and relabelling the sum. Step (3) comes from the definition of
divergence, and finally step (4) comes from the fact that K has zero strength, so its divergence is
zero at all points. Now finally, using the fact that E (K ) is a non-negative quantity. ♥

Corollary 15.25 (Gluing does not increase effective resistance) The procedure of gluing two
vertices with the same voltage does not increase effective resistance between any vertices that
have not been glued together.

W

W

Reff

W

Reff

Proof. Every flow in the previous network is also a flow in the glued one. ♥
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Theorem 15.26 (Rayleigh’s monotonicity principle) Suppose that G is a graph and {re }e∈E ,
{r ′e }e∈E are two sets of resistances for G with the property that r (e )≤ r (e )′ for all edges. Then if
we denote Reff(a , z ; r ) to be the effective resistance between a and z corresponding to the set of
resistances {r (e )}e∈E , we have the following monotonicity principle:

Reff(a , z ; r )≤Reff(a , z ; r ′).

Proof. This just follows from Thomson’s principle. Let I and I ′ be the unit flows corresponding
to the two sets of resistances, then by Thomson’s principle:

Reff(a , z ; r ) =
∑

e∈E

I (e )2r (e )≤
∑

e∈E

I (e )′r (e ),

since the infimum is attained by I . Now we can just use the assumption on the resistances and
deduce the claim. ♥

As an application of this result, we can ask the following question which is not immediate from a
probabilistic perspective. Suppose G is a graph with resistances {r (e )}e∈E , and suppose that we add
one more edge with whatever resistance we wish. How does the escape probability Pa (Tz < T +a ) compare
after this addition? It could seem that by placing this new edge in a clever way we can reduce this
probability, say by making it more likely to return to a . This however turns out to not be the case:
indeed, we can think of this new edge e ′ as already being there in the previous network, but having an
associated resistance r (e ′) of infinity. By “adding" this new edge, we have reduced the resistance from
infinity to some finite number, which by the monotonicity principle gives that the effective resistance of
this new graph is at most the effective resistance of the previous graph. Since the return probabilities
are inversely proportional to the effective resistances, we see then that in this new graph, the probability
of escaping to z before returning to a is at least as large as the original escape probability.

15.2 Lower Bounds on Effective Resistance

We have seen that by constructing unit flows, one may upper bound effective resistance through the
use of Thomson’s principle. We now provide a method to lower bound effective resistances. The end
goal is that as we will see, we will be able to say things about hitting times and cover times using
effective resistance.

Definition 15.27 (Cutset) Let G = (V , E ). A set Π ⊆ E of edges is called a cutset separating a

and z if every path between a and z contains an edge in Π.
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Figure 15.5: A cutset for a grid

Intuitively, if we can fit a lot of disjoint cutsets between a and z , it makes sense that the effective
resistance between these two points is big. This intuition is made precise by the Nash-Williams
inequality

Theorem 15.28 (Nash-Williams) Let {Πk : 1≤ k ≤m} be a disjoint collection of cutsets separating
a and z . Then

Reff(a , z )≥
m
∑

k=1

�

∑

e∈Πk

c (e )

�−1

Proof. All we need to show is that that for any unit flow θ , we have that

E (θ )≥
m
∑

k=1

�

∑

e∈Πk

c (e )

�−1

Then by minimising over θ we will be done. First we note that since the collection {Πk} are
assumed to be disjoint, we have that

∑

e∈E

θ (e )2r (e )≥
m
∑

k=1

∑

e∈Πk

θ (e )2r (e )

Now we note that
�

∑

e∈Πk

c (e )

��

∑

e∈Πk

θ (e )2r (e )

�

(1)
≥

�

∑

e∈E

p

c (e )r (e )|θ (e )|

�2

=

�

∑

e∈Πk

|θ (e )|

�2
(2)
≥ 1

Step (1) is nothing but the Cauchy-Schwarz inequality. For step (2) we have to be a bit more
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careful. Consider the set A = {x ∈V : x↔ a in G \Πk}∪ {a }. Then we have that

1
(1)
= divθ (a )
(2)
=
∑

x∈A

divθ (x )

(3)
=
∑

x∈A

∑

y∼x

θ (x , y )

(4)
=
∑

x∈A

∑

y∼x :y ∈A

θ (x , y ) +
∑

x∈A

∑

y∼x :y ∈Ac

θ (x , y )

(5)
=
∑

x∈A

∑

y∼x :y ∈Ac

θ (x , y )

(6)
=
∑

e∈Πk

θ (e )≤
∑

e∈Πk

|θ (e )|

Where (1) follows from θ having unit strength, (2) follows from the fact that θ being a flow from
a to z has that divθ (x ) = 0 for all x /∈ {a , z }, and z certainly is not in A, because to connect to
it one needs to go through the cutset. Step (3) is the definition of divergence, step (4) is trivial.
Step (5) comes from the fact that if we are summing over the values of y that are also in A, we
are going to be summing over both the pairs (x , y ) and (y , x ) so by the antisymmetry of the flow,
the entire sum will be killed. Step (6) comes from the fact that the edges that go from A to Ac

are precisely those from Πk and the last step is a trivial bound. ♥

We are now ready to present an example, where we compute bounds for the effective resistance of a
grid.

Proposition 15.29 (Effective resistance on the grid) Let a = (1, 1) and z = (n , n ) be the lower
and upper corners of the box Bn = {1, 2, · · · , n}2. Suppose each edge has unit conductance, then

log(n −1)
2

≤Reff(a , z )≤ 2 log n

Proof. We begin with the lower bound as its simpler. For this we need to come up with a collection
of cutsets {Πk}. A natural collection of cutsets to consider is the following:

a

z

Π1

Π2

Π3
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This is obviously a collection of cutsets and they are disjoint. By looking at the diagram its easy to
convince yourself that we will need n −1 such cutsets, and the i th cutset has 2i edges, therefore,
by applying the Nash-William inequality, we have that

Reff(a , z )
(1)
≥

n−1
∑

i=1

�

∑

e∈Πi

1

�−1

(2)
=

1

2

n−1
∑

i=1

1

i

≥
1

2

∫ n−1

1

1

x
d x =

log(n −1)
2

Where (1) comes from the fact that we are assuming unit conductance, (2) comes from the fact
that we have just discussed that |Πk |= 2k , and the last steps are just a simple integral comparison
of a sum.

Now we set to obtain the upper bound, which will involve creating a unit flow f from a to z ,
and therefore by Thomson’s principle, it will follow that Reff(a , z ) ≤ E ( f ). Let’s keep in mind the
diagram that says it all

a

z

f (e )

e

(i , j ) : i + j = k +2

We are going to direct all edges e in the grid flowing out of a and into z and we will cleverly run
a process X t on the grid which will run from a to z in a very "symmetrical way", and then assign
for an edge e , f (e ) to be the probability that the process goes through that edge. The process
that we will run on the grid is Polya’s urn:

Polya’s urn: consider an urn that initially contains one white ball and one black ball, we choose
one of the two balls at random, and then return it to the box, alongside a new ball of the same
colour of the ball we just picked. The sequence of the number of white and black balls on the urn
form a Markov process on the grid {1, · · · , n}2 with transition probabilities

P
�

(i , j ), (i +1, j )
�

=
i

i + j
P
�

(i , j ), (i , j +1)
�

=
j

i + j
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We will run this process X t = (Bt , Wt ) on the grid, and stop once we have reached the main diagonal
x + y = n + 1 (highlighted in black in the diagram). We shall assign for an edge e in the lower
diagonal region

f (e ) =P[X t = e for some t ≥ 0]

To complete the construction of f , we reflect the values of f onto the upper diagonal, so that for
example, the total flow out of a equals the total flow into z (as also shown in the diagram). We
now claim the following:

Claim: for a given diagonal, i.e: the points (i , j ) such that i+ j = k+2 for some k ≥ 1 (notice that
for illustration, the case k = 0 corresponds to the two points coming out of a ), the probability of
reaching any such points is the same. For illustration again, this means that the process is equally
likely to pass through any of the points highlighted in dark green in the diagram. More precisely,
we claim the probability to visit any point (i , j ) such that i + j = k +2, we have that

P[X t passes through (i , j )] =
1

i + j −1
=

1

k +1

Proof of Claim: We go by induction. For the base case, which corresponds to k = 1, i.e: the
first diagonal after a , it is immediately clear that the probability that each (1, 2) or (2, 1) is visited
is of 1/2 each. Assume now that the hypothesis holds for the diagonal i + j = (k − 1) + 2, let us
show the claim also holds for the diagonal i + j = k + 2. Then the probability that the process
goes through (i , j ) is the probability that it passes through (i − 1, j ) and then goes to (i , j ) plus
the probability that it passes through (i , j −1) and then passes through (i , j ). Thus

P[process passes through (i , j )] =
1

(i −1) + j −1
P
�

(i −1, j ), (i , j )
�

+
1

i + ( j −1)−1
P
�

(i , j −1), (i , j )
�

=
1

i + j −1

by direct computation.

Thus the claim is proven. Since the probability of visiting one vertex is exactly the sum of going
through any of the edges that lead to said vertex, it follows that for any vertex on the diagonal
i + j = k +2, the sum of flows going into each vertex (i , j ) is constant and equal to 1

k+1 . Naturally,
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the probability of going into one vertex is also the probability of leaving it, so the flow into any
vertex equals the flow out of said vertex which means that this construction of f really is a unit
flow from a to z (and just to be super clear, the flow out of a is 1 because the probability of
exiting a is one given that the process starts there). We are now ready, using these tools to bound
the energy of f . Labelling L for the lower diagonal region (and abusing notation for L being the
edge set and the vertex set):

E ( f ) :=
∑

e∈E

f (e )2r (e )

(1)
=
∑

e∈E

f (e )2

(2)
≤ 2

∑

e∈L

f (e )2

(3)
=
∑

x∈L

∑

e :e comes into x

f (e )2

(4)
≤ 2

∑

x∈L

�

∑

e :e comes into x

f (e )

�2

(5)
= 2

n−1
∑

k=1

(k +1)
1

(k +1)2

(6)
≤ 2 log n

Where (1) comes from the assumption of unit conductance, and hence unit resistance,(2) comes
from the fact that to count all edges, we can count twice the ones on the lower region, thus
double counting the main diagonal, hence the inequality, and since we are squaring f , we don’t
really care if the edges are directed and undirected to justify that this also takes care of the upper
diagonal. Step (3) comes from the fact that to count all edges in the lower diagonal, it suffices to
count all vertices and then the edges that go into each vertex, step (4) comes from the fact that
a 2+ b 2 ≤ (a + b )2 for positive a and b and we are summing positive flows. Step (5) comes from
the fact that to count all edges, we can simply count over all edges on the diagonals i + j +k +2,
and note that for this k will run from 1, corresponding to the first diagonal, all the way to n −1,
corresponding to the main diagonal. Moreover, we have established that the sum of flows of edges
going into any such vertex is constant and equal to 1

k+1 , and moreover, on any such diagonal there
are k + 1 vertices. Step (6) comes from once again the straightforward integral comparison of a
sum.

♥
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We now give one last connection between electrical networks to properties of the random walk before
moving to the next section. First let us state and prove the following classic result:

Lemma 15.30 (Green’s function and stationary distribution) Let X be an irreducible Markov
chain on a finite state space and let T be a positive stopping time of finite mean, such that
Pa (XT = a ) = 1 for some state a . Then for all x we have that

GT (a , x ) =π(x )Ea [T ].

Main idea: The claim follows from the fact that if a function h on the state space satisfies hP = h ,
then h is a constant multiple of π.

Proof. We have the following observations:

• We can express GT (a , x ) := Ea

�

∑T−1
t=0 1{X t = x }

�

as

∑

t≥0

Pa (X t = x , t < T ) =Pa (X0 = x , 0< T )
︸ ︷︷ ︸

1{x=a }

+
∑

t≥1

Pa (X t = x , t < T )

= 1{x = a }+
∑

t≥1

Pa (X t = x , t ≤ T )−Pa (X t = x , t = T )

but
∑

t≥1 Pa (X t = x , T = t ) = Pa (XT = x ) = 1{x = a }. Therefore, Green’s function can also
be expressed as

∑

t≥1 Pa (X t = x , t ≤ T ).

• If we sum over the previous step when t ≥ 1 and use the Markov property and the fact that
the event {t ≤ T } is measurable with respect to X1, · · · , X t−1:

Pa (X t = x , t ≤ T ) =
∑

y

Pa (X t = x , X t−1 = y , t ≤ T ) =
∑

y

Pa (X t−1 = y , t ≤ T )P (y , x ).

Combining the two observations,

GT (a , x ) =
∑

t≥1

Pa (X t = x , t ≤ T ) =
∑

t≥1

∑

y

Pa (X t−1 = y , t ≤ T )P (y , x ),

and now swapping the two summations and relabelling the indices, we are indeed left with
GT (a , x ) =

∑

y GT (a , y )P (y , x ). This means that GT (a , ·) is a constant multiple Cπ(·). To see
the value of this constant, we simply sum over all the state space:

C =
∑

x

GT (a , x ) =
∑

t≥0

∑

x

Pa (X t = x , t ≤ T ) = Ea [T ],
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as required. ♥

We now have the following connection between effective resistance and commute time:

Proposition 15.31 (Commute time identity) Let Ta ,b be the commute time from b to a , that is
to say, the first time the chain returns to a after having visited b . Formally: Ta ,b = inf{t > 0 : X t =

a and Xu = b for some u ∈ {1, · · · , t −1}}. Then

Ea [Ta ,b ] = c (G )Reff(a , b ).

Proof. We first note that the stopping time Ta ,b satisfies Pa (XTa ,b
= a ) = 1. Then, we also note

that
GTa ,b

(a , a ) =GTb
(a , a ).

This is because if we think of Ta ,b , once b has been visited, a will by definition not be visited until
the stopping time rings. Since the time when the stopping time rings is not counted in the sum
defining Green’s function, we therefore see that the expected number of visits to a before Ta ,b rings
is the exact same as the expected number of visits to a before Tb rings. However, by the connection
between Green’s function and effective resistance, we have that GTb

(a , a ) = c (a )Reff(a , b ). Finally,
we can now combine with the previous Lemma, and since π(a ) = c (a )

c (G ) , we are done. ♥

15.3 Cover times

We reach the final section of these notes, where we will use the theory of electric networks to obtain
bounds on the cover times.

Definition 15.32 (Cover times and hitting times) We define the maximal hitting time thit, as

thit =max
x ,y

Ex [Ty ],

and the cover time, tcov as
tcov =max

x
E[Tcov],

where Tcov is the first time that the Markov chain has visited every state in the state space.

We now introduce a preliminary relationship between thit and tcov:
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Theorem 15.33 (Relationship between thit and tcov V1) Let n be the size of the state space, then

thit ≤ tcov ≤ thit

�

1+
1

2
+

1

3
+ · · ·+

1

n −1

�

Proof. The lower bound is obvious, since for all y , Ty ≤ Tcov. For the upper bound we will proceed
as follows: suppose without loss of generality that our state space is {1, · · · , n}, and that the chain
starts at n . Let σ be a permutation of {1, · · · , n −1} that is chosen uniformly at random from the
group Sn−1. We will look to cover states in order σ(1), then σ(2), etc. In particular, let τk be
the first time that the sates σ(1), · · ·σ(k ) have all been visited, and let Lk = Xτk

be the position of
the chain at the time that the states σ(1), · · · ,σ(k ) were all first visited. We make the following
observations:

• If Lk ̸= σ(k ), meaning: the position of the chain at the time at which we finished visiting
every state in {σ(1), · · · ,σ(k )} was not σ(k ) (so it was one of σ(1), · · · ,σ(k−1)), then Lk is in
fact equal to Lk−1, because the time at which we first visited every state in {σ(1), · · · ,σ(k )}
is also the first time we visited every state in {σ(1), · · · ,σ(k −1)}.

• If Lk =σ(k ) = r , and Lk−1 = s , then the difference τk −τk−1 is precisely the hitting time of
state r when starting from s . Hence:

En [τk −τk−1|{σ(k ) = Lk = r }∩ {Lk−1 = s }] = Es [Tr ]≤ thit .

Averaging over r and s gives that

E[τk −τk−1|{σ(k ) = Lk}]≤ thit .

• Finally, we note that since σ is chosen uniformly at random, the probability that σ(k ) is the
last state to be visited in {σ(1), · · · ,σ(k )} before they are all visited is precisely 1/k .

Now we combine all this:

tcov ≤ En [τn−1] =
n−1
∑

i=1

En [τi −τi−1]

=
n−1
∑

i=1

En [τi −τi−1|{σ(k ) = Lk}]Pn (σ(k ) = Lk )+En [τi −τi−1|{σ(k ) ̸= Lk}]Pn (σ(k ) ̸= Lk )

≤
n−1
∑

i=1

thit

i
.

♥
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In a very similar spirit to the above, we have the following (possibly) stronger lower bound on tcov:

Theorem 15.34 (Relationship between thit and tcov V2) For a set A ⊆Ω of states, define t A
min :=

minx ,y ∈A:x ̸=y Ex [Ty ]. Then

tcov ≥max
A⊆Ω

t A
min

�

1+
1

2
+ · · ·+

1

|A| −1

�

.

Proof. The proof strategy is essentially the same as before. We enumerate the states in A as
{1, 2, · · · , |A|}, and using the same notation as before, choosing a uniformly at random permutation
σ of these elements, if we let τk be the first time σ(1), · · · ,σ(k ) have been visited, we will have
that:

• Trivially tcov ≥ t A
min.

• If Lk =σ(k ) = r , and Lk−1 = s , then the difference τk −τk−1 is precisely the hitting time of
state r when starting from s . Hence:

En [τk −τk−1|{σ(k ) = Lk = r }∩ {Lk−1 = s }] = Es [Tr ].

However, this time instead of upper bounding Es [Tr ], we can lower bound it by t A
min.

The rest of the proof is identical. ♥

We now see the relationship between the hitting times and electrical networks:

Theorem 15.35 (Hitting times and effective resistance) We have that

c (G )
2

max
a ,b

Reff(a , b )≤ thit ≤ c (G )max
a ,b

Reff(a , b )

Proof. The proof is quite simple and follows immediately from the commute time identity. Recall
that the commute time identity established that Ex [Tx ,y ] = c (G )Reff(a , b ). However since Ex [Tx ,y ]

is just the expected time taken to travel from x to y , and then from y to x , by the Strong Markov
Property, the Markov chain starts afresh when it reaches y , and so Ex [Tx ,y ] = Ex [Ty ]+Ey [Tx ]. From
this we have the following two observations:

1. Ex [Tx ,y ]≤ 2
�

Ex [Ty ]∨Ey [Tx ]
�

, and so by taking maximums c (G )maxa ,b Reff(a , b )≤ 2 thit.

2. Clearly Ex [Ty ]≤ Ex [Tx ,y ] = c (G )Reff(x , y ), and so by taking maximums, thit ≤maxa ,b Reff(a , b ).

♥
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Example 15.36 (Hitting and cover times on the grid) We finish these notes by showing how to
combine these results to study the hitting and cover times on the grid.

Solution. We recall from previous discussions that the effective resistance between the bottom left
and top right corners on the grid {1, · · · , n}2 was order log(n ). Let us begin by obtaining the order
of the maximal hitting time:

• Lower bound: from the previous Theorem we know that thit ≳ c (G )maxa ,b Reff(a , b ). Since
the conductances are assumed to be one for each edge, we get that c (G ) ≍ n 2, and clearly
maxa ,b Reff(a , b ) is lower bounded by the effective resistance between the bottom left and
top right corners, from which we get that thit ≳ n 2 log(n ).

• For an upper bound, we similarly just need to show that maxa ,b Reff(a , b )≲ log(n ). For this
we make the following considerations:

– If x and y are two points on the grid that “form a square", then we can think of
“isolating" the square with corners x and y from the rest of the grid by removing all
edges that connect it, that is to say, setting the resistances of the outgoing edges to be
∞. Then this new square will itself be a grid of side-length |x − y |, and so in this new
grid, the effective resistance between x and y will be order log(|x − y |)≤ log(n ). Now
we can note that by the monotonicity principle, when thinking about the original grid,
we have “added some edges" (i.e: reduced the resistance from ∞ to 1), and we will
have that in the original grid, the effective resistance between x and y will be upper
bounded up to constants by log(n ):

– If x and y don’t form the corners of a square, we will use the triangle inequality of
effective resistance and “put squares in between". We can consider the lines of slope
±1 emanating from x and y . We have two cases: if one of these pairs of lines intersect
at an integer coordinate, then we have found the “intermediate square", say z , and
then Reff(x , y )≤Reff(x , z )+Reff(z , y ), and since now each of these are points that make
the corners of squares, we get that Reff(x , y )≲ log(n ) (left picture):
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On the other hand, if the intersection occurs at a half-integer coordinate, then we can
consider another point y ′ which is moved by one unit so that the intersection occurs
at an integer coordinate, use the square trick, and then simply note that Reff(y , y ′) = 1

since they are neighbours (right picture above).

For the cover times:

• The upper bound follows from the fact that tcov ≲ thit
�

1+ 1
2 + · · ·+

1
n−1

�

≲ log(n )2n 2.

• For the lower bound we consider the set A = {(k ⌊
p

n ⌋, k ⌊
p

n ⌋), ((k + 1)⌊
p

n ⌋, (k + 1)⌊
p

n ⌋)}.
Then tcov ≳ log(n )minx ̸=y :y ,x∈A Ex [Ty ], but by the commute time identity, min Ex [Ty ] ≳
c (G )minx ,y ∈A,x ̸=y Reff(x , y ). This minimum effective resistance will be the effective resis-
tance between the bottom left and top right corner of a box of length

p

(n ), and so this
effective resistance will also be order log(n ). Therefore tcov ≳ n 2 log(n )2.

♥

Example 15.37 (Hitting and cover times on a tree) Just kidding here is one last example, let us
find the hitting and cover times for a binary tree of depth k .

Hitting times. It is clear that the maximal hitting time will be achieved by any two pairs of leaves
a and b whose common ancestor is the root ρ. By symmetry, the hitting time Ea [Tb ] is precisely
equal to the commute time from the root to any of them, say Eρ[Tρ,a ]. By the commute time
identity, this is equal to c (G )Reff(ρ, a ). As we computed before, the effective resistance in a tree
is simply graph distance, so Reff(ρ, a ) = k . Now to compute c (G ), we simply note that since each
vertex has degree two, c (G ) will be twice the number of edges. A quick computation shows that
c (G ) = 2(n −1), where n = 2k+1−1 is the number of vertices. ♥

Cover times. To bound the cover times, we see that one the one hand:

• Since tcov ≤ thit
�

1+ 1
2 + · · ·+

1
n

�

, this will give tcov ≤ 2(n −1)k
�

1+ 1
2 + · · ·+

1
n

�

.

• For a lower bound, we need to use the bound tcov ≥maxA t A
min. Let us define the families Ah
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where h ∈ {1, · · · , k}, where Ah is a set of 2h leaves, such that each vertex at level h has a
unique descendant in A:

Recall that t A
min =minx ̸=y ∈A Ex [Ty ]. Clearly this minimum hitting time is achieved by leaves a

and b in A whose most recent common ancestor is at level h ′ < h . Once again, by symmetry
and the commute time identity, this hitting time will be equal to 2(n − 1)(k −h ′). We can
now minimise this by cleverly choosing the leaves in A so that h ′ = h − 1, which gives that
for any h = 1, · · · , k

tcov ≥ 2(n −1)(k −h +1)
�

1+
1

2
+ · · ·+

1

2h −1

�

= (2+o (1)) log(2)n (k −h )h .

We now minimise this with respect to h by setting h = ⌊k/2⌋.

♥

Dear reader, thank you for reaching the end of the notes. They took me an entire year to write,
after many long days in the library and some unhealthy habits. Hopefully they aided your studies.
Yours falsely,
JOF
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Appendix A

Product Chains

Sometimes a lot of examples are of something called product chains, where we take the literal product
of several chains, and then move on this new bigger chain by selecting one of the sub-chains, and
moving it according to its transition matrix.

Definition A.1 (Product chain) For j = 1, · · · , d , let Pj be an irreducible transition matrix on
the state space Ωi . Consider the chain on Ω =

∏d
i=1Ωi , which moves by selecting one of the d

coordinates, say Ωi at random, and then only the i t h coordinate according to Pi . The transition
matrix is therefore, for two vectors x, y:

eP (x, y) =
1

d

d
∑

j=1

Pj (x j , yj )
∏

i :i ̸= j

1(xi = yi )

And here’s the main result we are concerned with:

Lemma A.2 (Eigenvalues) Suppose that for each j = 1, 2, · · · , d the transition matrix Pj on state
space Ω j has an eigenfunction φ( j ) with eigenvalue λ( j ). Then the function φ =

∏

j φ
( j ) is an

eigenfunction of the product chain eP with eigenvalue 1
d

∑d
j=1λ

( j ).

Lemma A.3 (Orthonormal Basis) Let π1, · · · ,πd be the invariant distributions of the chains
P1, · · · , Pd . Then π =

∏

j π j is the invariant distribution of the product chain, and if the set
B j is an orthonormal basis for ℓ(π j ), i.e: an orthonormal basis for RΩ j with respect to the inner
product with π j , then

(

∏

j

φ( j ) :φ( j ) ∈ B j

)

215
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is a basis for ℓ(π). In practical terms, the set of all products of eigenvectors of the individual chains
is an orthonormal basis for the big chain.



Appendix B

Induced Chains

Definition B.1 (Induced Chains ) Let X be a reversible Markov chain and A ⊆ Ω a subset of
state-space. Let TA+ be the first return time to A. The induced chain on A is the Markov chain
with state space A and transition matrix

PA(x , y ) =Px [XTA+
= y ]

That is to say, the transition probability from x to y is the probability that the original chain
started at x first reaches y when returning to A.

This corresponds to observing the original chain only during the times that it is at A

Theorem B.2 (Example Sheet 3, Q1) Let π be the invariant distribution of the original chain.
Then the induced chain is reversible with respect to πA =π(x )1(x ∈ A)/π(A), and hence πA is the
invariant distribution for the induced chain. Moreover, let γA be the spectral gap of the induced
chain and γ be the original spectral gap. Then γA ≥ γ.

217
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Appendix C

Classic Markov Chains

Here we discuss some Markov Chains which are useful to know results about:

Example C.1 (Gambler’s Ruin) Consider a gambler betting on the outcome of independent fair
coin tosses. If she gets heads, her fortune increases by 1, otherwise it decreases by 1. The gambler
will stop once she goes bust or her fortune reaches n . Starting from a wealth of k ∈ {0, · · · , n},
define τ to be the time at which she stops gambling. Then:

• Pk (Xτ = n ) = k/n .

• Ek (τ) = k (n −k ).

Example C.2 (Coupon collector) A company issues n different types of coupons. A collector
needs all n types to win. Suppose any coupon collected is equally likely, i.e. with probability 1/n .
Let τ be the number of coupons obtained until he obtains all n types. Then

E[τ] = n
n
∑

k=1

1

k
,

and for any c > 0

P
�

τ>
�

n log n + c n
��

≤ exp(−c ).
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Appendix D

Background Results

Theorem D.1 (Recurrence is a class property) Let (Xn ) be an irreducible chain, then one state is
recurrent if and only if all states are recurrent.

Proof. Let i and j be two states. Since (Xn ) is irreducible, P n (i , j )> 0 and P m ( j , i )> 0 for some
n , m large enough. Then we have that for all r ≥ 0:

P n+m+r (i , i )≥ P n (i , j )P r ( j , j )P m ( j , i )

Since
∞
∑

r=0

P r (i , i )≥
∞
∑

r=0

P n+m+r (i , i )≥ P n (i , j )P m ( j , i )
∞
∑

r=1

P r ( j , j )

We have that if j is recurrent, then this last sum is infinite, and as such i is also recurrent. ♥

Theorem D.2 An irreducible Markov Chain on a finite state space is positive recurrent.

Proof. First we note that

Ex [T
+

x ] =
∞
∑

t=0

Px (T
+

x > t ) =
∞
∑

t=0

Px

� t
⋂

k=1

{Xk ̸= x }
�

Now observe that since the chain is irreducible, given any pair (i , j ) of states we have some integer
ni j and positive real number εi j such that P ni j (i , j ) = εi j > 0. Thus define the quantities

n :=max
i , j

ni j ε :=min
i , j
εi j
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It is clear that

Px

� n
⋃

k=1

{Xk = x }
�

≥ ε

Or in other words

Px

� n
⋂

k=1

{Xk ̸= x }
�

≤ 1−ε

By the Markov Property we can also note that for any m ∈N

Px

�mn
⋂

k=1

{Xk ̸= x }
�

≤ (1−ε)Px

�

(m−1)n
⋂

k=1

{Xk ̸= x }

�

≤ · · · ≤ (1−ε)m

Combining this with our initial observation:

Ex [T
+

x ] =
∞
∑

t=0

Px

� t
⋂

k=1

{Xk ̸= x }
�

≤
∞
∑

t=0

Px

� n t
⋂

k=1

{Xk ̸= x }
�

≤
∞
∑

t=0

(1−ε)t <∞

♥

Theorem D.3 (Distribution of visits) Let (Xn ) be a Markov Chain, and let x be a transient state.
Suppose X0 = x . Let

Vx =
∞
∑

t=0

1{X t=x }

denote the number of visits to x . Then the distribution of Vx is geometric.

Proof. The proof involves a few prior constructions which we do not have the time to transcribe
here. See [Nor97, Pages 24-25] ♥

Theorem D.4 (Strong Markov Property) Let (Xn : n ≥ 0) be a Markov chain with initial distri-
bution λ and transition matrix P . Let T be a stopping time for (Xn : n ≥ 0), then conditional on
T <∞ and XT =ω, (XT+n : n ≥ 0) is a Markov chain with initial distribution δω and is independent
of X0, X1, · · · , XT .

Theorem D.5 (Existence of π) Let (Xn ) be an irreducible, positive recurrent Markov Chain, then
(Xn ) admits an invariant distribution π, and moreover

π(x ) =
1

Ex [T +x ]
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Proof. ♥

Lemma D.6 (Number Theoretic Lemma) Let S ⊆N∪{0} be closed under addition and gcd(S ) = 1.
Then there exists an M ∈N∪{0} such that whenever a ≥M , then a ∈ S .

Proof. See [Fre, Lemma 4.4] ♥

Theorem D.7 (Alternative interpretation of aperiodicity) Let (Xn : n ≥ 0) be an irreducible aperi-
odic Markov Chain on a finite state space. Then for a time t large enough, given any two states
x and y , we have that P t (x , y )> 0.

Proof. For any x ∈Ω we have that T = {t > 0 : P t (x , x )> 0} has greatest common divisor of 1 and
is closed under addition. Indeed, if a , b ∈ T then

P a+b (x , x )≥ P a (x , x )P b (x , x )> 0

Therefore by Lemma D.6 there is some integer Mx such that whenever t ≥Mx , then P t (x , x )> 0.
Define M = max{Mx : x ∈ Ω} which exists due to finiteness of Ω. Then it follows that for all
t ≥M , we have that P t (x , x )> 0 for all x ∈Ω. Now we have that if x and y are two states, due
to irreducibility of the Chain, some integers m and n such that P m (x , y ) and P n (y , x ) are both
strictly greater than zero. Due to finiteness, we can pick some N that is greater than all of these
m and n . Thus now for any t > 2M +N , i.e: t = 2M +N + r we have that

P t (x , y )≥ P m (x , k )P M−m−n+N+r (k , k )P n (k , y )> 0

♥

Lemma D.8 Let A be a stochastic matrix and let B be a matrix whose rows are all the row vector
v . Then AB = B .

Proof. Simple computation:

(AB )(x , y ) =
∑

i

A(x , i )B (i , y ) =
∑

i

A(x , i )v (y ) = v (y )
∑

i

A(x , i ) = v (y ) = B (x , y )

where this last equality comes from the fact that A is stochastic. ♥
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L p mixing times, 62

Coupling of Markov Chains, 33

Dirichlet form, 89
Dirty bound, 29
Distance of states, 143

Expander graph, 118

Induced Chain, 217
Invariant distribution, 9

LSRW on Box, 100

Modified Cycle, 134

Poincaré constant, 92
Pre-cutoff, 77
Product condition, 77

Random walk on Zn , 36

Separation distance , 44
Spectral representation of the spectral profile,
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Transitive chain, 81

Wilson’s Method, 84

225



226 INDEX



Bibliography

[Fre] Freedman. url: https://math.uchicago.edu/~may/REU2017/REUPapers/Freedman.
pdf.

[Nor97] J.R Norris. Markov Chains. Cambridge University Press, 1997.

227

https://math.uchicago.edu/~may/REU2017/REUPapers/Freedman.pdf
https://math.uchicago.edu/~may/REU2017/REUPapers/Freedman.pdf

	Markov Chains
	Elementary concepts
	Class Structure
	Transience and recurrence
	Invariant Distributions
	Time Reversal
	The Ergodic Theorem

	The Total Variation and Coupling
	Examples

	Mixing Times
	Examples

	Markovian Couplings
	Examples

	Strong Stationary Times
	Examples

	Cutoff
	Lp distance
	Spectral Decomposition
	Examples

	The Relaxation Time
	A necessary condition for cutoff
	Examples

	Transitive chains
	Examples
	Wilson's Method

	Dirichlet Forms and Bottleneck Ratio
	Canonical Paths
	Comparison technique
	Bottleneck ratio
	Expander graphs

	Spectral profile and isoperimetric profile
	Spectral Profile
	Isoperimetric Profile

	Geometric Techniques
	Varopoulos-Carne bound
	Path Coupling

	Hit-Mix
	Properties of hit-time
	An upper bound on mixing time
	Hit cutoff
	Trees

	Electrical Networks
	Effective Resistance
	Lower Bounds on Effective Resistance
	Cover times

	Product Chains
	Induced Chains
	Classic Markov Chains
	Background Results

